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Abstract: The effect of vacancy defects on the structure and mechanical properties of semiconductor
silicon materials is of great significance to the development of novel microelectronic materials and
the processes of semiconductor sensors. In this paper, molecular dynamics is used to simulate the
atomic packing structure, local stress evolution and mechanical properties of a perfect lattice and
silicon crystal with a single vacancy defect on heating. In addition, their influences on the change
in Young’s modulus are also analyzed. The atomic simulations show that in the lower temperature
range, the existence of vacancy defects reduces the Young’s modulus of the silicon lattice. With the
increase in temperature, the local stress distribution of the atoms in the lattice changes due to the
migration of the vacancy. At high temperatures, the Young’s modulus of the silicon lattice changes in
anisotropic patterns. For the lattice with the vacancy, when the temperature is higher than 1500 K,
the number and degree of distortion in the lattice increase significantly, the obvious single vacancy
and its adjacent atoms contracting inward structure disappears and the defects in the lattice present
complex patterns. By applying uniaxial tensile force, it can be found that the temperature has a
significant effect on the elasticity–plasticity behaviors of the Si lattice with the vacancy.

Keywords: silicon; defects; molecular dynamics; mechanical properties

1. Introduction

With the continuous reduction in the chip size of microelectronic devices with high-
cost performance, higher requirements have been proposed for the processing of materials
used in these devices. Since the concept of micromachining based on silicon materials was
proposed in the 1970s, it has been the key to technological breakthroughs of the micro-
electromechanical system (MEMS) for the fabrication of micromovable structures based
on silicon materials employed by micromachining technology, which are compatible with
integrated circuits, for manufacturing microsystems [1]. Especially in the recent decades,
the rapid developments of the internet, unmanned driving, wise medical and smart robots
have provided unlimited possibilities for applying MEMS sensors in microelectronic de-
vices [2–9].

MEMS is a miniaturized device or a combination of these devices. This system
integrates electronics, machinery, optics and other functions to achieve intelligent effects
in minimal space. In order to achieve these effects, a breakthrough in the manufacturing
technology is required. When the size of a MEMS device is reduced to a certain range, they
show many physical phenomena that are different from those in macroscopic systems. For
example, the tensile testing data present distinguished differences for the millimeter and
micrometer samples [10]. When the size or the spacing between units is within 1 µm or less,
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the processing technology for these three-dimensional devices is called micromachinery.
As micromachining was originally developed from silicon microelectronics processing
technology, it is also called silicon-based micromachining [11,12].

