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Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to
combine two or more omics data sets to aid in data analysis, visualization and
interpretation to determine the mechanism of a biological process. Multi-omics efforts
have taken center stage in biomedical research leading to the development of new
insights into biological events and processes. However, the mushrooming of a myriad
of tools, datasets, and approaches tends to inundate the literature and overwhelm
researchers new to the field. The aims of this review are to provide an overview
of the current state of the field, inform on available reliable resources, discuss the
application of statistics and machine/deep learning in multi-omics analyses, discuss
findable, accessible, interoperable, reusable (FAIR) research, and point to best practices
in benchmarking. Thus, we provide guidance to interested users of the domain by
addressing challenges of the underlying biology, giving an overview of the available
toolset, addressing common pitfalls, and acknowledging current methods’ limitations.
We conclude with practical advice and recommendations on software engineering and
reproducibility practices to share a comprehensive awareness with new researchers in
multi-omics for end-to-end workflow.

Keywords: machine learning, benchmarking, FAIR, integrated omics, multi-omics, reproducibility, visualization,
data heterogeneity

INTRODUCTION

In the last decade, the application of different individual omic studies (e.g., genomics, epigenomics,
transcriptomics, proteomics, metagenomics) that aimed at understanding a particular problem in
human disease (Karczewski and Snyder, 2018), agriculture (Ichihashi et al., 2020), plant science (Liu
et al., 2016), microbiology (Quinn et al., 2016), and the environment have been successful to a great
extent. These studies generate a plethora of data, which, with careful integration under a suitable
statistical and mathematical framework, can help to solve broader queries pertaining to basic and
applied areas of biology.

Abbreviations: AI, artificial intelligence; API, application programming interface; DL, deep learning; EDA, exploratory data
analysis; FAIR, findable, accessible, interoperable, and reproducible; FDR, false discovery rate; GPU, graphics processing unit;
KEGG, Kyoto Encyclopedia of Genes and Genomes; ML, machine learning; MOFA, multi-omics factor analysis; NGS, next
generation sequencing; OR, odds ratio; PCA, principal component analysis; PMC, PubMed Central; QC, quality control; R,
statistical programming language R; SNF, similarity network fusion; TCGA, The Cancer Genome Atlas.
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More generally, performing multiple omics research often
means having datasets with very different data modalities
originating from varied assay types and increased dimensionality.
In a multi-omics workflow (e.g., while profiling RNA, protein,
or metabolites) the transcriptomics dataset, from RNA-seq
efforts, can generate hundreds to thousands of transcripts (and
the isoforms). In comparison, an individual researcher can
only profile a few thousand proteins (and the proteoforms)
or a few hundred identified metabolites (and features). Thus,
the information burden from the transcriptome can easily
overshadow the more actionable discoveries made from proteins
or metabolites that are closer to the phenotype (Fiehn, 2002).
This can add annotation bias and lead to enrichment of noise
if robust integrative frameworks for data handling are not
employed. Multi-omics aims to identify molecular markers
associated with biological processes by revealing the regulatory
units across diverse omics layers (e.g., obtained from DNA, RNA,
proteins, metabolites, etc.). Multi-omics provides insights in
understanding the mechanisms underlying biological processes
and molecular functions, interactions and cellular fate, whether
in vivo or in vitro, to reveal molecular phenotypes. Multi-omics
can support discovery of predictive or prognostic biomarkers
and/or potentially repurposed and novel drug targets in the era
of precision medicine. Thus, the ultimate purpose of applied
multi-omics is to increase the diagnostic yield for health, improve
disease prognosis and produce improved agricultural outputs via
robust understanding of genotype-to-phenotype relationship.

Figure 1 represents an artist’s depiction of the complexity
of multi-omics, a merger of omics-driven biology, data science,
informatics and computational sciences. In spite of such
challenges, the goal of multi-omics data is to support greater
understanding of the overall biological process by bridging the
gap of genotype-to-phenotype relationship.

We define multi-omics as three or more omic datasets coming
from different layers of biological regulation – not necessarily
within one level (exclusively derived from nucleic acid/DNA-
derived, i.e., epigenomics, transcriptomics, and genomics). We
have also not included proteogenomic that has immensely
contributed to our improved understanding of protein sequences
databases, gene annotations, gene models, and identification
of peptides by interrogating genomics and transcriptomics
while validating such protein data evidence using proteomics
(Nesvizhskii, 2014). Further, this review does not discuss how
other non-molecular data (i.e., phenotype data, clinical measures,
imaging etc.) can be integrated with multiple omics datasets, as
it entails a very different scope. While navigating this article, we
recommend the readers consult Box 1, which contains the terms
and concepts to support their understanding.

WHY IS MULTI-OMICS CHALLENGING?

Firstly, each individual omics analysis presents a multitude of
challenges (Gomez-Cabrero et al., 2014; Misra et al., 2019).
Multi-omics analysis inherits challenges from the single omics
datasets, and confounds further analyses with other new
challenges of the integration/fusion, clustering, visualization,

and functional characterization (Pinu et al., 2019; Jamil et al.,
2020). For instance, prior to integrating two or more omics,
analysts or investigators can face challenges in terms of data
harmonization (e.g., different data scaling, data normalization,
and data transformation needs pertaining to individual omics
dataset). Further, given dimensionality constraints posed while
integrating large multiple omics data sets (e.g., a large
population study with thousands of individual samples), the
computational burden and storage space requirements can be
limiting for a given study.

Even the identifiers (IDs) mapping – a prerequisite of
some integration methods – is not an easy task when
matching genes with associated transcripts or proteins (which
is not a one-to-one correspondence), or a substantial challenge
for other omics combinations, such as mapping genes to
associated metabolites. Moreover, annotation of the omic entities
(e.g., transcripts, proteins, and metabolites) with additional
information, such as pathway membership and molecular
characteristics, may require mapping IDs to various database
systems (e.g., RefSeq or KEGG). Some of which may not cover
all the omics of interest (e.g., metabolites are absent from
RefSeq), while others may present outdated IDs due to delays
after changes are made in the primary sources (e.g., KEGG
GENE being based on RefSeq). The repertoire of identified
and annotated molecules varies across omics, ranging from
very good coverage of the genome, through a not-yet-complete
picture of phosphoproteome and selective coverage of the
metabolome. The challenges of metabolite identification may act
as a bottleneck for advancement of the joint omics analyses.
On the statistical side, unsupervised multi-omics methods can
strengthen any signal, including systematic batch effect if
present before quantitative measurements are taken, such as
during sample acquisition, transport, processing logistics and
operations. Failure to correct for such unwanted sources of
technical variation, which may not be possible if the necessary
information was not recorded during the sample handling steps,
can misguide the overall integration process and impact the
downstream interpretations and inferences (Kellman et al., 2020).
Figure 2 exemplifies the complexity of individual omics data
heterogeneity and data sources in the multi-omics framework
in a human focused, biomedical study. In the section below, we
identify three of the major challenges and pitfalls that explain the
above scenarios:

Data Wrangling
Also referred to as “data munging,” includes various levels of
“transformation” and “mapping,” is critical to the multi-omics
field. Transformation is accomplished by data scaling,
normalization, and imputation that help harmonize different
omics data together. Category of “mapping” can be the process of
harmonization of IDs across various omics data types or simply
annotating data across available meta-data, a labor-intensive
process that requires massive one-to-one or one-to-many
relationship operations. Careful registration of samples and
robust metadata recording tables, with involvement of data
generation and analysis teams can help circumvent this challenge
and mitigate errors.
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FIGURE 1 | The complexity of multi-omics: merger of omics-driven biology, data science, informatics, statistics, and computational sciences.

