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Abstract: The rat model is a useful tool for understanding peripheral and central mechanisms of
laryngeal biology. Rats produce ultrasonic vocalizations (USVs) that have communicative intent
and are altered by experimental conditions such as social environment, stress, diet, drugs, age, and
neurological diseases, validating the rat model’s utility for studying communication and related
deficits. Sex differences are apparent in both the rat larynx and USV acoustics and are differentially
affected by experimental conditions. Therefore, the purpose of this review paper is to highlight
the known sex differences in rat USV production, acoustics, and laryngeal biology detailed in the
literature across the lifespan.
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1. Introduction

Both male and female rats produce ultrasonic vocalizations (USVs) in a variety of contexts
that hold communicative intent [1–7]. Adult rat USVs can be categorized into two primary
types based on affective state and mean frequencies: 1) alarm USVs which are produced during
negative affective states with a mean frequency near 22 kHz, and 2) 50 kHz USVs which
are produced during positive affective states [1,6,8–10]. Pups produce USVs with an average
frequency of 40 kHz to receive care from their dam (female parent) [8,9,11]. Sexual dimorphism
is apparent in all three major categories of USVs. Therefore, the purpose of this review paper is
to highlight the known sex differences in rat USV production and acoustics as well as laryngeal
biological differences between sexes. All ages were included in this review of the literature. This
review is focused on sexual dimorphism of the rat larynx and USVs; however, sex differences
exist in other rodent species’ USVs (e.g., hamsters [12] and mice [13–16]) and sexual dimorphism
of USVs is also mediated by sex differences within the central nervous system, not just the
larynx [17–19]. Nevertheless, the rat model is widely used to study vocal communication in
a variety of contexts such as social environment [1,5,7,9,20–23], neurogenic disorders [24–29],
aging [30–35], and pharmacology [36–44], justifying the need for a comprehensive review
of the literature attuned to sex differences.

2. Review of Sex Differences
2.1. Sexual Dimorphism of the Vocal Fold

Rat USVs are produced using a complex orchestration of the respiratory, laryngeal,
and resonatory systems [45]. The whistle-like vocalization is produced by airflow passing
through glottal and supraglottal spaces, and the configuration of these spaces can be
altered by subglottic pressure and intrinsic laryngeal muscle activity [45–48]. Laryngeal
motor innervation is primarily by the nucleus ambiguus through two divisions of the
vagus nerve: superior and recurrent laryngeal nerves [49–53]. Intrinsic laryngeal muscles
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such as the cricothyroid and thyroarytenoid elongate the glottis and shorten/close the
vocal folds to regulate the glottal geometry for specific USV types [46]. Several studies
have demonstrated that vocal fold approximation/configuration is critical for production
and modulation of rat USVs, making rat vocal folds a targeted investigation in voice-
related research [46–48,54–56]. Additionally, rat vocal folds, like human vocal folds, are
composed of a body (thyroarytenoid muscles) and cover (lamina propria, macula flavae,
and epithelium) [57,58] and can produce audible vocalizations with vocal fold vibration
in the frequency range 1–6 kHz [45,59,60]. However, because conspecific communication
occurs by USV rather than audible vocalizations, this paper discusses USV only.

Understanding how hormones affect vocal structure and function (USV) is crucial
for advancing science and clinical practice. As such, this paper reviews sex differences in
laryngeal biology, USV production rates, and USV acoustics (Figure 1). More specifically,
the summary of the known sex differences in the rat larynx was organized into intrinsic
laryngeal muscles and vocal fold mucosa, and sexual dimorphism of the USV production
and acoustics sections were summarized by primary USV category with rat strain and age
reported as needed (Figure 1). To ensure that this review encompassed pertinent articles
reporting sex differences in rat USVs, we created a PubMed search using the following
search terms: ((USV) OR (ultrasonic vocalization) AND (female)) NOT (mouse). Authors
then read the methods of the 540 article results and included all articles that compared rat
USVs between sexes with significant findings within the results. The majority of articles
were excluded for the following reasons: did not evaluate rat USVs, did not compare sexes,
and did not include both sexes (Figure 2).

2.1.1. Sex Differences in Intrinsic Laryngeal Muscles

Intrinsic laryngeal muscles are necessary to produce USVs, but few studies have
examined sexual dimorphism within rat intrinsic laryngeal muscles [61]. Existing studies
have primarily focused on evaluating the thyroarytenoid (TA) muscles, the primary muscles
of the vocal folds [61,62]. The myofiber types of the lateral thyroarytenoid (LTA) and medial
thyroarytenoid (MTA) muscles are similar between sexes, but the overall muscle areas
of the LTA and MTA are larger in male rats [61]. Additionally, the individual minimum
feret diameter of the myofibers of the LTA muscle are also larger in male rats [61]. Studies
have not investigated sex differences in muscle fiber types and sizes in the other intrinsic
laryngeal muscles such as the superior cricoarytenoid, lateral cricoarytenoid, posterior
cricoarytenoid, cricothyroid, and alar muscles. Therefore, a lack of information exists
regarding the potential sexual dimorphism of intrinsic laryngeal muscles.

Neuromuscular junctions (NMJs) of the TA muscles are also uniquely sexually dimor-
phic [62]. Female rats have more acetylcholine receptor fragments in the NMJs of the TA
muscles but not the other intrinsic laryngeal muscles [62]. The study’s authors hypothe-
sized that this sexually dimorphic NMJ feature would result in higher synaptic strength
and was likely mediated by higher estrogen levels of female rats [62]. However, a recent
study did not find NMJ morphological differences between ovariectomized (elimination of
ovarian hormones) and control female rats, suggesting that the NMJ of the TA muscle may
not be ovarian hormone dependent, and that sex differences in the TA muscles may be
more likely influenced by male hormones (androgens) rather than female hormones such
as estrogens [63].

