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Cellular and molecular mechanisms breaking immune
tolerance in inborn errors of immunity
Georgios Sogkas1,2, Faranaz Atschekzei1,2, Ignatius Ryan Adriawan1,2, Natalia Dubrowinskaja1,2, Torsten Witte1,2 and
Reinhold Ernst Schmidt1,2

In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity
(IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the
prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus
erythematosus (SLE), and Sjogren’s syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune
diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here,
we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the
mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.

Keywords: Inborn errors of immunity; Primary immunodeficiencies; Autoimmunity; Rheumatic diseases

Cellular & Molecular Immunology (2021) 18:1122–1140; https://doi.org/10.1038/s41423-020-00626-z

INTRODUCTION
Autoreactivity may to some extent be physiological, participating in
the positive selection of lymphocytes and homeostasis of the immune
system, and autoreactivity can be traced in healthy individuals as
circulating autoantibodies and minor lymphocytic tissue infiltrates.1 In
contrast, aberrant responses to self-antigens underlie more than 80
inflammatory conditions, defined as autoimmune diseases. Common
autoimmune diseases, such as rheumatoid arthritis (RA), Sjogren’s
syndrome (SjS), and systemic lupus erythematosus (SLE), appear to
have a polygenic nature and are often the consequence of a
pathogenic interplay between environmental and genetic factors.2–5

The term human inborn errors of immunity (IEI) is synonymous
for primary immunodeficiency disorders (PIDs) and covers
disorders with diverse clinical manifestations, ranging from
susceptibility to infections to immune dysregulation and malig-
nancy. As these disorders are caused by monogenic germline
mutations, the term IEI highlights the increasingly identified
genetic background of PIDs. To date, more than 430 monogenic
traits falling under IEI have been reported.6 Not all mutations
within genes linked to an IEI are pathogenic. The localization and
severity of a mutation within a particular gene determines the
resulting molecular dysfunction and the consequent aberration of
immunity and/or immune tolerance.7 Further, the incomplete
penetrance and variable expressivity of certain mutations reported
as disease-causing call into question the monogenic etiology of IEI
and the definite division between monogenic and poly- or
oligogenic PIDs and suggest the strong influence of additional
genetic and/or epigenetic modifiers.7

Although the terms autoimmunity and immunodeficiency
appear contradictory, PIDs, even combined immunodeficiencies

(CIDs), can manifest with autoimmunity, which can be their
prominent phenotype.8,9 Interestingly, genetic variants reported in
the context of IEI as disease causing, have been identified among
patients with clear rheumatic phenotypes.10 Further, genes linked
to IEI have been identified as risk genes in autoimmune rheumatic
diseases.9–12 Such genes at the crossroads of autoimmunity and
immunodeficiency are involved in immune checkpoint pathways,
antigen receptor or cytokine signaling and, especially, type I
interferon responses (Table 1). In addition to the evidence on a
shared genetic basis of autoimmunity and immunodeficiency, the
idea of the continuum of immunological diseases with sheer
immunodeficiency or autoimmunity phenotypes representing two
extremes of overlapping phenotypes caused by interconnected
pathomechanisms is supplemented through the increasing identi-
fication of autoantibody-induced susceptibility to infection.13,14

Certain anti-cytokine autoantibodies have been reported to cause
susceptibility to infections mimicking IEI. For example, autoantibo-
dies to IFNγ can cause susceptibility to mycobacterial disease,15,16

autoantibodies to GM-CSF can induce susceptibility to infections
with Aspergillus or Cryptococcus species17–19 and autoantibodies
against type I interferons have been recently identified to underlie
life-threatening COVID-19 pneumonia.20

In the present review, we discuss the genetic basis of
autoimmunity in PIDs. Further, we explore how particular genetic
defects linked to the currently known IEI break the different layers
of immune tolerance to self-antigens. Our review is by no means
an exhaustive investigation of the origins of autoimmunity in all
known IEI. Instead, we highlight the diverse pathophysiological
pathways underlying autoimmunity and their relevance for
selected IEI.
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INEFFECTIVE CENTRAL TOLERANCE
Random recombination events during thymic T-cell development
yield a broad T-cell repertoire, including a large proportion of
autoreactive thymocytes.21 Central T-cell tolerance is achieved
through the mechanism of negative selection, whereby thymo-
cytes recognizing self-antigens displayed on MHC molecules of
medullary epithelial cells (mTECs) or thymic dendritic cells (DCs)
with higher affinity undergo clonal deletion (Fig. 1). An alternative
fate for autoreactive thymocytes is their differentiation into
natural or constitutive CD4+CD25+Foxp3+ regulatory T cells
(Tregs), which are able to suppress the induction and activation
of effector T cells, preventing, or regulating immune
responses.22,23 Despite their thymic origin, natural Tregs, together
with adaptive or inducible Tregs, which have an extrathymic
origin, are considered mechanisms of peripheral tolerance and will
be discussed as such in this review.