Data Heterogeneity
Data heterogeneity is often another bottleneck while dealing with
multi-omics data as these are generated via varied technologies
(i.e., consider sequencing versus mass-spectrometry, or
microarray versus mass-spectrometry scenarios) and platforms
(i.e., targeted versus untargeted, high resolution versus single
cell). Pre-processing steps pertaining to individual datasets may
not help overall, especially when democratizing them under a
unified framework still remains challenging. However, some
tools have led to improved handling, such as similarity network
fusion (SNF) (Wang et al., 2014), mixOmics (Rohart et al., 2017),
Multi-Omics Factor Analysis (MOFA) (Argelaguet et al., 2018),
among others. Their utility depends on matrix factorization,
network fusion, canonical correlation, factor analysis, and are
used for downstream feature extraction and feature selection
purposes for phenotypic prediction. Efforts have focused on
dimension reduction (Meng et al., 2016), integration approaches
while running into multicollinearity (Meng et al., 2014), and
integration issues when dealing with multi-omics and non-omics
data (López de Maturana et al., 2019) as explained below.

Dimension Reduction and
Representation
Data representation, by means of dimensionality reduction
that intends to project relationships of features (e.g., SNPs,

transcripts, proteins, metabolites) across observations (e.g.,
samples, conditions, different omics layers) in a reduced space,
is a common practice a priori in multi-omics efforts. Typically,
following post-preprocessing after data normalization, data
representation is applied to identify outliers, technical sources of
variation – such as batch effects – and obvious biological patterns
at each level of analysis – such as feature identification, extraction,
and selection. This exercise aids in learning biological patterns
and relationships of the data in bias identification and mitigation
via appreciation of technical factors contributing to noise,
adjusting them via batch effect correction, and identification
of groups/sub-groups to confirm hypotheses of phenotypic
conditions of interest in a given study. This is achieved by
using clustering methods that are k-means, density-based, or
graph-based, followed by generating visual representations using
dimensionality reduction methods like principal component
analysis (PCA), t-distributed stochastic neighbor embedding
(t-SNE), and uniform manifold approximation and projection
(UMAP) to capture linear and non-linear relationships in
the data. However, this approach is often challenging given
the complexity of the analytical space and the study goals
due to latent patterns encoded in input samples originating
from different omics layers, technologies and platforms. Such
complexities in representation can be attributed to the lack of
optimal tunable algorithms both at mathematical and statistical
levels. These challenges are well documented in bulk gene
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BOX 1 | Terms, concepts, expressions, and definitions for clarity of readers foraying into multi-omics.

Terms, concepts,
expressions

Definitions

Multi-omics/panomics/
integromics/integrated omics
polyomics/transomics
cross-omics

An approach aiming to improve the understanding of systems regulatory biology, molecular central dogma and
genotype-phenotype relationship by combining 3 or more different omics data.

Multi-table, Multi-block Terms focusing on the format of the data rather than its nature, popular in chemoinformatics (among other fields); can (but does not
have to) imply a larger number of features than observations in the integrated tables/blocks.

Multi-view Method often used in the field of ML for learning heterogeneity in the data and identification of patterns. By comparison to multiple
cameras viewing an object from different angles, in omics context, the object can vary – whether it’s “cell,” “organism,” or just
“genome” viewed via different seq* techniques.

Multi-source This term encompasses datasets that are derived from multiple sources of molecular assays. This terminology is used, for example
by the joint and individual variation explained (JIVE) tool (O’Connell and Lock, 2016) during EDA.

Multi-modal A term often used in omics in reference to multiple measurements methods done at molecular level to gain holistic insights of
cellular machinery (e.g., one cell at a time). It is also popular in drug repositioning that involves integration of more nuanced
electronic health record (EHR) data integration.

Central dogma of molecular
biology

This is an explanation of the flow of genetic information within a biological system from DNA to RNA (transcription) to protein
(translation) to metabolites (enzyme catalysis).

Machine learning (ML) method Algorithm (a sequence of instructions) aimed at learning from data, with applications including exploration/dimensionality reduction
(unsupervised methods, e.g., PCA, matrix factorization) and classification/prediction (supervised or semi-supervised methods)

Deep learning (DL) method A subtype of ML using deep neural networks, composed of artificial neurons (signal aggregating or transforming units) arranged in
layers; the depth of the DL refers to the number of “hidden” layers between the “input” (exclusive) and “output” layers (inclusive).

Fusion (Baldwin et al., 2020) A specific type of integration that applies a uniform method in a scalable manner, to solve biological problems which the multi-omics
measurements target.

Exploratory data analysis (EDA) It is an approach that is heavily used in statistics, data science field during early data analysis steps often coupled with visualization.

Matrix factorization A class of ML algorithms based on matrix decomposition, i.e., representation of a data matrix by two or more matrices (factors) that
can be multiplied together to obtain the original matrix (or its approximation). It can be used for classification, prediction, or
exploration.

Data heterogeneity The data with a structural variation that can be explained by the composition of the analyzed dataset; encompasses both the
clinical heterogeneity (e.g., presence of two groups with different genetic make-up due to ancestral differences, or different
underlying etiologies of a disease) and technical heterogeneity (i.e., batch effects).

Meta-data A table of organized information and instructions that helps to summarize the data properties in order to make it findable and usable
for data analysis across same or multiple projects.

Git A version-control system for tracking changes in source code and other documents during software development. Platforms such
as Github and Gitlab are built on top of it.

expression studies that show that there is no single best latent
dimensionality or compression algorithm for analyzing gene
expression data (Way et al., 2020). Similarly, Hu and Greene
(2018) proposed having a third-party evaluation by methods
developers on unseen data while benchmarking autoencoder
(unsupervised neural network) methods in single cell RNA-
Seq (scRNA-seq) data for learning representations. These
issues substantially change the results while interrogating high
dimensional biological data. This problem is also applicable
and extendable in multi-omics analytical space given the
varied nature of data types in each omics layer with diverse
biological modalities, such as while integrating single cell genome
sequencing (genomics), RNA-Seq (transcriptomics), ATAC-
Seq (epigenomics) and/or Bisulfite-Seq (epigenomics) together
after pre-processing, batch-correction and normalization steps.
Additionally, the data is also challenging to integrate as the
relationship between multi-omics data layers can extend from
one-to-one and one-to-many to many-to-many. This is also a
very well-established concept in the Gene Regulatory Network
(GRN) area of Systems Biology where gene-to-gene relationship
establishments across various DNA, RNA, protein, metabolite,
etc. are often better associated and represented using non-linear

methods. Mutual Information (MI) based networks were found
to perform better than other methods in such areas (Liu, 2017).