Because few investigations have evaluated sexually dimorphic neuromuscular pa-
rameters of the laryngeal mechanism and even fewer studies have evaluated the effects of
sex hormones on these parameters, how sex differences in the underlying neuromuscular
laryngeal mechanisms influence acoustic differences in USV is unknown. Therefore, future
studies characterizing the extent of sex differences and influence of sex hormones on the
neuromuscular proprieties of the laryngeal mechanism are warranted.
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2.1.2. Sex Differences in Vocal Fold Mucosa

Both male and female rats have sex hormone receptors within the vocal folds, indicat-
ing that sex hormones bind within the vocal fold and potentially modulate physiological
effects [64]. In general, rat studies have demonstrated that ovarian hormones more drasti-
cally affect properties of the vocal fold mucosa than androgens.

In female rats, sex hormones are critical to homeostasis of the pre-menopausal vocal
fold mucosal tissues [64–66]. Several studies have demonstrated that removal of the
ovaries (elimination of ovarian hormones) results in the remodeling of the vocal fold
mucosa including the following: decreased cellular layers of the epithelium, increased
edema of the lamina propria, and decreased collagen I, hyaluronic acid, and elastin of the
lamina propria [64–66]. Although ovariectomy procedures have demonstrated vocal fold
mucosal remodeling, orchiectomy procedures in male rats have not resulted in significant
remodeling [64]. Therefore, the vocal fold mucosa appears to be differentially regulated
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between sexes with female rats having hormone-dependent mucosa, whereas the vocal
fold mucosa of male rats does not seem to be affected by hormone status.

Figure 2. Number of articles reviewed and included in this article regarding sex differences in the rat USV with a
PubMed search.

Pregnancy has also been shown to affect female rat vocal fold mucosa [67,68]. Preg-
nancy has been associated with the following histological changes in the vocal fold mucosa:
increased edema, increased glycosaminoglycans, mast cell emergence, and increased cel-
lularity of the lamina propria [67,68]. In addition, pregnancy has been found to change
biomolecules within the vocal fold mucosa [67]. Specifically, pregnant rats had lower
expression of nuclear factor-kappa B (a protein transcription factor related to immune
response) and higher expression of mucin 5 subtype AC (the major mucin of the upper
airway) [67]. Furthermore, progesterone levels were negatively correlated to the nuclear
factor-kappa B, but estradiol levels were not correlated to either biomolecule [67]. There-
fore, progesterone may activate transcriptional signaling responsible for mucosal changes
during pregnancy and may consequently affect USV acoustics.

2.2. Sex Differences in USV Production in the Main USV Categories

Rat USVs can be broadly categorized into three main categories: adult alarm 22 kHz,
adult 50 kHz, and pup distress USVs (Figure 3). Within these broad categorizes, USV
production rates are different between sexes. The following section will describe the sex
differences in production of these USV types and subsequent sections will focus more
specifically on acoustic differences.
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2.2.1. Alarm 22 kHz USVs

Alarm 22 kHz USVs are vocalizations produced during negative affective states
with long durations (0.5–3.0 s), low frequencies (~22 kHz), and narrow bandwidths
(1–4 kHz) [6,69]. Further, Blanchard identified six subtypes of alarm USVs during the
presence of a predator: horizontal, linear ascending, linear descending, U-shaped, nega-
tively accelerated ascending, and negatively accelerated descending vocalizations [70]. Sex
differences in alarm 22 kHz USVs have been evaluated in response to both predators (a live
cat) and laboratory experimental stressors [69]. In 2018, Inagaki reviewed sex differences in
rat alarm 22 kHz USVs [69]. To complement this review, we will summarize the thematic
sex differences in 22 kHz USVs incorporating more recent literature.

In general, female rats produce longer overall duration of alarm USVs in response
to predators but shorter overall duration of alarm USVs in response to experimental
stressors [69]; however, production of alarm USVs are influenced by both strain and
sex [71].

For example, in response to fear conditioning training, Long–Evans female rats pro-
duced greater overall duration of alarm 22 kHz USVs than male Long–Evans rats; however,
the opposite was true for Sprague–Dawley rats [71]. Additionally, following fear con-
ditioning training, Sprague–Dawley male rats produced more alarm USVs than female
Sprague–Dawley rats during contextual and auditory conditioned stimuli, whereas male
and female Long–Evans rats had similar alarm USV productions in response to conditioned
stimuli [71]. Likewise, another study that evaluated the effects of serotonin transporter
deficiency in a fear condition found that female rats produced fewer alarm USVs than male
rats [72].

Within strain, rats can be categorized as high vocalizing or low vocalizing, [73] and
stressors have been found to differentially affect sexes of high- and low-vocalizing rats.
Wistar rats exposed to chronic experimental stressors (variable lights, small cages, tail
pinch, etc.) produced significantly increased levels of 22 kHz USVs for low-vocalizing male
rats and high-vocalizing female rats [74]. Therefore, strain, sex, and vocalizing category all
contribute to differences in alarm USV rates for rats.