Autoimmune polyendocrinopathy-candidiasis-ectodermal
dystrophy
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystro-
phy (APECED, also known as autoimmune polyglandular syn-
drome type 1) is a rare multiorgan autoimmune disease caused by
biallelic loss-of-function mutations in the gene encoding the
autoimmune regulator (AIRE).24,25 AIRE is a transcription regulator
orchestrating the expression of tissue-specific antigens (TSAs) by
mTECs. As discussed previously, the latter is crucial for the
induction of central tolerance through the process of negative
selection. Autoimmunity in APECED commonly results in poly-
endocrinopathy but can affect nearly all organs. Chronic
mucocutaneous candidiasis is the major infectious manifestation
of APECED. A minority of patients display recurrent herpetic
infections (HSV and VZV). Further, some patients are susceptible to
infections with encapsulated bacteria, as they develop asplenia.
Chronic mucocutaneous candidiasis in APECED is associated
with the presence of neutralizing autoantibodies against Th17

cytokines (IL-17A, IL-17F, and IL-22), which suggests the auto-
immune origin of immunodeficiency in this disorder.26,27

DiGeorge syndrome
DiGeorge syndrome (or 22q11.2 deletion syndrome) is the
consequence of disturbed development of the pharyngeal
pouches, especially of the third and fourth pouches, which causes
thymic hypoplasia or aplasia.28 Residual thymic function defines
the degree of T-cell deficiency, which can range from a severe
combined immunodeficiency (SCID)-like phenotype with the
absence of T cells to normal T-cell counts and function. DiGeorge
syndrome results in a relatively high prevalence (~8% of patients)
of autoimmunity, most commonly manifesting as autoimmune
cytopenia. Considering that DiGeorge syndrome is the conse-
quence of disturbed development of the thymus, autoimmunity is
thought to stem from defects in central tolerance. However, unlike
patients with APECED, most DiGeorge syndrome patients display a
single or two autoimmune diseases, and autoimmune manifesta-
tions have a later onset, precluding major defects in negative
selection.29 Low numbers of Tregs may be the consequence of
reduced thymic generation of natural Tregs and may also account
for autoimmunity in DiGeorge syndrome, though Treg counts did
not correlate with autoimmune disease.30,31

NF-κB2 insufficiency
PID due to damaging monoallelic variants in NFKB2 leads to
immunodeficiency characterized by recurrent respiratory tract
infections and failed control of herpesviruses.32 In addition to
immunodeficiency, the vast majority (~80%) of patients display at
least one autoimmune manifestation, including autoimmune
cytopenias, arthritis, and alopecia. Studies on NF-κB2-deficient
mice revealed the significance of the alternative NF-κB pathway in
the induction of central tolerance, as NF-κB2 controls AIRE
expression and is required for the development of mTECs.33,34

Therefore, the breakdown of tolerance in NF-κB2 deficiency

Fig. 1 Inborn errors of immunity (IEI) impairing the induction of central T-cell tolerance. AIRE medullary thymic epithelial cells (mTECs) express
an array of tissue-specific antigens. Autoreactive T-cell precursors recognizing self-antigens with relatively high avidity undergo clonal
deletion (negative selection) or differentiate into natural regulator cells (Tregs). However, some autoreactive T cells skip central tolerance and
escape the thymus. Monogenic immunodeficiency disorders affect antigen presentation by mTECs, clonal deletion or T-cell differentiation
into natural Tregs; monogenic disorders and the level at which they impair or likely impair central T-cell tolerance are highlighted in red
[APECED autoimmune polyendocrinopathy, candidiasis and ectodermal dystrophy, IPEX immunodysregulation, polyendocrinopathy,
enteropathy and X-linked]
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mimics the pathophysiology of APECED. Mice harboring the Lym1
mutation in Nfkb2, which prevents the processing of the precursor
protein of NF-κB2, displayed lung and liver autoimmune infiltrates
associated with decreased thymic expression of Aire.35 Even in the
context of haploinsufficiency, mice displayed similar though
milder autoimmunity. These mouse-derived findings together
with the phenotypic overlap between APECED and NF-κB2
insufficiency,32 suggest impaired induction in central tolerance
as the main mechanism of autoimmunity. In addition, patients
with NFKB2 mutations display reduced Treg counts.36,37 This,
together with the fact that mice with conditional deletion of nfkb2
in Tregs develop lethal autoimmunity due to the impaired
suppressive function of Tregs,38 suggests an additional Treg
defect, which may be relevant in the pathogenesis of auto-
immunity in NF-κB2 insufficiency.