In Figure 3, we demonstrate a flow diagram to adhere to best
practice guidelines in a multi-omics study for FAIR data sharing.

BEFORE YOU START: THE NEED FOR
CONSULTATION AND PILOT DATA
UPFRONT

Only a robust study design can lead to error-free execution of a
multi-omics workflow. Though there are several proposed study
design considerations and guidelines available for individual
omics in genomics (Honaas et al., 2016) and metabolomics (Chu
et al., 2019), such comprehensive guidelines are not developed
for multi-omic studies to our knowledge. It is not surprising
that the study design guidelines for individual omics vary in
scope and coverage since each omic field faces different challenges
and opportunities. Without proper experimental design, poorly
planned multi-omics efforts lead to analytical complexity, non-
informative inferencing, exclusion of tangible interpretations,
overriding true biological signals, and eventually feed into the

Frontiers in Genetics | www.frontiersin.org 4 December 2020 | Volume 11 | Article 610798

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-610798 December 7, 2020 Time: 16:13 # 5

Krassowski et al. Multi-omics Guidelines for Reproducible Research

FIGURE 2 | Example of complexity and interconnectivity of omics data sources in a multi-omics framework. A simple cellular endogenous metabolite, lactate is
biosynthesized enzymatically from pyruvate (another metabolite) with the help of lactate dehydrogenase (LDHA, a catalytic protein). In turn this LDHA can interact
with several known and unknown proteins through protein-protein interactions to regulate its own function, and itself is subjected to diverse post-translational
modifications (PTMs) that regulate its catalytic function. Lactate measurement through techniques such as in vivo brain imaging in human or other model animals can
generate lactate’s spatial distribution. Gut microbiome via Lactobacillus and other microbes can synthesize lactate and release into human physiological systems to
contribute to lactate levels. Lactate biosynthesis regulation can be due to various levels of genetic (e.g., SNPs, CNV, etc.), transcriptomic, post-transcriptomic (e.g.,
miRNA) and/or epigenetics (e.g., DNA methylation) changes on the LDHA gene. Though this is one of the well-studied set of multi-omics interactions, but one can
expect more complex and unknown interactions while integrating multi-omics datasets.

reproducibility crises plaguing high throughput omics domains.
Some of the considerations needed to overcome these issues
include: (a) careful assessment of statistical power and effect
size appropriate to the experimental design, (b) identification of
confounders (e.g., sex, age, input materials) inherent to the data,
biases (e.g., replicates: biological and technical) and sources of
variations (e.g., batch, analytical, unwanted) that are anticipated
in the course of data generation, (c) quality assurance (QA) and
quality control (QC) measures that are associated with individual
omics data generation and analytical platforms and (d) cross-
validation measures implemented in cases of unavoidable biases.

Sample Size and Statistical Power:
Challenges and Opportunities
Different omics data require different numbers of samples to
draw reliable conclusions. Reliability is dependent on false-
discovery rate (FDR), which is influenced by the number of
measured entities (i.e., transcripts/proteins/metabolites). Smaller
omics data generation platforms such as microRNAs may need
about 19 samples per experimental group to achieve a power of
0.8 at a fold change of 1.5 (Kok et al., 2018) with FDR < 0.1.
Whereas, a set of 10,000 transcripts, each with at least 10

counts, would require a minimum of 35 samples per group
for the same effect size at the same power and FDR control
level, as calculated with ssizeRNA (Bi and Liu, 2016) using
parameters pi0 = 0.8 disp = 0.1. The power calculation is not
equally easy for each of the omics. While many tools were
devised for transcriptomics/genomics power analysis, there are
fewer dedicated tools available for metabolomics and proteomics
studies. Only recently, a method to estimate an optimal sample
size for multi-omic experiments was proposed (Tarazona et al.,
2020) that addresses power calculation in multi-omics studies.
This is one of the first comprehensive work that performed
rigorous evaluations of relevant parameters across varied omic
technologies (both sequencing and non-sequencing/i.e., mass-
spectrometry based), built an open source tool (MultiPower1),
that will enable future researchers to perform power and sample
size estimation for their choice of multi-omics ED platforms
while designing future studies and projects.

Further, pending cost-benefit tradeoff considerations,
investigators typically decide on inclusion or exclusion of
an individual omics experiment in a multi-omics setup. In
certain cases, doubling the sample size is more informative than

1https://github.com/ConesaLab/MultiPower/
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FIGURE 3 | Flow diagram of best practice guideline in a multi-omics study for FAIR sharing. A multi-omic study entails data varied assays/sources/omics type, that
can be integrated using various framework and tools. This process (represented in block with light-green) can be computationally intensive. As a by-product we get
processed data, which can be taken forward to do multiple steps involving exploration, inferencing and interpretations. Sharing both the data and code alongside
compute environment allows interoperability and non-reinventing the wheel. Here (represented in third block with light-purple), describes the open sharing of different
components in a multi-omic project, the connected blocks that can eventually generate reproducible results in forms of reports for users.

inclusion of an additional omics assay. For example, since small
effects may not be clinically useful, increasing sample size may
not be prudent when looking for biomarkers where assessing
multi-omic panels may be more useful. When investigating
disease subtypes, or patient stratification, a larger sample size
may be desirable to achieve higher power in each of the subtypes.
Subtyping of complex disease may benefit from diverse omics
representation. Whereas, a study of biological mechanisms
may benefit from related omics for a focused analysis of
chosen omics types.

When planning a multi-omic analysis for a method that
requires matched samples from all available omics datasets, the
omic with the largest sample size requirement may dictate the
need for such a large sample size across all analyzed omics.
Here we provide two scenarios explaining the issue. For instance,
in scenario one, when a study recruits 20 patients, collecting
their biofluids for: genotyping, RNAseq, and metabolomics; and
receives 19 genotypes, 18 transcriptomes and 17 metabolomes,
one may incorrectly infer that the data is representative of 17
patients, but actually the failed samples (and QCs) originate from

different patients across platforms. In reality, the experiment may
result in only 14 patients with a complete set of measurements
post QC across all omics. In scenario two, one study can
recruit up to 100 patients but cannot afford to complete all
three experiments on every patient. Hence, the researchers
may decide to acquire data for 1000 genotypes, as those are
affordable, and then split the transcriptome and metabolome
equally to 70 a piece. This translates to matched samples
for only 70 patients, thereby indicating missingness of data
within and across omics layers. While the resulting missingness
appears suboptimal, the integrative multi-omic design may allow
researchers to decrease the sample size requirement; this is due
to the increased potential of integrative analysis (Rappoport
and Shamir, 2018). In this case, one can handle such sparsity
by making a trade-off between genes (highly variable) given
sample size is low or use sparsity methods in underlying available
multi-omics frameworks. Moreover, the researchers may not
consider each of the omics as equally important for their
biological question and may be willing to focus on observations
of larger effect sizes in an individual omics, which would drive
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up the cost of the project. One of the recent works on such
parameter harmonization and power size estimate in the realms
of multi-omics is very well captured and addressed elsewhere
(Tarazona et al., 2020).