Early life stress also has been shown to differentially impact alarm USV productions
between sexes. A study that evaluated the effects of brief and prolonged maternal separa-
tion demonstrated that brief maternal separation attenuated fear conditioning (reduced
alarm USV production and freezing behavior) in both male and female Sprague–Dawley
rats; however, in general, male rats produced greater overall duration of alarm USVs
than female rats during fear conditioning [75]. Neonatal maternal separation resulted in
changes to 22 kHz USV production in adulthood, with fewer 22kHz USVs in response to a
stressor for female Sprague–Dawley rats but more 22 kHz USVs in Sprague–Dawley males,
demonstrating an opposite-sex effect [76,77].

Playback of alarm USVs to adult rats also affects behavior differently between sexes.
A playback of 22 kHz alarm USVs resulted in more long-lasting behavioral inhibition
in female rats than male rats [78]. This finding highlights that although rats may have
hormone-mediated, sexually dimorphic USV rates and different acoustic characteristics,
these differences may not be directly related to laryngeal differences but rather differences
in behavior mediated by the central nervous system.

Hormones likely contribute to the sexual dimorphism observed in alarm USV pro-
duction and differentially affect alarm USV productions. For example, in response to an
air puff, female Wistar rats produce shorter overall duration of alarm USVs than males on
both proestrus and diestrus phases of the estrous cycle [79]. This difference was hypothe-
sized to be due to testosterone level differences between sexes and tested in subsequent
experiments. In response to an air puff, castrated male Wistar rats produced shorter overall
duration of alarm USVs than sham-operated or castrated male rats with a testosterone
implant [80]. Additionally, because other anxiety responses (freezing and defecation) were
not reduced in the castrated male rats, the lower alarm USV emissions did not indicate
a reduced startle response [80]. The reduced emission rate is more likely indicative of
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a reduction in dominant behaviors [80]. Nevertheless, in response to an air puff, alarm
USV production of ovariectomized female Wistar rats did not differ between female rats
with testosterone implants and female rats with cholesterol implants [79]. Furthermore,
alarm USV productions were similar between female rats in diestrus 1 (low hormones)
and proestrus (high hormones), indicating no role of ovarian hormones in alarm USV pro-
ductions. Therefore, while male alarm USVs may be influenced by sex hormones, female
alarm USVs may not be. Nevertheless, these results were found in one anxiety context
with one strain of rat and should not be assumed to be identical in all anxiety contexts or
all rat strains.

Taken together, these results demonstrate that fearful conditions differentially affect
male and female rat behavior including their production of alarm USVs. Nevertheless,
more research is warranted to evaluate the patterns of hormonal influence across strain
and sexes before definitive conclusions can be made regarding sexual dimorphism of alarm
USV productions.

One uniquely male 22 kHz USV subtype is the post-ejaculation vocalization [81,82].
This extended vocalization is produced by the male approximately 30 seconds post-
ejaculation and continues, repeatedly, for approximately 75% of the entire post-ejaculatory
refractory period [81]. Such USVs are characterized as being highly frequency modulated,
specifically within the medial terminal segments of the USV [83]. All spontaneous copula-
tory behavior ceases during this refractory period [84]. While such copulatory behaviors
are associated with 22 kHz vocalizations, alarm USVs have also been observed in other
aspects surrounding mating. For example, prior to mounting, male rats produce 22 kHz
USVs as the rat approaches ejaculation, particularly if the female is non-receptive to male
mounting and/or if the male was unsuccessful [81]. It is hypothesized, in the copulatory
context, that this USV subtype represents a “de-arousal” mechanism or a type of “moti-
vational cut-off” [85]. This may enforce mating separation between the male and female
rats while still maintaining social contact [81]. Given the few studies available and the
several-decade gap in published studies, more research into this unique vocalization is
certainly warranted.

2.2.2. Pup Distress USVs

Rat pups produce USVs ranging in mean frequency between 30 and 65 kHz when
separated from their mother and associated litter. These USVs are generally referred to as
distress USVs [36]. The duration of distress USVs is variable (ranging between average
durations of 80 and 150 ms) and starts with very short USVs at younger ages with increasing
duration with maturation [86]. The distress USVs are unique in that the timeframe in which
pups produce them is relatively short (~18 days of age). While the increase in call rate
may be correlated with a heightened state of anxiety upon separation, both duration
and frequency may reflect developmental changes pre- and post-weaning [87]. Pups are
completely reliant on the mother for survival prior to weaning, supporting the hypothesis
that these distress USVs are produced in the context of separation/isolation, and are
consequently important for pup survival [36,88].

The pup USVs have also been described as occurring in the frequency range 40–70 kHz,
further being classified into 2 groups: 40 kHz/300 ms and 66 kHz/21 ms [88]. These classes
have specific relationships with both respiration and behavior and are produced during
pup movement [88]. While 40 kHz distress USVs have been observed in the context of
isolation, they can also be elicited in a more naturalistic setting when mothers engage in
rough handling with the pups [88]. In contrast, 66 kHz are not related to the behavioral
conditions [88]. In terms of respiration, distress USVs alter the length of expiration, lasting
for the entirety of the expiration cycle, whereas 66 kHz USVs do not alter the respiratory
signal in pups when mild foot shocks were administered [88].

Pup distress USVs can also occur following a drop in ambient temperature [9]. This
behavior is thought to relate to a pup’s dependence on the dam for survival, as pups
cannot regulate their own body temperature. Additional research investigating the role
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of anxiogenic drugs on pup USVs supports the hypothesis that these USVs are corre-
lated with presumptive distressed/anxious states, as administration of said drugs (e.g.,
selective serotonin reuptake inhibitors) lead to a reduction or complete blocking of the
USVs [9,89–91]. Studies assessing selective breeding as well as breeding over several
generations further support this hypothesis [92,93]. Pups bred to produce high rates of
isolation-induced USVs for multiple generations demonstrated increased anxiety-related
behaviors in adulthood. Additionally, rats who were selectively bred to demonstrate an
anxious phenotype in adulthood produced more distress USVs as pups compared to a
less anxious phenotype [92]. In summary, pups produce unique distress vocalizations
prior to weaning that seem important to their survival and are influenced by strain and
genetic lines.