As the most important semiconductor material, crystalline silicon has a diamond
structure and covalent bonds among atoms. It has excellent mechanical properties, such
as high strength and high hardness, as well as good thermal conductivity. Meanwhile, it
also has excellent characteristics in light, heat, electricity, magnetic and other properties,
and thus can be integrated into capacitive sensors, thermoelectric light detectors, hot gas
pressure sensors, magnetometers and photoelectric monitors [13–18]. In these MEMS
devices, there are many Si wafers, which are flat or have different shapes, including beams,
bridges and probe arms. They can be used as light-conducting devices for optical com-
munication, grating devices, micronozzles, microvalves, pumps, micropipes, etc. [19,20].
Moreover, non-linear cantilever, small arc parts, etc., appear in MEMS microsensors, such
as tactile sensors on the robot manipulators and chemical reaction sensors [21]. These
silicon wafers with different shapes and structures need to be plastic processed. However,
the fracture strength of silicon is very low. Various observation approaches give values
of tensile fracture strength in the range of 3 to 7 GPa [22,23]. In addition, early loading
experiments with a bearing ball on mirror-polished silicon wafers yield an average fracture
stress of 2.8 GPa and a maximum value of 6.9 GPa [24]. The transition from elasticity
to plasticity occurs only when the temperature exceeds 790 K. When the temperature is
above 920 K, the plastic forming becomes easy [25,26]. At the end of the last century, J.
Frühauf et al. [25,26] proposed a laser technology to make materials plastically bend. When
laser beams scan the silicon-based surface, plastic deformation occurs owing to the fact
that non-uniform temperature field generates thermal stress in the materials [27]. The
defects in the silicon bulk greatly affect the forming process. Vacancies and interstitial
atoms are the two most important primary point defects in silicon single crystals [28]. Some
silicon atoms can remove the binding of the surrounding atoms and jump away from the
equilibrium position to form vacancies under specific conditions. Subsequently, the atoms
entering the lattice spaces become interstitial atoms [29]. These vacancies can trap the
carriers in the silicon crystal by generating deep energy levels, resulting in a decrease in the
number of carriers, and affect the performance of semiconductor devices [30]. This kind
of defect is not only related to the formation of other forms of defects, but also controls
the diffusion of interstitial atoms in semiconductors. At the same time, the existence of
the vacancies provides greater possibilities for material deformation [31]. Therefore, it has
always attracted attention from experimental and theoretical researchers [32,33]. In the
laser bending process, the silicon absorbs the energy from the laser irradiation, so as to pro-
duce an uneven transient temperature field in the material matrix. When the temperature
of the material surface rapidly increases, the heat generated by the laser diffuses into the
material. This additional energy results in changes in the configurations and numbers of
defects inside the matrix, and eventually changes the mechanical properties of the crystal.
As the heating process is only controlled by the macrotemperature field in the experiment,
it poses great difficulties in observing and measuring the changes in the microstructure
and mechanical properties in the matrix containing vacancy defects under the conditions
of rapid heating by high-energy laser irradiation. Thus, computer simulation based on
the empirical potential, such as molecular dynamics, has become a powerful tool to study
atomic movements, packing evolution and stress distribution.

The Stillinger–Weber (SW) potential [34] is composed of two-body and three-body
potential functions. It can give the strain energy in a few potential parameters and can be
used to describe many kinds of defects in silicon. At present, the SW potential function has
been successfully applied in studying vacancy defects [35]. In this paper, the molecular
dynamics method based on the SW empirical potential [34] of the interaction among
atoms in silicon crystalline was used to simulate the heating process of silicon crystal with
single vacancy and analyze the packing structures, atomic localization, stress and Young’s
modulus of the crystal change with temperature.



Materials 2021, 14, 3127 3 of 14

2. Simulation and Method

The interaction among silicon atoms is described by the SW potential. This potential
contains two-body and three-body parts [34] given by the following formula:

U = U2
(
rij
)
+ U3

(
ri, rj, rk

)
(1)

Here, U2 and U3 represent the potential of the two-body and three-body parts, respec-
tively, and r is the distance between atoms. U2 and U3 are expressed as:

U2
(
rij
)
= ε f2

( rij

σ

)
(2)

U3
(
ri, rj, rk

)
= ε f3
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σ

,
rj

σ
,

rk
σ

)
(3)

The potential well constant ε, the equilibrium constant σ and the atomic mass are
dimensionless quantities. f 2 and f 3 are dimensionless two-body and three-body potential,
and their forms are as follows:

f2(r) =

{
A(Br−p − r−q)exp

(
1

r−a

)
, r < a

0, r ≥ a
(4)

f3 =

{ (
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)
= h
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+ h

(
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)
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)
, r < a

0, r ≥ a
(5)

where θjik is the angle between rj and rk subtended at vertex i, etc. The parameter a is
chosen so that the potential is truncated between the first-nearest-neighbor and the second-
nearest-neighbor distances. The function h belongs to a two-parameter family (λ, γ > 0).
Provided that both rij and rik are less than the cut off a, it has the following form:

h3

(
rij, rik, θjik

)
= λexp

[
γ

rij − a
+

γ

rik − a

]
×
(

1
3
+ cos θjik

)2
(6)

σ, ε, A, B, λ, γ, p, q and a are adjustment parameters. The parameters in the empirical
potential are obtained from experiments and calculations based on quantum mechanics.
Table 1 shows the relevant parameters of the potential.