Omenn syndrome
Omenn syndrome is a genetically heterogeneous disorder
commonly linked to biallelic mutations in recombinase activating
gene 1 (RAG1) or recombinase activating gene 2 (RAG2).39

Mutations in other genes involved in somatic V(D)J recombina-
tion, the process defining the B-cell and T-cell receptor repertoire,
can result in Omenn-syndrome-like disease with generalized
dermatitis and lymphadenopathy-associated with oligoclonal T-
cell expansion. Given its genetic background, Omenn syndrome

highlights an impaired T-cell repertoire as a mechanism of
autoimmunity in primary immunodeficiency. The expression of
AIRE is reduced in the thymus of patients with Omenn syndrome,
suggesting aberrations of central tolerance and negative selec-
tion.40 Decreased suppressive function of Tregs has been
reported in patients with Omenn syndrome and may represent
an alternative or additional pathomechanism compromising
tolerance.41

REGULATORY T CELLS
Despite the dominant tolerogenic function of the thymus, the
induction of central tolerance is incomplete.42 Significant numbers
of autoreactive T cells that could trigger autoimmunity are
detected in the circulation of healthy individuals, highlighting
the significance of the mechanisms inducing peripheral tolerance
(Fig. 2).43,44 Tregs are a major group of immunosuppressive T cells
that play an essential role in the maintenance of peripheral
immune tolerance and the regulation of immune responses. Treg
dysfunction has been reported for a variety of autoimmune
diseases, including type 1 diabetes (T1D), RA, multiple sclerosis
(MS), SLE, myasthenia gravis, and systemic sclerosis.45 Forkhead
box P3 (FOXP3) is indispensable for their development and
function, and the most definitive evidence on the role of both
FOXP3 and Tregs in the maintenance of tolerance came from

Fig. 2 Inborn errors of immunity (IEI) impairing the induction of peripheral tolerance. In the absence of adequate costimulation, the
recognition of self-antigens displayed by immature dendritic cells has a tolerogenic outcome, resulting in anergy or clonal deletion. Tissue
damage, however, can break the ‘immune privilege’ at the tissue or subcellular level, facilitating the presentation of self-antigens. If this
happens in a milieu supporting dendritic cell activation, such as in the presence of uncontrolled proinflammatory cytokine signaling or in the
context of persistent infection or Treg dysfunction, an autoimmune T-cell response can be primed and result in the activation of autoreactive
B cells. The source of B-cell autoreactivity is either aberrant central B-cell tolerance or de novo generation in the context of a germinal center
reaction (not shown). Monogenic immunodeficiency disorders affect peripheral tolerance by enhancing the capacity of antigen-presenting
cells to prime T cells, by compromising Treg function or reducing their counts, by enhancing antigen receptor-mediated activation of
lymphocytes and/or by impairing tolerogenic aspects of antigen receptor signaling; monogenic disorders and the level at which they impair
peripheral tolerance are highlighted in red [GOF gain-of-function, APDS activated PI3Kδ syndrome, DADA2 deficiency of ADA2]

Cellular and molecular mechanisms breaking immune tolerance in inborn. . .
G Sogkas et al.