In the context of sex differences, current research suggests preferential retrieval of
male pups by the dam which may be attributed to sex differences in pup distress USVs [17].
Male pups produce significantly more distress USVs with a lower mean frequency and
lower amplitude that results in preferential retrieval of the dam [17]. Research has shown
from postnatal day (P)-2 to 3 through P-12 to 13, males pups tend to produce distress USVs
more frequently than female pups, which results in the dam retrieving and returning male
pups preferentially to female pups [94]. Therefore, sexual dimorphism of the pup distress
USVs may result in the female rat prioritizing male pup survival.

Although few studies have investigated sex differences in distress USVs in typi-
cal/normal rat pups, many studies have investigated how drugs, neurological disorders,
endocrine disruptors, diet, and environmental condition differentially affect male and
female pup distress USVs. Table 1 summarizes major sex differences found in USV rate
and acoustics for experimental models organized by model, age, and strain. While not
all ages are prior to weaning (~P21), most summarized studies in this table measure USV
rates and/or acoustics within this timeframe (Table 1). Because the sex differences are not
uniform across studies or models, the articles are summarized individually. While this
table highlights major USV sex differences present in experimental rat models (particularly
rat pups), not all experiments find sex differences in USV production or acoustics.

Table 1. Summary of sex differences found in USV acoustics for experimental models.

Model Sub Model Age Strain Recording
Duration

Major Sex Difference(s) in USV
Acoustics

Drug exposure

Prenatal cannabis P10 Wistar 15 s
Male pups produced fewer distress USVs

during isolation, whereas females did
not [95].

Prenatal alcohol

P40–42 Wistar 10 min

For males, high ethanol exposure
resulted in more 22 kHz and fewer
50 kHz USVs during play, whereas

ethanol exposure did not affect female
USV production during play [96].

~P38–P48 LE 12 min

Prenatal exposure to alcohol decreased
the mean frequency and total duration of

50 kHz USVs during same-sex social
interaction for male rats, but not female

rats [97].

P28
P42 LE 10 min

At P28, during play female control
whisker clipped rats produced more

22 kHz USVs than other female groups.
At P42, during play male rats overall had
more 50 kHz USVs than female rats [98].
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Table 1. Cont.

Model Sub Model Age Strain Recording
Duration

Major Sex Difference(s) in USV
Acoustics

Postnatal alcohol

P15 SD 6 min

Neonatal alcohol exposure significantly
reduced distress USV rate for both sexes
and significantly increased USV latency
in female pups. Agmatine reduced these
deficits, in female but not male pups [99].

P25, P35,
P110–P120 SD 45 min

Adult alcohol-treated males produced
more 22 kHz USVs following initial

handling which was suppressed with the
startle stimulus than male rats receiving

water. Alcohol did not affect female
22 kHz USV rate. Overall, male rats had

a greater number of 22 kHz USVs in
response to startle stimulus [100].

~2–5 mo. NS 4 h

Female rats produced more 50 kHz USVs
than male rats during experimental

conditions. EtOH males produce 50 kHz
USVs with a higher mean frequency and
greater power than EtOH females. EtOH

males produced 22 kHz USVs with a
lower mean frequency, reduced

bandwidth, and longer duration than
EtOH females [101].

Cocaine

P90 SD 15 min

During foot shock procedure males had a
dramatic increase in 22 kHz USVs and

decrease in 50 kHz USVs. Male rats also
had longer duration of 22 kHz

USVs [102].

P1, P14,
P21 SD 5 min

At P1, both male and female pups with
prenatal cocaine exposure (PCE)

produced fewer distress USVs than saline
or untreated pups and male pups with
PCE produced fewer USVs with at least

one observable harmonic than male
saline or untreated pups.

At P21, male PCE rats produced more
USVs with longer overall total duration

of USVs than female PCE rats [103].

P10, P11 SD 5 min
Male pups produced more distress USVs
than female pups during the final 2 min

of a 5 min isolation test [104].

Morphine P130–P288 LE 45 min

In the presence of a cat, both male and
female rats produced fewer 22 kHz USVs
when exposed to morphine. Additionally,

both control and morphine females
produced significantly more 22 kHz
USVs with longer total duration than

male counterparts [105].

Oxycodone

P3
P6
P9
P12

SD 3 min
Isolation distress USVs peaked in

production rate at P9 for males and P6
and P9 for females [106].



Brain Sci. 2021, 11, 459 10 of 23

Table 1. Cont.

Model Sub Model Age Strain Recording
Duration

Major Sex Difference(s) in USV
Acoustics

Fluoxetine P6 SERT 3 min
Fluoxetine reduced the total duration of
distress USVs for male pups but did not
affect female USV total duration [107].

Diazepam P3–P18 Wistar 3 min
Overall, male pups in all experimental

conditions produced more distress USVs
than females [108].

Trimethylolpropane
phosphate (TMPP) P8, P14 LE 1 min

Males with prenatal TMPP treatment
produced more distress USVs than

control males, control females, and TMPP
females [109].