Table 1. SW potential parameter.

σ (nm) ε (kcal/mol) A B λ γ p q a

0.20951 50 7.049556 0.602225 21.0 1.20 4 0 1.80

This paper used the General Utility Lattice Program (GULP) software (version 4.5)
developed by Julian D. Gale of Curtin University, Australia. [36,37]. Each time step corre-
sponds to a real time of 1.0 × 10−15 s. Initially, two structural models were constructed. As
shown in Figure 1a, the cell size of the perfect silicon block is 3a × 3a × 3a (a refers to the
lattice constant; a = 5.431 Å), containing 216 Si atoms. Figure 1b shows the cell size of the
silicon with a vacancy defect 3a × 3a × 3a, containing 215 atoms, where the red dashed
ellipse in the figure indicates the vacancy. Periodic boundary conditions are applied along
the three directions of [100], [010] and [001].
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Figure 1. (a) Perfect Si lattice; (b) Si lattice with one vacancy. 
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Figure 1. (a) Perfect Si lattice; (b) Si lattice with one vacancy.

In the calculations, the constructed initial structure is firstly subjected to structural
relaxation at 300 K, and then the temperature is increased at intervals of 100 K. During the
heating process, the last-step structure obtained by structural relaxation at each temperature
is used as the initial structure at the next temperature. The stiffness of a material is expressed
by the Young’s modulus E, which can be used to describe the ability of a solid material
to resist deformation. For the lattice system, the elastic constant matrix is obtained by
calculating the second derivative of the strain of the interaction energy between atoms,
and then the Young’s modulus along the three axial directions can be obtained from the
reciprocal of the elastic flexibility coefficient.

In the present simulations, atomic local stress was introduced to analyze the stress of
the small volume element occupied by one atom. The stress tensor of each atom is given
by the following formula:

σi
ab =

1
Vi

∑
j 6=i

∂Ei
∂rij

rij
arij

b

rij
(7)

where rij
a and rij

b are the Cartesian components of the vector, and rij is their modulus. Vi is
the volume of atoms, and Ei is the energy of the ith atom. The relationship between the
hydrostatic pressure of each atom Pi and σi is given by the following formula:

Pi =
1
3
(σi

xx + σi
yy + σi

zz) (8)

In applying the strain for the Si lattice, the cell length along the [100] axial direction
of the Si lattice is increased at an increment of 1% of the initial length at 4000 steps,
corresponding to a strain rate of 0.0371 Å/ps. Stress is derived from the sum of the
hydrostatic pressure of these atoms.

3. Results and Discussion

Figure 2 shows the variations of the potential energy per atom with temperature
before melting for perfect and single-vacancy lattices. As shown in the figure, at room
temperature, the potential energy with a single vacancy was higher than that of the perfect
lattice. The higher energy is due to the fact that the number of coordination atoms of the
atom near the vacancy was lower than that of the atoms in a perfect lattice. Before melting,
the energy of the perfect lattice increased linearly with the increase in the temperature,
which is due to the intensification of the thermal vibrations of the atoms around their
lattice positions. For the lattice containing a single vacancy, the average potential energy
increased linearly below 1800 K. When the temperature was higher than 1900 K, there was
an apparent decrease in potential energy, and then a significant increase occurred at 2100 K.
For a vacancy in the bulk, its neighboring atoms had fewer coordination numbers than
those far from the vacancy. With the increase in the temperature, the neighboring atoms
will show more obvious thermal motion, and some of them need only a small amount of
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extra energy to move, which can be provided at high temperatures. The motion resulted in
changes in the distances between the atoms. Correspondingly, the potential energy was
changed. Therefore, we found that the apparent energy changes at high temperatures.
When the temperature increased by 20 K, it can be seen on the bottom right of this figure
that the changes in the potential energy became smooth in the temperature range of 1200
to 2300 K. This suggests that the heating process can significantly affect the motion of the
atoms near the vacancy.
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Figure 2. The average potential energy per atom varying with the temperature. 
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Figure 2. The average potential energy per atom varying with the temperature.