Sample size is also an important consideration for multi-
omic studies of rare diseases or difficult-to-access tissue, such
as cerebrospinal fluid or endometrial tissue. These studies may
struggle to recruit larger numbers of patients, exacerbating the
disproportion between the number of samples and features. The
early integration multi-omics strategies may be a good fit for such
low sample-size experiments, as those allow to detect more subtle
effects if consistently present across analyzed omics (Rappoport
and Shamir, 2018). When choosing whether to include an
additional omics layer, we advise a thorough examination of
previous studies combining the omics intended for use, as the
cost/benefit trade-off while including an additional omic layer
may vary (information gain), the omic characteristics (e.g.,
signal/noise ratio) and the availability of validated computational
methods for specific omics type or in combination.

Consulting Platform Experts and
Incorporating Pilot Data
Given that the platform-specific characteristics–such as varying
dispersion rates–require tailored solutions, researchers may
require different parameters for RNAseq versus microarrays in
transcriptomics, for liquid chromatography-mass spectrometry
(LC-MS) versus aptamer-based proteomics or targeted versus
untargeted metabolomics. Expert consultation is prudent before
start of a pilot study to gauge the overall feasibility of the
experiments and capabilities of the individual platforms in
yielding optimal features (Tarazona et al., 2020), to design
the final multi-omics study (note: the number of features or
predictors in a given study is often denoted by ‘p’).

CURRENT STATE OF THE ART AND THE
TOOLS

Multi-omics approaches can broadly be categorized as:

(a) Supervised – classification tasks that include discrete
outcomes, such as disease/control status, and
prediction tasks like that of continuous outcome, (e.g.,
survival, pain score).

(b) Exploratory – unsupervised clustering (e.g., disease
subtype discovery) and relationship-based analysis (e.g.,
correlation/covariance and network models).

Even, over the past decade or so, a diverse array of multi-omics
tools have been developed (Misra et al., 2019; Subramanian
et al., 2020), some of which have gained popularity in recent
years, including: mixOmics (Rohart et al., 2017), SNF (Wang
et al., 2014), Paintomics (Hernández-de-Diego et al., 2018),
3Omics (Kuo et al., 2013), miodin (Ulfenborg, 2019), and MOFA
(Argelaguet et al., 2018), as evident from the growing number
of applications, user support requests, and citations. Table 1
presents types of tools and resources which are useful for

execution of a multi-omics workflow, together with the examples
for each of the categories.

ADVANCES AND LIMITATIONS IN
BENCHMARKING

The increasing reliance on computational methods necessitates
systematic evaluation (benchmarking) of the omics data analysis
tools and methods (Mangul et al., 2019). The key challenges
in omics-scale benchmarking of computational tools, include:
acquisition of “gold standard” datasets (providing unbiased
ground truth), incorporating new methods for establishing
benchmarks as they are published (continuous/extendible
benchmarks), and ensuring reproducibility in the context
of increasing complexity of the software involved (Mangul
et al., 2019; Weber et al., 2019; Marx, 2020). Each of these
challenges is amplified in the multi-omics field – matched omics
measurements are more difficult to obtain, novel methods can
rely on specific combinations of omics being available (limiting
opportunities for extending previous benchmarks) and software
requirements may increase in complexity as authors strive to
combine results of multiple state-of-the-art single-omics tools for
improved multi-omics performance.

Gold standard datasets that incorporate multiple omics and
provide unbiased ground truth are a prerequisite for proper
systematic evaluation of multi-omics methods. The Cancer
Genome Atlas (TCGA), which includes genomic, epigenomic,
transcriptomic, proteomic, and clinical data for 32 cancers (Blum
et al., 2018), is a landmark dataset for multi-omics methods
development. Our literature search reveals that references to
TCGA are enriched in the multi-omics computational method
articles compared to other article types (48.5% versus 19.7%,
OR = 3.83, p-value = 4.5 × 10−07, full-text analysis of the
open-access PMC subset; see below for methods). While many
other multi-omics datasets exist (e.g., for inflammatory bowel
disease2 or amyotrophic lateral sclerosis3); the community is yet
to decide on a suitable “gold standard” across varied disease and
tissue types, other than cancers. This process will require the
expertise of domain-experts and characterization of statistical
and technical properties of the datasets (e.g., presence of batch
effects, analysis of confounders) (Marx, 2020).

A handful of notable multi-omics benchmarks are available,
comparing: multi-omics and multi-view clustering algorithms
(Rappoport and Shamir, 2018), multi-omics dimensionality
reduction (Cantini et al., 2020) and multi-omics survival
prediction methods (Herrmann et al., 2020). All three
benchmarks were performed using the TCGA cancer data.
While it is beneficial to use the same dataset for comparison,
results obtained this way cannot be generalized beyond cancer
biology, nor applied to the integration of other omics –
such as metabolomics, or microbiome data – that are not
included in the TCGA. With new multi-omic tools being
developed, a comprehensive comparison against existing tools

2https://ibdmdb.org/
3http://data.answerals.org/
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TABLE 1 | A complied list of various resources for supporting FAIR and interactive multi-omics study.

Serial No Tools Purpose Link References (if any)

Popular/Emerging Multi-omics Tools

1 mixOmics A tool with a framework that provides wide
range of multivariate statistical methods for
exploratory data analysis (EDA). This
involves features identification, extraction
and selection.

http://mixomics.org/ Rohart et al., 2017

2 MOFA A probabilistic multi-omics factor
analysis-based framework that involves
EDA and data integration. (Unsupervised)

https://github.com/bioFAM/MOFA Argelaguet et al., 2018

3 SNF A multi-view network and fusion analysis
framework for feature extraction, pairwise
similarity, clustering, classification, etc.

https://cran.r-project.org/web/
packages/SNFtool/index.html

Wang et al., 2014

4 miodin A multi-level statistical framework involving
vertical and horizontal integration of
multi-omics data.

https://algoromics.gitlab.io/miodin/ Ulfenborg, 2019

5 Paintomics A web-based systems biology tool for
multi-omic integration and visualization
across multi-species.

www.paintomics.org Hernández-de-Diego
et al., 2018

6 3Omics A web-based application for integration and
analysis of multi-omics data.

https://3omics.cmdm.tw/ Kuo et al., 2013

Data Sharing

1 OmicsDI An aggregated database facilitating the
discovery of heterogenous published omics
datasets across studies.

http://www.omicsdi.org Perez-Riverol et al.,
2017

2 Zenodo A general-purpose open-access data,
softwares, etc repository that allows user to
obtain a citable DOI.

https://zenodo.org/ NA

3 OSF An open platform to enable collaboration by
registering research projects, materials,
data and documentation.

https://osf.io/ NA

Code Sharing

1 GitHub A version-controlled code sharing and
collaborative platform.

https://github.com/ NA

2 BitBucket https://bitbucket.org/ NA

3 GitLab https://about.gitlab.com/ NA

Workflow Sharing

1 Common Workflow
Language (CWL)

An open standard for describing analysis
workflows which makes them portable and
scalable across a variety of software and
hardware environments.