Neurological
disorder models

Shank3 deficiency P7 Shank3 3 min
Fewer distress USVs were observed in

male Shank3 −/− pups but not
females [110].

Pax6 P7 rSey2/+ 5 min

Female rSey2/+ rat pups produce fewer
distress USV from wild-type female pups,

which was not observed in male rat
pups [111].

Valproic acid
P9

P31–P32
P65–P70

SD 5 min
10 min

In general, female rats had shorter
duration of 50 kHz USVs during

isolation, same-sex play, and same-sex
social interaction than male rats. Female

rats also had fewer 50 kHz USVs in
same-sex social interaction [112].

Valproic acid,
chlorpyrifos P7 Wistar 3 min In isolation, male pups produced more

distress USVs [113].

Valproic acid,
poly(I:C) P6 SD 3 min

In the poly(I:C) condition, male pups
produced more distress USVs than

females [114].

Cacna1c P32–P34 Cacna1c 5 min

For control animals, female rats produced
fewer overall 50 kHz USVs during

same-sex play, with fewer step USVs and
more trill USVs, than males. Female rat
USVs also had a higher peak frequency.
For experimental animals, female rats

produced a similar rate of 50 kHz USVs
during play as male control animals,

whereas experimental male animals had
reduced 50 kHz USV production during

play [115,116].

MAM
P60 SD 10 min

During same-sex social interaction, MAM
exposure decreased the total number of

50 kHz USVs and increased the
percentage of short USVs and decreased
the percentage of frequency-modulated
USVs for both sexes. However, control

females had fewer frequency modulated
USVs than control males, whereas it was

opposite for MAM groups [117].
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Table 1. Cont.

Model Sub Model Age Strain Recording
Duration

Major Sex Difference(s) in USV
Acoustics

P8
P30

P31–P32
SD

3 min
3 min

10 min

At P8, males pups produced distress
USVs with a lower frequency and
reduced bandwidth than females.

At P30, males produced tickle-induced
50 kHz USVs with a higher center

frequency than females.
At P31-P32, during same-sex play, males

produced more USVs with greater
bandwidth than females [118].

AVP

P34
P44 Brattleboro 10 min Males produced more trill 50 kHz USVs

during same-sex play than females [119].

P34–37 Brattleboro 10 min Males produced more 50 kHz USVs than
females during same-sex play [120].

PD 2–8 mo Pink1-
/- 90 s

Pink-/- female rats did not have as many
50 kHz USV deficits as Pink1-/- male rats

in a mating context [121].

SE
P15
P16
P21

Wistar 5 min
SE male pups had a decrease in USV

latency than control pups, which was not
observed in female pups [122].

Liposaccharide
(LPS) P11 Wistar 5 min

Prenatal LPS exposure caused male pups
to produce fewer distress USVs, but this
was not observed with female pups [123].

Ischemic brain
injury P12 Wistar 3 min

Overall, ischemic pups produced fewer
distress USVs than control pups with

male ischemic pups experiencing greater
reductions in USV call subcategories than

female ischemic pups [25].

Endocrine
disruption

A1221 VIN P80–P100 d SD 5 min

In a mating paradigm, VIN males
produced fewer 50 kHz USVs than

control males. A1221 produced 50 kHz
USVs with reduced power, bandwidth,

and lower frequency. Experimental
female USVs were unaffected [124].

A1221 estradiol P60 SD 10 min

For female rats, estradiol treatment
decreased the number of step 50 kHz

USVs following opposite-sex exposure.
For male rats, A1221 treatment increased
the number of rise and step 50 kHz USVs

following opposite-sex exposure [125].

A1221 P30–39 SD 5 min–4 h
PBCs affected the number of 50 kHz

USVs for female rats but not male rats
during same-sex play [126].

Diet and
environmental

stressors
High-fat diet P7

P13 LE 10 min

Female pups on the high-fat diet
produced more 1-sweep distress USVs,
whereas male pups on the high-fat diet
produced more 2-sweep distress USVs

when compared to sex-matched
controls [127].
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Table 1. Cont.

Model Sub Model Age Strain Recording
Duration

Major Sex Difference(s) in USV
Acoustics

Maternal
separation

P60 SD 15 min, 3 h

Brief maternal separation in pups
resulted in changes in 22 kHz USVs in
adulthood with fewer 22 kHz USVs in

females but not in males, when
compared to controls [75].

P70–P90 SD NS
After prenatal isolation, adult male rats

produced 22 kHz USVs with greater
duration compared to female rats [128].

P120 LE 17 min

Maternal separation resulted in males
producing more 22 kHz USVs in

response to startle stimulus but did not
affect female startle-induced 22 kHz

USVs [129].

Heat-induced
convulsions P10, P12 LE 2 min

Males produced more distress USVs
(more category 5 and 6 USVs) compared

to females [130].

Moderate and
extreme cold P7–8 SD 70 min

Male pups produced more distress USVs
than female pups; both sexes increased

distress USVs in the presence of extreme
cold temperature [131].

Heat, light, and
restraint stressors

P1
P6
P10
P14

SD 6 min
At P6, males produced more distress

USVs than females during the first 2 min
following maternal separation [132].

corticotropin-
releasing factor

(CRF)

P6
P10
P14

SD 6 min Overall, male pups produced more
distress USVs than females [133].