Figure 3a,b show the variation of the Young’s modulus values along the three crystal
directions, [100], [010] and [001], with the temperature for the two cases. When calculating
the Young’s modulus, we selected the structure corresponding to the lowest potential
energy value in the last 10,000 steps of the simulation time steps at each temperature. As
shown in Figure 3a, when the temperature was lower than 1200 K, the Young’s modulus
values of the perfect lattice along the three crystal directions decreased in a nearly linear
pattern. This suggests that in this temperature regime, the crystal shows obvious elasticity.
With the increase in temperature, the thermal movement of atoms intensified, and the
distance between atoms changed correspondingly. As the elastic constant matrix is derived
from the second derivatives of the strain of the interaction energy between the atoms,
the elasticity decreased in elastic limits [38]. Above 1300 K, the Young’s modulus value
along the [100] direction decreased with a larger slope. When the temperature was higher
than 1600 K, the values of Young’s modulus were distributed in scattered points in a
high-temperature regime. Following a small fluctuation, there was a sharp decrease at
1600 K along the [010] direction, and then the Young’s modulus fluctuated. At 1400 K,
the maximum value of the Young’s modulus was observed along the [001] direction.
With the increase in temperature, a downward behavior was observed, followed by a
fluctuation at higher temperatures. In order to better observe the scattering behavior of the
Young’s modulus, Figure 4(c1–c3,d1–d3) illustrate the Young’s modulus in the temperature
range of 1200–2300 K with a temperature increase of 20 K. As illustrated in these figures,
the scattering behavior was more obvious. This suggests that when the temperature
is higher than 1200 K, the distance between the atoms increases and exceed the limit
of elasticity. Therefore, by using the method of calculating the second derivative of the
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strain of the interaction energy between atoms to obtain the elastic constant matrix, the
scattering behavior occurred. This implies that as a typical brittle material, crystalline
silicon has a certain brittle–ductile transition temperature. When it is higher than this
temperature, the silicon is capable of plastic deformation, and the elastic modulus is
relatively small. When it is lower than this temperature, the elastic modulus of silicon is
relatively large and prone to brittle fracture, which makes plastic forming difficult at low
temperatures [39,40]. In the present simulations, the temperature range for difficult plastic
deformation was lower than 1200 K, and the transformation to plasticity occurred in the
temperature range of 1200–1500 K. When the temperature was higher than 1600 K, it was
beneficial to plastic forming. It can be observed that different elastic–plastic temperature
ranges from the calculation results were observed in the experiments [25,26], though the
calculated temperature point value was higher than the results given in the literature.
Accounting for the fact that the calculated melting point Tm was 2396 K, this point was
higher than the experimental melting point of 1687 K [41]. The relative temperature of the
calculated elastic-plasticity transition point was 0.50 Tm, which is close to the experimental
value. Melting is a transition from order to disorder caused by the elastic instability of
lattice. In the actual melting process, the initial liquid phase is generally formed from
the surface or interface, etc., and then expands the entire solid [42–44]. As there are no
defects in the perfect lattice, the simulated melting point is higher than the experimental
melting point.
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Figure 4. The atomic packing structure and the pressure distribution of Si lattice with one vacancy at different temperatures:
(a1–a3) 300, (b1–b3) 400, (c1–c3) 700, (d1–d3) 1200 and (e1–e3) 1500 K; the black dotted line shows the packing structure and
the pressure of the nearest neighbor atoms of vacancy, while the orange dotted line shows the packing structure and the
pressure of the atoms neighboring the vacancy; the red atoms in this figure indicate that the atom undergoes compression,
and the pressure is positive. The atomic pressure of dark red atoms is higher than that of light red atoms. Blue atoms are
stretched, and the pressure is negative. Dark blue color indicates atoms that are under less pressure than light blue atoms.
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For the vacancy case, the Young’s modulus presented a different behavior from its
perfect counterpart. As shown in Figure 3b, at room temperature, the Young’s modulus
was slightly lower than that of the perfect lattice. When the temperature was lower than
1100 K, the modulus along the [100] direction decreased with a small oscillation. Then, the
decrease with a large slope appeared, and at 2100 K, a low modulus value was observed.
Below 1500 K, large modulus values appeared along the [010] and [001] directions. As
the temperature increased further, the decrease in the modulus along the [010] direction
was oscillatory. When the temperature was higher than 1900 K, it exhibited an accelerated
decline behavior.