https://www.commonwl.org/ Amstutz et al., 2016

2 Nextflow An enterprise level workflow language for
writing scalable and reproducible scientific
pipelines.

https://www.nextflow.io/ Di Tommaso et al.,
2017

3 Snakemake A workflow language for writing scalable
and reproducible scientific pipelines.

https:
//snakemake.readthedocs.io/en/stable/

Koster and Rahmann,
2012

Environment Sharing

1 Conda A package manager and computation
environment management system.

https://docs.conda.io/en/latest/ NA

2 Bioconda A channel for the conda package manager
specializing in bioinformatics software.

https://bioconda.github.io/ Grüning et al., 2018

3 Docker A container platform that provided OS-level
virtualization for providing reproducible
computation environment.

https://www.docker.com/ NA

4 BioContainers A community-driven project that provides
docker based containerized bioinformatics
software.

https://biocontainers.pro/ da Veiga Leprevost
et al., 2017

5 renv A R-package that helps create reproducible
environments for R-based projects.

https://rstudio.github.io/renv/ NA

(Continued)
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TABLE 1 | Continued

Serial No Tools Purpose Link References (if any)

Data Visualization

1 Shiny A framework in R for doing GUI based
interactive applications.

https://shiny.rstudio.com/ NA

2 Plotly A cross language interactive plot library. https://plotly.com/ NA

3 bokeh A Python library for Interactive data
visualization in browser.

https://bokeh.org/ NA

4 D3,js A JavaScript library for producing dynamic,
interactive data visualizations in web
browsers.

https://d3js.org/ NA

5 Cytoscape A platform for network data integration,
analysis, and visualization.

https://cytoscape.org/ NA

is clearly missing, primarily attributable to limited availability
of “gold standard” data sets. Other than the widely used
multi-omics datasets from TCGA cancer patients, only limited
studies incorporate simulated datasets, such as the R InterSIM
package–which is also based on data dependence structure from
the TCGA cancer studies.

Even the evaluation of a method on real-world data can be
limited by the quality of the ground truth. One such scenario
is the multiple multi-omic methods benchmarking against breast
cancer subtypes that are primarily derived from a transcriptome
based PAM50 signature (Bernard et al., 2009; Mathews et al.,
2019). Such ground truth may favor the transcriptomic signal that
could explain the limited perceived benefit of the multi-omics
methods over single omics. Therefore, alternative strategies may
be beneficial in the evaluation of subtypes derived by multi-omics
methods (e.g., survival, drug response).

Given the limitations in the systematic characterization of
multi-omic tools and methods, researchers need to choose
tools that are either well benchmarked in appropriate scenarios
and/or evidenced in multiple observational studies and
systemically evaluated.

FAIRIFICATION OF MULTI-OMICS
EFFORTS

Reproducing results in the multi-omics domain is
understandably challenging because of the use of diverse
data analysis methods, tools, and statistical processing, but
as a research community we strive to make research efforts
conform to findability, accessibility, interoperability, and
reusability (FAIR) standards. Thus, the latest advancements
in data sharing and environment replication can be leveraged
to address this issue. In the following sections, we introduce
means and approaches to share data, code, workflow, and
environment while executing a multi-omics analysis to enhance
the FAIRness (Wilkinson et al., 2016) which is suboptimal in the
multi-omics field.

In order to determine the usage of multi-omics terms and
their variants in the literature, to capture the trends in similar
research domains, to identify their FAIRness in publications and
the overrepresentation of research areas in them, we performed

a systematic search (see Figure 4). We searched the PubMed
database for articles pertaining to multi-omics on 25th July
2020, using fourteen terms (multi| pan| trans| poly| cross-omics,
multi-table| source| view| modal| block omics, integrative omics,
integrated omics and integromics) including plural/singular and
hyphenated/unhyphenated variants and their combinations. The
search was automated via Entrez E-utilities API and restricted to
Text Words to avoid matching articles based on the affiliation of
authors to commercial entities with such names. Further, the full
text and additional metadata were retrieved from the PubMed
Central (PMC) database for the open access subset of articles.
Feature extraction was performed via n-gram matching against
ClinVar (diseases and clinical findings) and NCBI Taxonomy
(species) databases, while omics references annotation was based
on regular expressions capturing phrases with suffix “-ome” or “-
omic” (accounting for multi-omic phrases and plural variants).
All disease and species matches were manually filtered down
to exclude false or irrelevant matches and to merge plural
forms. The article type was collated from five sources: (a) MeSH
Publication Type as provided by PubMed, (b) community-
maintained list of multi-omics software packages and methods
available at https://github.com/mikelove/awesome-multi-omics
[accessed on 2020-06-24], (c and d) PMC-derived: Article Type
and Subjects (journal-specific) and (e) manual annotation of
articles published in Bioinformatics (Oxford, United Kingdom),
due to lack of methods subject annotations in PMC data for
this journal. The details and code are available in the online
repository: https://github.com/krassowski/multi-omics-state-of-
the-field.

The results of this systematic literature screen led to various
interesting conclusions, as shown in Figures 5A–E. Primarily, our
analysis revealed that multi-omic studies tend to focus on three
layers of omics encompassing transcripts, genes, and proteins.
This is followed by omics layers including metabolites and
epigenetic modifications and combinations thereof (Figure 5A).
A search of PubMed articles revealed that “multi-omics,” as a
terminology, is dominant over “integrated omics” and other
omics-associated terms with an incremental trend since 2010
(Figure 5B). The search for “-ome” and “-omic” terms suggested
that review articles tend to discuss the highest number of distinct
omics, while computational methods articles appear to discuss
the fewest, suggesting a potential disparity between the abilities
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FIGURE 4 | A systematic flow diagram to screen multi-omics literature in PubMed indexes articles (up to July 2020). This flow diagram represents the various steps
of inclusion and exclusion criteria used to identify varied characteristics and attributes associated with published multi-omics studies. A detailed self-explanatory
method with reproducible code are available at https://github.com/krassowski/multi-omics-state-of-the-field.

of available computational tools and the ambitions and needs of
the multi-omics community (Figure 5C). Of the disease terms,
the multi-omic studies most frequently featured “cancer” and
“carcinoma,” while among the searched species “human” and
“mice” dominated, indicating little representation of non-model
species, organisms and biological systems. Articles mentioning
“cancer” in title or abstract were overrepresented among the
multi-omic articles when compared to other articles from the
same time span, from the same journals and weighted by journal
frequency in the multi-omics subset (22.7% vs. 7.5%, OR = 3.04,
p < 10−104) (Figure 5D). Toward FAIR sharing of data and
code, “GitHub” appears to be the most popular platform, followed
by “Bioconductor” and “Comprehensive R Archive Network
(CRAN),” among many others (Figure 5E). Below we share few
topics contributing to FAIR approaches:

Data Sharing
Different public databases are in place aiming to store and
share specific kinds of omics data types as public repositories
[e.g., genomics data in NCBI-SRA (Leinonen et al., 2011), GEO
(Barrett et al., 2012) and EBI-ENA (European Bioinformatics
Institute, 2016), proteomics data at PRIDE (Vizcaíno et al., 2016)
and ProteomeXchange (Vizcaíno et al., 2014), or metabolomics
data at MetaboLights (Haug et al., 2013), Metabolomics
Workbench (Sud et al., 2016) and GNPS-MASSIVE (Wang et al.,
2016)]. Only recently, have there been efforts to link these
databases in a discoverable manner in the form of OmicsDI
(Perez-Riverol et al., 2017). Mostly, raw sequences or very specific
processed (count tables) data are being submitted to those

databases, whereas, the intermediate outputs and analysis files
are not shared, thus preventing reproducibility. The following
resources can alleviate such scenarios: (a) Zenodo: allows users
to upload raw data files, tables, figures and code. It supports code
repositories, with GitHub integration, in addition to providing
digital object identifiers (DOIs), and (b) OSF (Open Science
Framework) (Foster and Deardorff, 2017): provides users with a
platform where projects can be hosted with varied data types and
file formats and contains a built in version control system. It also
supports DOIs while promoting open source sharing that adheres
with the FAIR guidelines.

However, adoption of such resources appears low in the
multi-omics field as evident in our meta-analysis, with only 0.58%
of publications (20 out of 3455 screened) linking to Dryad, OSF
or Zenodo (Figure 5E).

Code Sharing
To enable FAIR sharing of code, a data analyst can explore one
of the multiple venues available that publicly hosts codebases.
These are: (a) GitHub, (b) Bitbucket, and (c) GitLab. All of these
platforms use the Git system to provide version control. Also,
native Markdown and Jupyter based notebooks render support
for providing an exploratory data analysis (EDA) narrative
alongside code and its output.

Workflow Sharing
As multi-omic analyses are often multi-step with each output
being the input of another, in order to increase the efficiency
workflows can be written with Domain Specific Languages (DSL)
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FIGURE 5 | Characterization of multi-omics literature based on a systematic screen of PubMed indexed articles (up to July 2020). (A) Combinations of omics
(grouped by the characterized entities) commonly discussed occurring together in multi-omics articles (intersections with ≥ 3 omics and at least 50 papers). The
proteins group (1) also includes peptides; the metabolites group (2) includes other endogenous molecules; the epigenetic group (3) encompasses all epigenetic
modifications. (B) Trend plot representing the rapidly increasing number of multi-omics articles indexed in PubMed (also after adjusting for the number of articles
published in matched journals – data not shown); the dip in 2020 can be attributed to indexing delay which was not accounted for in the current plot. (C) Distribution
of article categories that mention different numbers of omics; while it is understandable that multi-omics “Review” category discusses many omics, the
“Computational method” category articles appear to lag all other article category types. The detected number of omics may underestimate the actual numbers (due
to the automated search strategy) but should put a useful lower bound on the number of omics discussed. Bootstrapped 95% confidence intervals around the mean
are presented with the whiskers. (D) The number of articles mentioning the most popular clinical findings, disease terms (here screening is based on ClinVar diseases
list) and species (based upon NCBI Taxonomy database). Both databases were manually filtered down to remove ambiguous terms and merge plural/singular forms.
Only the abstracts were screened here. (E) The detected references to code, data versioning, distribution platforms and systems (links to repositories with deposited
code/data); both the abstracts and full-texts (open-access subset, 44% of all articles) were screened. No manual curation to classify intent of the link inclusion (i.e.,
to share authors’ code/data vs. to report the use of a dataset/tool) was undertaken. The details of the methods with reproducible code are available at
github.com/krassowski/multi-omics-state-of-the-field. The comprehensive search terms (see the online repository for details) were collapsed into four categories;
integrated omics (*) includes integromics and integrative omics, multi-view (**) includes multi-view| block| source| modal omics, other terms (***) include pan-, trans-,
poly-, cross-omics.
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such as: (a) Common Workflow Language (CWL) (Amstutz
et al., 2016), (b) Nextflow (Di Tommaso et al., 2017), (c)
Snakemake (Koster and Rahmann, 2012), and (d) Galaxy-
workflows (McGowan et al., 2020).

Environment Sharing
The entire data analysis environment can be created and shared,
saving time and aiding reproducibility (i.e., version control).
Even accessing the intrinsic versioning information of each tool
helps users in terms of interoperability, however, command
line version handling parameters (e.g., −v/−V) are sometimes
missing. The correction to a multi-omics clustering methods
benchmark highlights the need for specifying the computational
environment down to the processor architecture details (32 or
64 bit) (Rappoport and Shamir, 2019). As investigators attempt
to build upon state-of-the-art implementations from various
domains, like machine learning (ML), genetics, cell biology, the
dependency on tools using different programming languages is
incremental and some require a dedicated runtime environment
(e.g., R and/or Python). Dedicated tools can help researchers
who try to combine packages written in different languages
in a single analysis workflow by allowing transparent data
exchange and the use of interoperable functions across languages.
One example of such a tool is the Python-R interface rpy2
(rpy2, 2020), which found use in recent multi-omics tools (e.g.,
ReactomeGSA, Griss et al., 2020) and research scripts (Neyton
et al., 2019). However, the use of multiple complex runtime
environments can result in (version) conflicts if versions are not
properly matched. This hinders the reuse of proposed tools and
reproduction of published results. For example, each version of
rpy2 requires a specific version of Python and R. The problem
is not limited to Python → R workflow – the complimentary
R → Python interface, reticulate (Reticulate, 2020) can be
challenging to configure.

In order to ease the burden of interoperability and
reproducibility that investigators often face while analyzing
large multi-omics datasets with available algorithmic packages,
several environment sharing avenues can be implemented,
for example: (a) Conda (Conda, 2020): a cross-language tool
repository and environment management system. With a
shareable configuration (in yml format) file, an entire analysis
environment can be re-installed in another system. Bioconda
(Grüning et al., 2018) is a conda based project specifically
designed for bioinformatic tools. (b) Docker (Docker, 2020): a
ready to use lightweight portable virtual container, where an
environment can be established, with all the required tools,
for a particular analysis and shared. Specifically, bioinformatics
tools such as Biocontainer (da Veiga Leprevost et al., 2017)
are available. (c) Packrat (Packrat, 2020) (recently superseded
by renv) and checkpoint: dependency management packages
specific to R, which help to create isolated and portable
R environments. Checkpoint facilitated one of the previous
multi-omics benchmarking efforts (Herrmann et al., 2020).

Computational Power
Multi-omics analysis does not necessarily require high-
performance computational resources, unless performing large

scale consortia data extraction, transformation, load (ETL)
tasks across a few hundred-thousand samples. However, some
recent supervised multi-omics methods and packages can
be computationally expensive given the amount of training
that happens during the feature level analysis (e.g., Data
Integration Analysis for Biomarker discovery using Latent
Components (DIABLO), MOFA, etc.). Such bottlenecks can be
overcome using a higher end central processing unit (CPU),
high-performance computing cluster (HPC) and/or a cloud
resource. The requirement of storing large downloaded files can
be overcome using raw data streaming feature, however only a
few tools support such feature.