A1221 = Aroclor 1221, AVP = arginine vasopressin, CRF = corticotropin-releasing factor, etOH = ethanol alcohol, LE = Long–Evans,
MAM = methylazoxymethanol acetate, LPS = Liposaccharide, NS = not specified, P = postnatal day, PBCs = polychlorinated biphenyls,
PCE = prenatal cocaine exposure, PD = Parkinson’s Disease, poly(I:C) = polyinosinic-polycytidylic acid, SD= Sprague–Dawley, SE = sta-
tus epilepticus, SERT = serotonin transporter deficient, TMPP = trimethylolpropane phosphate, USV = ultrasonic vocalization, and
VIN = vinclozolin.

2.2.3. Adult 50 kHz USVs

Both male and female rats produce 50 kHz USVs during various social contexts such
as rough-and-tumble play, mating, and in isolation. These USVs are critical to the commu-
nicative intent of the rats and often impact the behavior of conspecifics [134–136]. Because
50 kHz USVs are often observed in appetitive situations and during physical interactions,
features of these USVs have been investigated in different social contexts. These 50 kHz
USVs can be subcategorized based on spectral features such as duration and frequency
modulation. Wright et al. introduced 14 categories of 50 kHz USVs [37]; however, many
studies use simpler categorization such as flat vs frequency modulated [137]. Although
there is no current consensus on rat 50 kHz USV subcategories, rats are known to produce
a variety of these vocalizations, and recent advancements in the efficiency of USV data
analysis will lend to greater cross-institutional collaboration to better elucidate USV subcat-
egories and their communicative relevance [138]. Furthermore, these social USVs such as
alarm and pup USVs are also influenced by rat strain [139].

Rough and Tumble Play

During social interactions, such as social play, both young and aged rats will frequently
produce 50 kHz vocalizations [7,140,141]. These vocalizations are thought to be produced
to promote playful contact with peer rats and function as play signals [22]. During rough-
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and-tumble play, 50 kHz USVs often co-occur with attack-like, play behaviors [23]. These
interactions, however, can transition beyond play fighting and into more serious fighting
behavior [142]. Specifically, when pairs of unfamiliar adult males were exposed to each
other, there was an increased risk to escalate into aggressive behavior if one partner
is devocalized, or unable to communicate with USVs [143]. Thus, the importance of
communication during rough-and-tumble play is critical to prevent this escalation [22].
Therefore, vocal communication during rough-and-tumble play has been investigated to
explore the social ecological value it provides. To further explore their utility, sex differences
in USV production have been identified. In rough-and-tumble play, male rats produce a
greater amount of 50 kHz USVs when compared to female rats [143]. This sex difference has
been attributed to males desire to engage in more rough play [142], but further exploration
is warranted.

Mating

In addition to play-based social interactions, 50 kHz USVs are produced in mating
contexts to initiate approach behaviors of mating partners [4]. Research findings are mixed
regarding the role of USVs in mating, but one theory suggests that male 50 kHz USVs are
prosocial in nature and elicit female copulation behaviors [144–147]. Other results suggest
that female USVs do not provide mating incentive for male counterparts and instead sup-
port that male rats will show sexual interest in the female rat regardless of the presence of
USVs [148–150], and male USVs did not influence female USV production [146]. However,
the presence of an estrus (sexually receptive) female rat significantly increases male vocal-
izations [151]. Additionally, female vocalization rates were significantly increased during
peak periods of sexual receptivity (during estrus), in contrast with male-only vocalizations,
which were not linked to sexual receptivity [152,153]. In regards to female USVs, it has
been found that female rats produced higher proportion of frequency modulated USVs
to male peers compared to female peers, and females produced a higher total number of
USVs when in the presence of male rats that have not been castrated [154]. These findings
suggest that female vocalizations are also influential in motivating sexual interactions and
may indicate communicative intent during opposite-sex encounters.

Housing Environment and Aging

Both housing environment and age influence USV production rates and acoustics in
male rats. Social isolation influences USV production rates and acoustics depending on the
length of time of isolation. Wöhr et al. found that male rats exposed to a brief period of
social isolation produced more than twice the amount of USVs when compared to other rats,
likely due to increased social motivation after isolating [5]. However, after longer periods
of isolation (2–6 months), studies have found that socially isolated male rats produced
fewer 50 kHz USVs with lower amplitude in response to a female rat than socially-housed
rats [155,156]. Thus, it appears that while short-term social isolation may increase USV
production rates in social situations, long-term social isolation decreases the number and
amplitude of social USVs. The inclusion of female rats in future studies is warranted to
understand how sexes may respond differently to social isolation in adulthood.

In male rats, aging has been shown to change USV acoustics with older rats producing
fewer 50 kHz USVs with reduced peak frequency, frequency bandwidth, and amplitude in
a mating context [31,34,35]. These changes to USV acoustics co-occur with non-muscular
and neuromuscular changes in the larynx. Some of these changes include the following:
reduced hyaluronic acid, reduced elastin densities, and increased collagen densities of the
vocal fold [35]; motorneuron loss of the nucleus ambiguus [34]; deinnervation-like changes
to the neuromuscular junction of the thyroarytenoid muscles [31,157–160]; reductions in
muscle-twitch functions of the thyroarytenoid muscles [161]; and alterations to intrinsic
laryngeal myofiber structures [33,158,161,162]. Although many of these changes may
contribute to functional age-related deficits observed in rat larynx, as previously mentioned,
USV production is a complex orchestration of many muscular subsystems that which
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simultaneously under age-related changes and cannot be explained by a single muscular
system such as the larynx. Importantly, most of the studies investigating age-related
changes to the larynx have been completed solely with male rats prohibiting any insight to
sex differences in the aging rat larynx.