Figure 4 shows the atomic packing structures and the distribution of the pressure on
the atoms for the vacancy lattice, as well as enlarged images of the packing structures near
the vacancy, and the positive/negative pressures of these atoms neighboring the vacancy at
300, 400, 700, 1200 and 1500 K. The red color in this figure suggests that the atom undergoes
compression, and the pressure is positive. The dark red color indicates that the atom is
under pressure greater than 0.01 GPa, and the light red color less than 0.01 GPa. Blue atoms
are stretched, and the pressure is negative. The dark blue color implies that the atoms are
under pressure less than −0.01 GPa, and the light blue color greater than −0.01 GPa. The
four nearest neighbors of the vacancy in the initial structure are labeled as 132, 135, 110 and
111, respectively. As shown in Figure 4(a2), at 300 K, these four atoms were compressed
toward the vacancy. In the following, we selected the atom of 132. The distance between
the two neighboring atoms (labeled as 130 and 129) was 2.42 and 2.52 Å. In them, the 130th
atom was compressed, whereas the 129th atom was stretched. At the same time, the other
three nearest neighbor atoms of 135, 110 and 111 of the vacancy and their nearest neighbors
were also subject to tension or compression, resulting in changes in the distances between
them. The four nearest neighbor atoms of the vacancy underwent greater pressure, and
obvious shrinkage, as shown in the packing structures, appeared.

With the increase in the temperature, thermal movements of the atoms intensified,
and the migration of the vacancy occurred. As shown in Figure 4(b2), at 400 K, the four
nearest neighbors of the vacancy were the atoms of 135, 138, 201 and 208. All four atoms
shrank toward the vacancy. Figure 4(b3) shows the pressure on the neighboring atoms of
these four atoms. The atoms of 132 and 110, which were adjacent to 135, were compressed.
Among them, 132 was subjected to great pressure, and 110 low pressure. The atoms of 133
and 140, which were adjacent to atom 138, were also compressed, of which the pressure on
133 was greater, and the pressure on 140 was lower. At the same time, 132 being adjacent
to 201 was stretched, while 205 compressed. The atoms of 181 and 212, being adjacent to
208, were compressed, of which 181 was under less pressure, and 212 was under greater
pressure. With the migration of the vacancy, there were the changes in the pressure on the
neighboring atoms of the vacancy as well as the adjacent atoms, which affected the elastic
properties of the entire matrix. As shown in Figure 3b, the Young’s modulus at 400 K was
slightly higher than that at 300 K. As the temperature reached 700 K, Figure 4(c2) shows
that the four nearest neighbor atoms of the vacancy changed back to the atoms of 132, 135,
110 and 111, whereas they had larger oscillations compared to those at lower temperatures.
Meanwhile, the pressure of these atoms and their adjacent atoms was different to that at
low temperatures. The atom of 131 was compressed, while the nearest neighbor of atom 135
became 201, which was stretched. The nearest neighbors of 111 were the two atoms of 177
and 200, of which 177 was compressed, and atom 200 was pulled. The nearest neighbors
of 110 were 136 and 106, of which 136 was under pressure and 106 tension. Among these
atoms, the pressure of the four nearest neighbors of the vacancy was significantly higher
than that of the second neighbors and their surrounding neighbors. Then, the four nearest
neighbors were still packed into a contraction structure toward the vacancy. Therefore,
the corresponding Young’s modulus showed a significant decrease, as shown in Figure 3b.
At 1200 K, the nearest neighbors of the vacancy became the atoms of 40, 43, 106 and
113. Then, the Young’s modulus along the [100] direction increased, while the Young’s
modulus decreased along the [010] or [001] direction. This indicates that the elasticity of
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the matrix has an obvious anisotropy, and there is a transformation to plasticity. When the
temperature was higher than 1200 K, the irregular and violent oscillation of the Young’s
modulus suggested that the elasticity had disappeared. In the atomic packing structure at
1500 K, as shown in Figure 4(e1), the single-vacancy image existing at low temperatures
disappeared, and was replaced by long loop defects. Most of the atoms making up the
defect ring were compressed. Only the atoms of 113 and 94 were stretched, but their two
nearest neighbors were also compressed. At the same time, the pressure values of the
defect ring atoms were obviously higher than those of the nearest neighbor atoms of these
ring atoms. Due to the effect of increasing temperature as well as defects, large distortions
of lattice points occurred in the matrix.