1125

Cellular & Molecular Immunology (2021) 18:1122 – 1140



genetic studies on Scurfy (Sf) mice, which display fatal multiorgan
autoimmunity as a consequence of mutations in Foxp3.46

Monogenic diseases resulting in Treg deficiency (Table 2) high-
light the dominant tolerogenic role of Tregs. The prototype of
so-called Tregopathies is immunodysregulation, polyendocrino-
pathy, enteropathy, and X-linked (IPEX) syndrome, which is
caused by biallelic loss-of-function mutations in FOXP3; therefore,
patients with IPEX syndrome are the human equivalent of
Scurfy mice.46,47 To date, 111 different FOXP3 mutations, located
throughout the FOXP3 gene, have been reported in patients with
IPEX syndrome.48 No clear phenotype-genotype correlation has
been identified, and those patients typically display a triad of
clinical manifestations consisting of early-onset severe entero-
pathy, T1D, and dermatitis.49 Other autoimmune manifestations
include autoimmune cytopenias, arthritis, autoimmune thyroidi-
tis, nephropathy, and hepatitis.

CTLA-4 insufficiency
Cytotoxic T-lymphocyte protein 4 (CTLA-4) is a transmembrane
protein expressed mainly by T cells.50 It interacts with CD80 and
CD86 on the surface of antigen-presenting cells (APCs) and
functions as a coinhibitory molecule. This interaction has a higher
affinity than that of the costimulatory molecule CD28 with CD80
and CD86, counteracting its activating effect.51 Regulatory T cells
constitutively express CTLA-4, whereas its expression on the
plasma membrane of conventional T cells follows their activation.
The balance between CD28 and CTLA-4 signaling is critical for the
outcome of T-cell interactions with APCs, which may lead to either
an effective adaptive immune response or a primarily tolerogenic
response. CTLA-4-deficient mice die of early-onset multiorgan
autoimmunity, demonstrating the dominant tolerogenic function
of CTLA-4.52 In contrast, heterozygosity for the Ctla-4 knockout
mutation has been reported to result in a normal phenotype.53

Therefore, it was not until the description of human CTLA-4
insufficiency that it became clear that not just the presence of
CTLA-4 but also the amount of its expression by T cells is critical
for immune homeostasis and the maintenance of immune
tolerance.54 CTLA-4 insufficiency in humans compromises the
function of Tregs, resulting in lymphoproliferation and auto-
immunity.55 To date, more than 50 heterozygous germline
mutations have been reported to account for CTLA-4 insufficiency
in more than 130 patients.54 Autoimmune manifestations of CTLA-
4 insufficiency resemble those of IPEX syndrome, including
enteropathy, autoimmune cytopenias, arthritis, and endocrino-
pathy.56 However, incomplete penetrance and variable expressiv-
ity of genetic variants causing CTLA-4 insufficiency question the
strictly monogenic origin of immune dysregulation in this disorder
and suggest the influence of additional genetic or epigenetic
modifiers and environmental factors.

LRBA deficiency
Lipopolysaccharide-responsive and beige-like anchor protein
(LRBA) deficiency, due to germline biallelic mutations in LRBA,
phenocopies CTLA-4 insufficiency.57,58 The explanation for this is
the fact that LRBA controls intracellular trafficking of CTLA-4, and a
loss of LRBA expression results in reduced expression and
mobilization of CTLA-4 on the surface of Tregs. In addition to
the impaired suppressive function of Tregs, which is at least
partially explained by the reduction in CTLA-4 expression,59 the
majority of LRBA-deficient patients display reduced Treg counts.60

Autoimmunity is reported to be the most common manifestation
of LRBA deficiency and includes enteropathy, autoimmune
cytopenias, endocrinopathy, interstitial lung disease, and/or
autoimmune hepatitis. The CTLA-4-Fc fusion molecule (abatacept)
has been reported to ameliorate manifestations of LRBA
deficiency, such as enteropathy and lung disease, which strongly
suggests that a loss of proper expression of CTLA-4 is a major

pathogenic mechanism underlying immune dysregulation in
these patients.57,61

DEF6 deficiency
The differentially expressed in FDCP 6 homolog (DEF6), also
known as IRF4 binding protein (IRF4BP), is a guanine nucleotide
exchange factor (GEF) that transmits TCR signaling.62 DEF6
activates small GTPases, promoting calcium signaling and T-cell
adhesion, and it is involved in the formation of immunological
synapses as well as in T-cell differentiation and proliferation. Def6
deficiency in murine autoimmunity appears to depend on the
genetic background and/or the employed model of autoimmune
disease.63,64 The recent discovery of human DEF6 deficiency,
which manifests as systemic autoimmunity and lymphoprolifera-
tion, revealed the homeostatic role of DEF6 in the human immune
system.65 Similar to LRBA deficiency, DEF6 deficiency causes a
CTLA-4 trafficking defect, resulting in reduced stimulation-induced
CTLA-4 expression by Tregs. The latter, together with the
phenotypic overlap between DEF6 deficiency and LRBA deficiency
or CTLA-4 insufficiency and the reported therapeutic efficacy of
CTLA-4-Ig therapy (abatacept) in treating autoimmunity, suggest
that a loss of proper trafficking of CTLA-4 is a major mechanism of
immune dysregulation in DEF6 deficiency.