2.3. Sex Differences in USV Acoustics
2.3.1. Alarm 22 kHz USV Acoustics

Although studies have confirmed differences between male and female alarm USV
productions, most studies have focused on solely the number or overall duration of alarm
USVs produced in fear contexts and have overlooked acoustic features or alarm subtypes.
In Blanchard’s anti-predator USV study, female rats produce more frequent alarm USVs
with a higher mean frequency and shorter duration [70]. In the response to a predator,
male rats primarily produced negatively accelerated descending frequency alarm USVs,
whereas female rats primarily produced linear descending alarm USVs. Another study
that evaluated the effects of serotonin transporter deficiency in a fear condition found that
female rats produced fewer overall alarm USVs than male rats with a higher frequency
modulation and longer USV duration than males [72]. This finding complemented other
studies that found higher frequencies of 22 kHz alarm USVs of female rats [70,105,163,164].

In summary, although alarm emission rates have been revealed to be different between
sexes, sex differences in the subtypes and acoustic parameters of alarm USVs are relatively
unexplored. The sex differences may be differentially regulated by the endocrine system
with male rat alarm USVs being affected by sex hormones and female rat alarm USVs
having less hormone dependence.

2.3.2. Pup Distress USV Acoustics

As previously described, pups produce distress USVs during approximately the first
3 weeks of life in response to separation/isolation from the dam. This distress signal
functions as both a social and survival act and signals the dam to retrieve and care for
the pup. Because male pups produce more distress USVs, and these USVs tend to be
lower in both mean frequency and amplitude compared to female pups, dams tend to
respond to the male pups producing these USVs more so than female pups [17,36]. This
sexual dimorphism may be mediated by the FOXP2 gene, with a general reduction in
FOXP2 protein observed in females compared to males [17]. Although few studies have
investigated the sexual dimorphism of distress USVs of typical rat pups, several studies in
Table 1 highlight sex differences in distress USVs in various experimental models.

2.3.3. Adult 50 kHz USV Acoustics

While USV acoustic properties have not been extensively studied between sexes,
there have been a small number of studies exploring the difference between male and
female rat vocalizations in terms of specific acoustic parameters. One study explored the
impact of social situations on vocalizations between sexes, which revealed that female rats
produced a higher proportion of frequency modulated 50 kHz USVs when exposed to a
male partner compared to a female partner [154]. This suggested that female USVs may
be indicative of sexual motivation. Other studies found that during rough-and-tumble
play, levels of 50 kHz vocalizations was decreased as a result of Cacna1c haploinsufficiency,
a gene implicated in social signal processing, which was more robustly noted in males
than females [78]. Additionally, studies have explored acoustical parameter differences
in male and female rats in isolation. Specifically, during isolation, the mean frequency of
50 kHz USVs was significantly lower in males than in females [61]. While there is work
to be carried out in acoustic analysis exploring sex differences, these studies highlight the
need for the inclusion of male and female rats into experimental studies as we continue to
learn how social settings impact vocalizations produced by both sexes.
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2.3.4. Estrous Cycle, Pregnancy, Menopause, and Estropause Effects on USV Acoustics
Female Rat Hormone Cycle

The female rat, like other mammals, has an ovarian hormone cycle that begins fol-
lowing sexual maturation (puberty); undergoes cyclical regulation by the hypothalamus,
ovaries, and pituitary gland; is ceased during pregnancy; and finally undergoes age-related
dysregulation and subsequently infertility [165]. Nevertheless, the estrous cycle and age-
related changes in the rat are uniquely different from other mammals.

In brief, female rats reach sexual maturity at ~3 months of age [166]. The typical
estrous cycle of a female rat lasts between 4 and 5 days beginning with proestrus, which is
~14 h and has both high estradiol and progesterone levels (female rat might be receptive
during proestrus), estrus (the sexually receptive state) which is ~24–48 h and has low
estradiol and progesterone levels, and finally diestrus states which hormone levels begin
to rise and the female rat refuses copulation [166,167]. At ~9 months of age female rats
will begin to experience irregular cycling for ~1 month and enter estropause that has
three stages: constant estrus, persistent diestrus with irregular cycling, and persistent
diestrus [165,168]. An important distinction of rat estropause is that rats continue to secrete
low-moderate ovarian hormones during constant estrus and elevated ovarian hormone
levels during persistent diestrus, which contrasts to humans who experience dramatic
loss of ovarian hormones at menopause [165,168]. Because of this difference in ovarian
hormone status, the effects of menopause are studied using ovariectomy procedures in the
rat model, which more closely mimics menopause of humans by eliminating the primary
production of ovarian hormones via removal of the ovaries.

The subsequent sections will summarize the known effects of the ovarian cycle of
the female rat on USV production and acoustics. The scant knowledge will be evident in
the review.

Estrous Cycle, Pregnancy, and USVs

Few studies have investigated the effects of the hormone cycle or pregnancy on USV
acoustics. Furthermore, to our knowledge no studies to date have investigated the effects
of estropause stages on USV production or acoustics. In the following sections, both the
USV production rates and acoustics will be described according to USV type: alarm 22 kHz
USVs and 50 kHz USVs.

Alarm USVs

Few studies have evaluated the effects of the estrous cycle on alarm 22 kHz USVs.
One study evaluated the total duration of alarm USVs produced after a puff of air and
found no differences between proestrus and diestrus stages [79]. Nevertheless, although
the overall duration of alarm USVs did not differ between the two evaluated estrous states,
the entire cycle was not evaluated, and this analysis did not include acoustics. Therefore,
the effects of the estrous cycle on alarm USV production and acoustics are unknown.