Regulatory and Ethical, Legal, and Social
Implications (ELSI) Issues
Additionally, multi-omics allows researchers to make more
inferences on individuals in the event of a security incident,
and labs/clinics that do translational research are often under
regulatory compliances that restrict any data upload to any
server for analysis when patient information is involved. There
are multiple regulatory compliance-related restrictions spanning
data security, ethical, personal information etc., that can serve
as bottleneck challenges. Alternatively, any researcher who
develops a multi-omics tool for the community and makes it
server/web/cloud-based should consider the needs of healthcare
researchers who will often encounter restrictions when uploading
such a dataset due to privacy concerns and other regulatory
checks. In such cases, researchers can explore and take resources
from non-open source enterprise level analytics platforms that
can be either cloud-based or stand-alone if such enterprise
platforms are Good Manufacturing Practices (GMP) certified,
adhering to Health Insurance Portability and Accountability
Act (HIPAA) and General Data Protection Regulation (GDPR).
There can be additional regulatory compliances, given the data
is produced by Clinical Laboratory Improvement Amendments
(CLIA) certified entities. If all such regulatory compliances are
in place, then patient data can be used in either a stand-alone
third-party platform or uploaded in a web/cloud-based server
for any analytics followed by inferencing under strict vigilance.
For example, some commercial companies that have such cloud-
based solutions include Amazon AWS, Google Cloud and MS
Genomics (Microsoft Genomics, 2020). All of these platforms,
together with other commercially available enterprise platforms
like KNIME (KNIME4Bio | KNIME, 2020), can provide the
necessary toolbox for multi-omics research and development.

APPLICATION OF MACHINE AND DEEP
LEARNING (ML/DL) IN MULTI-OMICS

Over the years, machine learning (ML) and/or deep Learning
(DL) have become increasingly popular in biomedical research
due to their ability to perform unsupervised and supervised
analyses using large datasets to provide logical or probabilistic
inference. In the current data-driven era, apart from the
large text mining exercises, pattern recognition and medical
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imaging, ML/DL growth has contributed to analysis of large-
scale high-dimensional data that are typically generated using
high throughput omics assays. Their use and challenges in
the multi-omics field are very well summarized in a recent
review by Mirza et al. (2019) that discusses topics of integrative
analysis encompassing dimensionality reduction/representation,
data heterogeneity, data missingness, class imbalance and
scalability issues. Other impressive applications of ML/DL are
often encountered in regulatory genomics to study DNA-protein
interactions and relationships. Some examples of relevant studies
and models related to regulatory genomics approaches are
available under http://kipoi.org/. However, much of ML/DL
newer bioinformatics applications are developed in varied forms
of supervised and unsupervised manner, such as specific neural
networks models have been built for feature identification,
extraction, and selection purposes. Some of these approaches in
the DL space are discussed in the review by Ching et al. (2018).
Such DL models have been extensively used for multi-omics
integration purposes to predict better molecular signatures
associated with improved patient survival and capture intricate
relationship patterns for better clustering over conventional
methods and drug response prediction. Such pattern extraction,
selection and representation are often difficult to achieve solely by
traditional linear modeling unless coupled with advanced non-
linear models. Some methods and tools from the multivariate
statistics/ML/DL area that have been developed for multi-
omics integration include: (a) Multi-Omics Model and Analytics
(MOMA), (b) Multiple Kernel Learning (MKL) (Wilson et al.,
2019), (c) DIABLO (Singh et al., 2019), (d) a multi-omics late
integration method (MOLI) (Sharifi-Noghabi et al., 2019), (e)
multi-omics deep learning method (DCAP) (Chai et al., 2019),
and (f) Multi-omics Autoencoder Integration (MAUI) (Ronen
et al., 2019). Partly this can be attributed to the reasons described
above and partly as described in the following paragraph.

Often simple models do not account for the principles of
dynamics and kinetics that underlie a set of biological processes.
Considering central dogma as the key hypothesis (Reinagel
and Speth, 2016) of molecular life, for the entire process from
replication through transcription to translation machineries that
are at play, each of these biological processes (i.e., a disease) have
pre and post events that are building more complex functions
at each step adding up to the biological stochasticity. These
stochastic events are often not well accounted for in simpler
models as researchers tend to overgeneralize using mathematical
modeling, calculus and/or statistics. Frequently, such strategies
are not adopted in multi-omics experimental design and also,
as datasets are not always longitudinal in nature, they can often
lead to biases or ineffective generalization or approximation in
multi-omics results. Another argument occurs when DNA and
RNA are assumed as distinct genetic materials. DNA and RNA
can work individually to bring about structural or functional
protein consequences that lead to a phenotypic change. This was
addressed to an extent by Koonin (2012), where central dogma is
challenged by “genetic assimilation of prion-dependent phenotypic
heredity,” and only a few phenotypes might fall under such
categories and phenomena. This can be due to (a) genetic insults,
like chromosomal instability and loss of function mutations

that directly impact the translational process, (b) insults to
RNA machinery without upstream DNA impact, while any
abnormalities in the RNA phase impinges the translational events
and (c) insults possibly seen in few systemic diseases where not
everything is reliant on DNA or germline mutations, but rather
due to abnormality in the underlying regulatory machineries
during transcription or pre-translation stages. Such events can
often be guided by upstream epigenetic insults like DNA
methylation, histone modifications or even specific enhancer
binding processes on a different gene promoter thus impacting
overall transcription and translation, leading to a phenotype.

Even at the level of proteins, the regulome is often guided
by protein-protein interactions, and those by kinases and
phosphatases, are barely predictable from the genome. Similarly,
regulations of metabolite levels (catabolic and anabolic processes
leading to their levels in a given system) are not predictable from
the enzyme levels, let alone their protein or DNA sequences.
These kinds of upstream processes are often not well captured
via omics technology, as our current models or frameworks
are yet to be fully optimized and cannot generalize at such a
level of non-linear system dynamic relationships that leads to
specific phenotypic processes (Reinagel and Speth, 2016). Taken
together, all of the above lead to the motivation of developing
more advanced variants of ML/DL-based tools in biomedical
research for multi-omics integration to improve understanding
of genotype to phenotype relationships. However, these methods
can be very computationally expensive and not robustly validated
as they will be under continuous development.

DATA VISUALIZATION TOOLS

Visual representation is one of the most important ways of
deriving interpretations and inferences with data in multi-
omics. With the advent of high-dimensional data generation
platforms, such as NGS technology and mass spectrometry,
such representation has become very popular. Currently, there
is a trend of developing dynamic web-based and stand-
alone applications among the larger research community in
diverse omics domains. These are often published alongside
code for reproducibility of the results as an additional
resource for other users in the research community to explore
and for hypothesis development. Visualization avenues of
multidimensional data in an interactive platform adheres to FAIR
standards. The need for joint visualization of multiple omics
datasets prompted the adoption of dashboarding applications,
such as BioTools (Biotools, 2020) and WilsON (WIlsON, 2020).
Dashboards display together multiple interactive panels with
high-dimensional data and are available for the majority of data-
exploration ecosystems (e.g., R, Python, Jupyter, Tableau). The
interactive visualization tools and dashboards can be installed
locally as stand-alone tools (e.g., in workstation/server) or can
be completely web-browser based (e.g., launched locally from a
server or a cloud-based platform).