CD25 deficiency
CD25 is the α chain of the interleukin 2 receptor (IL-2Rα), and it is
constitutively expressed by natural Tregs.66 CD25 confers high-
affinity binding of interleukin 2 (IL-2) to the trimeric IL-2 receptor,
additionally consisting of a β chain (CD122, IL-2Rβ) and the
common γ chain (CD 132, IL-2Rγc), which both mediate receptor
signaling. CD25 deficiency results in an IPEX-syndrome-like
phenotype, with early-onset autoimmunity and lymphoprolifera-
tion but also severe immunodeficiency, causing chronic viral
infections as well as fungal and bacterial infections.67,68 In all
identified patients, CD25 expression was abrogated, which makes
the isolation of Tregs and the evaluation of the impact of CD25
deficiency on Treg function difficult.47 However, the study of Tregs
from patients with CD25 deficiency as CD4+CD45RO+TIGIT+C-
D127low T cells demonstrated both their reduced frequency and
their suppressive function.69 The latter has been suggested to be
mainly because CD25 deficiency deprives Tregs from their
capacity to consume IL-2.67 Consistent with this, adoptive transfer
of CD25+ Tregs into CD25-deficient mice drastically decreased
serum levels of IL-2 and restored abnormalities in peripheral
lymphocyte subsets, highlighting the homeostatic role of IL-2
consumption by Tregs in the immune system.70

BACH2 insufficiency
The broad complex-tramtrack-bric a brac and Cap'n'collar
homology 2 (BACH2) is a basic leucine zipper domain transcription
factor involved in the maturation and differentiation of both
T cells and B cells.71 BACH2-regulated gene expression promotes
Treg development at the expense of effector T-cell differentiation,
as demonstrated in mice lacking BACH2.71,72 Further, it promotes
the survival of Tregs, regulates their activation, and is required for
the development and maintenance of tissue-resident Tregs,
especially in the gastrointestinal tract.73 BACH2 insufficiency has
been reported in three patients from two unrelated families who
displayed benign lymphoproliferation, enteropathy, and recurrent
respiratory tract infections.71 The identification of low counts of
peripheral blood Tregs in these patients is consistent with
previous reports on BACH2-deficient mice and suggests a similar
role of BACH2 in human Treg development.

STAT5b deficiency
Signal transducer and activator of transcription 5b (STAT5b)
deficiency results in a combined immunodeficiency with severe
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growth delay and immune dysregulation commonly manifesting
as interstitial lung disease.43,74 Growth delay reflects the involve-
ment of STAT5b in growth hormone signal transduction. In
lymphocytes, STAT5 associates with the IL-2Rβ chain of IL-2R, and
immune dysregulation is the consequence of the loss of IL-2R-
mediated STAT5 activation, which is required for sustained FOXP3
expression and the development of natural Tregs.75 Further,
STAT5 upregulates IL-2Rα, activating a positive feedback loop,
which enhances Treg responsiveness to IL-2. Similar to CD25
deficiency, STAT5b-deficient patients display an IPEX-syndrome-
like phenotype and have reduced circulating Treg counts with
compromised suppressor function.74,76,77