Although several studies have evaluated how perinatal conditions affect USVs, the
effects have primarily been evaluated in the pup offspring rather than the pregnant dams
(Table 1). However, two studies have demonstrated that stress affects dam USVs [169,170].
In one study postpartum dams that received brief or long-term separation from their litters,
produced more 22 kHz USVs in response to a startle stimulus than control dams [169]. In
another study where the non-pregnant female cagemate of a pregnant dam underwent
two 30-min stress tests for five consecutive days and then was recorded with pregnant
female cagemate, the stressed non-pregnant females produced more 22 kHz USVs during
interaction while the pregnant bystander produced more 50 kHz USVs than the stressed
non-pregnant females [170]. Therefore, although perinatal models have demonstrated
effects on pup USVs, perinatal effects can also affect dam USVs, and currently it is unclear
if dam USVs influence the USVs of their pups revealing a large gap in the literature.
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Adult 50 kHz USVs

In mating contexts, several studies have found that female Long–Evans rats pro-
duce more 50 kHz USVs during receptive (proestrus and estrus) stages of the estrous
cycle [153,171,172]. Because high rates of 50 kHz USVs are observed at both high hormone
(proestrus) and low hormone (estrus) stages, these studies have collectively suggested that
50 kHz USV production rate may serve as a proceptive cue to male rats in mating contexts
rather than a hormonal effect [153,171,172].

In a mating context, the USV acoustics of Long–Evans female rats are influenced by
the estrous cycle [153]. In general, USV frequency parameters (such as lowest, highest, and
median frequencies) are highest during high hormonal states (diestrus II and proestrus)
and lowest during low hormonal states (estrus and metestrus) [153]. USV intensity (power)
tends to be greatest during low hormonal states (estrus and metestrus), whereas duration
and USV complexity (frequency modulation) tend to be greatest during high hormone
(diestrus II and proestrus) and receptive states (proestrus and estrus) [153]. Therefore, USV
acoustics are influenced by copulation behavior and hormone levels in normal-cycling
female rats.

Another study found that hormonal injections influenced USV acoustic parameters
of trill and flat-trill 50 kHz USVs during clitoral stimulation [147]. In this study, rats were
ovariectomized and treated with estradiol, progesterone, estradiol + progesterone, or a
vehicle. The combined estradiol + progesterone treatment significantly increased the rate
of USVs as well as the duration and complexity of the USVs [147]. This finding mirrors
the previously mentioned study that found USV duration and complexity to be greatest
during high hormone/receptive states.

In a mating context, an ovariectomy affects the rate of USV production but has
minimal effects on USV acoustics when compared to USVs of normal-cycling rats. The
elimination of the cycle via ovariectomy overall reduces the number of USVs produced
during mating contexts [153,171,172]. Studies found that ovariectomized Long–Evans
female rats produced fewer 50 kHz USVs in a mating context than receptive age-matched
females [153,171,172]. Additionally, in ovariectomized rats the USV acoustic parameters
of frequency, complexity, intensity, and duration did not differ from control rats when
compared across the estrous cycle [153]. Nevertheless, this reduction in USV rate can
be counteracted with estradiol + progesterone injections [151,173]; however, estradiol
or progesterone alone does not increase the number of 50 kHz USVs in ovariectomized
Long–Evans rats in mating contexts [173].

In a non-mating social context, ovariectomized Sprague–Dawley rats receiving estra-
diol produced fewer 50 kHz USVs than ovariectomized Sprague–Dawley rats without
hormone treatment [174]. Although the study’s authors predicted a higher 50 kHz USV
production rate in rats receiving estradiol treatment, the decreased USV production may
be indicative of improved social memory of the estradiol treatment group. Additionally,
combined estrogen and progesterone treatments may be required to enhance social USVs.
In a similar non-mating social context, ovariectomized Long–Evans female rats produce a
similar number of USVs with similar acoustics to age-matched normal-cycling rats [153].
These results indicate that the estrous cycle influences the rate and acoustics of 50 kHz
USVs during mating contexts more than non-mating social contexts.

In social isolation, the estrous cycle has less influence on USV parameters [153].
In isolation, female rats in estrus produced the most USVs with the lowest frequency
parameters, greatest intensity, and complexity [153]. Female rats in metestrus produced
the USVs with the least complexity, and shortest duration [153]. These results indicate that
both the behavior and hormonal levels of the ovarian cycle influence USV acoustics of the
normal-cycling female rat.

Ovarian Hormone Summary

In summary, the effects of the estrous cycle and ovarian hormones require further
study to determine their influence on the female rat USV. To date, in the normal-cycling
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female rat, the estrous cycle is known to influence the number and acoustics of the 50 kHz
USV in social contexts (primarily mating contexts). Additionally, the ovariectomy is known
to reduce the number of 50 kHz USVs produced during mating contexts but not the
acoustic parameters. Collectively, studies demonstrate an effect of ovarian hormones on
50 kHz USVs.

3. Conclusions

Biological and acoustic sex differences are apparent in the rat laryngeal mechanism.
The type and acoustic features of USVs are different between male and female rats and are
dependent on age, strain, and experimental models. Additionally, rat vocal folds are also
sexually dimorphic which may contribute to the observed USV production and acoustic
sex differences. This sexual dimorphism has been partially attributed to sex hormones;
however, few studies of the laryngeal mechanism have investigated the role of hormones
in influencing USV production and acoustic features. With recent advances in technology
(such as DeepSqueak [138]) which simplifies and reduces the time burden of USV analysis,
sexual dimorphism of the rat larynx can be further explored.
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