Figure 5 shows the variation of the stress with the applied strain for a prefect silicon
bulk at room temperature and the silicon lattice with one vacancy at 300, 1200 and 1300 K
under increasing strain along the [100] direction. As shown in Figure 5a, for the Si perfect
bulk, the change in stress with strain presented a smooth curve, which is a typical power-
strengthening model curve and indicates the low plasticity of the bulk. When there was a
vacancy defect in the silicon lattice, the stress–strain curve showed the characteristics of
plastic materials. At room temperature, when the strain was small, the stress increased
with a large slope. When the strain reached 0.01, the corresponding stress was 1.51 GPa,
and then the growth slope gradually decreased, indicating that the Si lattice with vacancies
exceeded the elastic strain limit and began microplastic deformation. In the microplastic
deformation stage, most of the Si atoms in the lattice were shown in blue, indicating that
they were under a uniformly distributed positive pressure. However, the positive pressure
of the atoms adjacent to the vacancy was significantly higher than that of the surrounding
atoms, which was yellow-green. As the strain increased to 0.13, the nearest neighbor atoms
of the vacancy were significantly stretched along the [−1 0 0] direction, and the stress
was 10.32 GPa. The stage from B point to C point in Figure 5a indicates that the lattice
still continued to be elongated under the condition of decreasing stress, and the C point
is the yield point. Image C on the right shows that the pressure of atoms was no longer
uniformly distributed, and there were many large pressure regions in the lattice. As the
strain continued to increase, the stress value increased again, and the ability of the Si lattice
to resist deformation increased obviously under positive pressure, which entered the first
stage of plastic deformation strengthening. When the strain was 0.23, the steep stress drop
point D appeared. By observing the stress distribution, it was found that the vacancy was
severely stretched into a cluster of vacancy rings, which showed that the yield platform
here was caused by the expansion of the defects. As the strain continued to increase to 0.26,
the maximum stress that the lattice could withstand was 14.91 GPa, reaching the tensile
strength of the lattice, until the lattice was completely broken at point F. As shown in image
F, the fracture was in the axial direction where the vacancy ring was located, and it was in
the form of a cluster of micropores.
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Figure 5. Stress varying with the strain and pressure distribution of (a) the prefect Si lattice and the Si lattice with one
vacancy at 300 K, (b) the Si lattice with one vacancy at 1200 and (c) 1300 K along the [100] axis. The pictures on the right
shows the packing structures corresponding to the letters at different strains on the left.
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The stress–strain curves of the Si lattice were stretched at 1200 K, as shown in Figure 5b
in the fluctuating plastic deformation behavior. When the strain was 0.01 and the stress
was 1.24 GPa, the slope of the curve was the largest. As shown in the pressure image
A on the right, the distribution of pressure on the atoms in the lattice no longer had a
uniform distribution at room temperature. At this temperature, positive and negative
pressure regions containing different atom numbers appeared in the lattice, which showed
obvious plastic deformation. As the strain increased, the stress also increased until a
slightly decreasing gentle yield platform appeared when the strain was 0.1. Then, the stress
value was 7.42 GPa. In image B corresponding to the stress value, the single vacancy is
no longer visible. Then, the curve grew in an oscillating manner until point C, reaching
the maximum stress of 12.37 GPa, at which point the strain was 0.21. As shown in image
C, fracture patterns with obvious defect aggregation appeared in the lattice. It can be
seen that temperature significantly changed the elastoplastic properties of the Si lattice.
When the temperature increased to 1300 K, as the strain increased, the stress presented
different behaviors to that at a lower temperature. Following the increase in the stress with
a larger slope, when the strain value was greater than 0.05, the stress growth became slower.
Subsequently, the stress quickly increased again, and at the strain of 0.12, a high stress
value appeared. In pressure distribution image A, at the strain of 0.01, it can be seen that
the atoms in the lattice were subjected to uneven positive and negative pressures. When
the strain increased to 0.12, the pressure distribution image corresponding to the stress
point B showed a small range of atomic distances to reduce the aggregation area, until the
strain reached the maximum stress of 0.18. Then, as the strain increased, the crystal lattice
began to fracture.