Some of these popular tools that have found application
in multi-omics are: (a) R-based Shiny (Shiny, 2020) apps.
Numerous Shiny based apps help with exploratory data analysis
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for testing of hypotheses, given the end-user is able to grasp
the underlying statistical models/frameworks that perform a
required task of a specialized biological query. Such shiny
apps (Dwivedi and Kowalski, 2018; Kmezhoud/BioCancer, 2020;
WIlsON, 2020) can be launched both locally on a computer,
server or even hosted publicly catering to a larger community
of researchers. Binder (Jupyter et al., 2018) allows researchers
to quickly create the computational environment needed to
interact with research code and data shared online. Voilà
(Voilà, 2020) turns Jupyter notebooks into standalone web
applications. (b) Plotly (Plotly, 2020) (multiple languages; both
open source and commercial) includes several tools designed
for using these resources either in a stand-alone manner or
in conjunction with other available frameworks (Zeng et al.,
2019). In a way similar to Shiny, it supports creation of
complex dashboards when used with Python-oriented Plotly
Dash. (c) Python-based tools with or without integration
servers like bokeh (Bokeh, 2020) enables Python users to create
interactive web-based applications for end-users with front-
end. (d) Network and other advanced visualizations, including
JavaScript-based libraries such as D3.js (data-driven documents)
(D3.js, 2020), have functionality amenable for web-based network
tools creation. Cytoscape (Otasek et al., 2019; Cytoscape, 2020),
available both as a JavaScript library for online visualizations
(Cytoscape.js) and stand-alone application for EDA, is a popular
tool employed in the field of systems biology. Bacnet (BACnet
Stack, 2020) is another available framework for developing
custom multi-omics analysis websites including network and
other advanced visualizations.

COMPUTATIONAL RESOURCES
NEEDED FOR MULTI-OMICS ANALYSIS

In the following sections, we provide pointers for using
computational resources and expertise needed for executing a
multi-omics experiment.

Knowledge of Programming Languages
and Frameworks
Provided below are a few programming languages that are
relevant and applicable to experiments in multi-omics: (a) Bash
scripting and Python are useful for basic data pre-processing
and workflow organization, (b) C/C++/Java may be useful for
development of performant methods and algorithms, (c) R and
Python are de facto standard for statistical programming and
data visualization in the omics context and (d) Shiny/Bokeh
are visualization frameworks convenient for creating web-based
interactive multi-omics functions.

Computational Infrastructure
We advise learning to handle a standard Linux distribution,
enterprise-level or open-source cloud-based computational
interface, such as Google Colab in order to run
workflows/pipelines for EDA and launching softwares/tools
for performing any integrative multi-omics/bioinformatics
related tasks. These infrastructures can feed into varied analytical
tasks, such as data wrangling, data integration, data analytics,

data visualization, and functional analysis. Given such varied
data intensive tasks are associated with multi-omics analysis,
more often users need resources for stand-alone workstations
with well powered Central Processing Unit (CPU), servers
having Graphical Processing Unit (GPU) or high-end computing
infrastructures with Tensor Processing Unit (TPU). The need
of a GPU or TPU is however needed while running end-to-end
ML/DL models with high-volume features and parameters.

Databases, Visualizers and Portals
Numerous portals, databases, and data-centric tools can be
used for integrative multi-omics explorations. Examples of
those are cBioportal (Gao et al., 2013) (Cancer Bioportal);
Xena browser (Goldman et al., 2019) (UCSC Xena Browser
is an online exploratory tool for analyzing public and private,
multi-omic and clinical/phenotype datasets); ICGC Data portal
(Zhang et al., 2011) (International Cancer Genome Consortium
Data portal); ENCODE Data Portal (Davis et al., 2018)
[The Encyclopedia of DNA Elements (ENCODE) is a public
research project which aims to identify functional elements
in the human genome]; FANTOM5 (functional annotation of
the mammalian genome 5) (The FANTOM Consortium and
the RIKEN PMI and CLST (DGT) et al., 2014) and The
Human Protein Atlas (HPA) (Thul et al., 2017). It is also
important to gain basic knowledge of the underlying methods
employed in these large databases by reading the associated
manuscripts, frequently asked questions and tutorials/vignettes
in order to gain substantial knowledge before using them for
exploratory purposes.

FUTURE PROSPECTS AND
CONCLUSION

Challenges abound – from dealing with biological complexity,
to over-simplified models, to technological limitations associated
with data generation, to organization of high throughput
data for comprehensible visualization, to drawing meaningful
conclusions. In this treatise, we did not cover the success achieved
with multi-omics in various domains of microbial, plant, animal,
and biomedical research in recent times to keep the scope focused
and relevant to a diverse audience.

In this document, we have not touched upon several
upcoming and exciting areas of multi-omics research as they
are yet to mature. For instance, single-cell multi-omics are
currently driven with efforts mostly at the genomic (single cell
DNASeq), transcriptional (e.g., single cell/single nuclear) and
epigenomic (single ATAC-Seq, single cell bisulfite sequencing)
levels. They are currently in the early stages of inception and,
as more promising works will ensue, researchers will reach
precision with efficient capture of single cell proteomics and
metabolomics. Currently, some early single cell proteomics
work is emerging in the mass spectrometry driven omics area
of proteomics (e.g., SCOPE2) (Specht et al., 2019). Prevailing
challenges remain in terms of maximizing information from a
single cell (Macaulay et al., 2017) using current proteomics and
metabolomics strategies, where barely a handful of metabolites
are captured (Nemes et al., 2012). However, there are already
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some early exciting works of single cell multi-omics integration
methods available that are upcoming in manifold [e.g., MAGAN
(Amodio and Krishnaswamy, 2018), UnionCom (Cao et al.,
2020) and non-manifold – such as LIGER (Welch et al., 2019)
and MOFA+ (Argelaguet et al., 2020)]. Hopefully, these will be
addressed and covered in future multi-omics efforts.

From collective experience and evidence, the key to
effective exploratory data analysis, hypothesis generation and
interpretations is reliant – to an extent – on understanding
the underlying methods used to build or digest them and
draw inferences. With more high dimensional biological data
generation in various arms of biology, be it plant, microbial,
developmental/disease biology, and future implementation of
various multi-modal multi-omics, it will be more likely to
observe growth of such ML/DL methods. Hence, the applied
ML/DL community in the bioinformatics domain will have
to generate models that are interoperable, stable, and well
benchmarked at various regularizations (tunable) for users to
derive robust reproducible results. Alternatively, such ML/DL
developers and researchers can also clarify the uncertainty
bounds associated with their tools for the user community. As
a nascent field, there is a dearth of studies or benchmark tools
and resources to direct an upcoming community, but this review

serves as a guideline for future multi-omics researchers from a
computational standpoint.
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