Figure 6a shows the changes in yield strength and tensile strength of silicon lattices
containing one vacancy at different temperatures and a temperature increase of 100 K
below 1200 K during the tensile process. For the perfect lattice in the temperature regime of
the present simulations, there were no apparent yield stages, and the fracture occurred only
when the distance between atoms exceeded the cut-off radius of the potential function. As
shown in this figure, the tensile strength of the perfect lattice was apparently higher than
that of lattice with the vacancy. As shown in this figure, the curve of yield strength with
the temperature decreased in oscillation mode, and the lowest value appeared at 900 K.
This is due to the fact that during the tensile process, the increase in temperature affected
the migration of vacancies and had a significant impact on the stress distribution of atoms
around the vacancy. The maximum tensile strength of the lattice with the vacancy was
300 K, and it decreased significantly at 400 K. With the increase in temperature to 1000
K, the slope decreased until 1100 K. Following an increase, the tensile strength decreased.
In order to better observe the changes in the yield strength and tensile strength of silicon
blocks containing the vacancy as a function of the temperature, Figure 6b shows the yield
strength and tensile strength varying with a temperature increase of 20 K.
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4. Conclusions

In this paper, atomic simulations within the empirical potential framework were
performed on the changes in the packing structure, local stress and mechanical behaviors of
the perfect and single-vacancy silicon lattices with increasing temperature. The simulation
results show that the silicon lattice has obvious elasticity, elasticity–plasticity transition
and plasticity temperature ranges. The existence of the vacancy significantly reduces the
elasticity–plasticity transition temperature and greatly affects the mechanical properties
of the silicon lattice. In the elastic temperature range, the Young’s modulus with the
vacancy is lower than that of a perfect lattice. With the increase in temperature, the
vacancy migrates, which leads to the change in stress distribution in the region of its
nearest neighbor atoms. As the distance between atoms increases largely, the atoms leave
their equilibrium positions, and the lattice loses its elasticity, causing the silicon with the
vacancies to show plasticity; correspondingly, the Young’s modulus of the lattice with
a vacancy in the plastic temperature range significantly fluctuates. In the temperature
range of elasticity–plasticity transition, the Young’s modulus of the lattice is anisotropic. At
1500 K, the single vacancy and shrinkage of its neighboring atoms disappear obviously, and
the crystal lattice is distorted greatly. With a further increase in temperature, the defects in
the crystal lattice show a complex pattern, and the number of atoms under high pressure
increases obviously. The temperature significantly affects the mechanical behavior of the
silicon lattice with a vacancy. The elongation of the lattice decreases during the heating
process. In the temperature range in which plastic deformation occurs, the tensile strength
of the lattice decreases. Due to the existence of the vacancy, the elastic and plastic behaviors
present apparent differences with the increase in temperature.
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