STAT3 gain of function
Signal transducer and activator of transcription 3 (STAT3) is a
transcription factor that transmits the signaling of several cytokine
receptors, such as those of IL-2, IL− 6, IL− 10, IL− 12, IL− 15, and
IL− 23, controlling T-cell activation and differentiation.78 STAT3
loss-of-function mutations account for autosomal-dominant
hyper-IgE syndrome (HIES), which is a primary immunodeficiency
characterized by very high serum IgE levels, atopic eczema,
bacterial and fungal infections, and various nonimmune develop-
mental manifestations.79,80 More recently, germline heterozygous
gain-of-function mutations in STAT3 were reported to account for
early-onset organ-specific autoimmunity, eczema, and short
stature.81 Enteropathy, autoimmune cytopenias, interstitial lung
disease, and lymphoproliferative and infectious manifestations are
also common in patients with STAT3 gain of function.82 The
phenotypic variability of this syndrome can be at least partially
explained through the variable functional impact of the different
disease-causing variants, which differentially affect baseline and
induced activation of STAT3. In particular, in their recent study,
Jägle et al. evaluated the biological impact of 17 different STAT3
gain-of-function variants and proposed their clustering in three
main groups: variants causing enhanced basal transcriptional
activity of STAT3 as well as altered inducible STAT3 phosphoryla-
tion, variants predominantly affecting inducible activation of
STAT3 and those resulting in enhanced DNA binding of STAT3.
STAT3 variants, both those enhancing baseline transcriptional
activity and those affecting inducible phosphorylation of STAT3,
have been reported to more consistently cause immune
dysregulation, displaying the highest penetrance for autoimmune
and/or lymphoproliferative disease. The majority of STAT3 gain-of-
function mutations resulted in reduced peripheral Treg counts.
Further, reduced suppressive function of Tregs has been reported
for some patients.83,84 Mechanistically, STAT3 activation results in
the upregulation of secretion of cytokine signaling 3 (SOCS3).85,86

The latter inhibits STAT5 activation, which—as discussed above—
induces FOXP3 and CD25 expression. Therefore, the potentiation
of this signaling loop through STAT3 hyperactivation results in
decreased differentiation and function of Tregs, likely accounting
for autoimmunity in patients with STAT3 gain of function.

DOCK8 deficiency
Dedicator of cytokinesis 8 (DOCK8) is a GEF that is highly
expressed in lymphocytes.87 DOCK proteins activate small guanine
triphosphate binding proteins (GTPases), such as RAC and CDC42,
affecting the actin cytoskeleton. Germline biallelic loss-of-function
mutations in DOCK8 cause an autosomal-recessive form of HIES. In
comparison to other monogenic PIDs, mutations in DOCK8 are
common deletions. An explanation for this is the high frequency
of repetitive sequence elements within and around DOCK8. In
addition to infectious manifestations, including candidiasis,
recurrent respiratory tract infections, and persistent cutaneous
viral infections, DOCK8 deficiency has been associated with
immune dysregulation manifesting as autoimmunity and
atopy.87,88 Autoimmunity in DOCK8 deficiency has been reported
to manifest as vasculitis, autoimmune hepatitis, or IPEX-syndrome-

like disease. The identification of an increased proportion of
autoreactive B cells within the compartment of mature naïve B
cells in DOCK8-deficient patients suggests a defect in peripheral
tolerance.89 Incomplete induction of peripheral tolerance and
autoimmunity in DOCK8 deficiency reflects the involvement of
DOCK8 in Treg homeostasis and function. Consistent with the
aforementioned is the fact that patients with DOCK8 deficiency
display low Treg counts with reduced suppressive function,
though the exact mechanism accounting for this remains
unknown.89

IRF4 deficiency
Interferon regulatory factor 4 (IRF4) is involved in T helper cell
polarization and is required for the effector function of Tregs as it
controls IL-10 and ICOS expression.90 Further, IRF4 expression by
thymic epithelial cells is critical for efficient priming of natural
Tregs.91 IRF4-deficient mice display progressive immune dysregu-
lation and severe hypogammaglobulinemia.92 The first description
of human IRF4 deficiency due to a germline homozygous splice
acceptor site mutation in IRF4 has been recently reported and
resembles the phenotype of IRF4-deficient mice.93 This patient
displayed agammaglobulinemia and early-onset autoimmunity
manifesting as polyendocrinopathy, including T1D, and displayed
a low Treg count. She additionally suffered from eczema and died
at the age of 2 years after allogeneic hematopoietic stem cell
transplantation.

PI3Kδ deficiency
The relatively recently characterized IEI due to germline biallelic
loss-of-function mutations in PIK3CD or PIK3R1 results in immu-
nodeficiency, primarily due to severe hypogammaglobulinemia, as
well as autoimmunity in the form of arthritis, psoriasis, and
inflammatory bowel disease (IBD), most likely as a consequence of
the compromised suppressive function of Tregs.94–96 In particular,
mouse studies have suggested the involvement of PI3Kδ in the
development and suppressive function of Tregs.97–99 However, as
mentioned previously, all tested patients with biallelic mutations
in PIC3CD or PIK3R1, resulting in a loss of PI3Kδ activity, had
adequate Treg counts in their peripheral blood. The fact that the
PI3Kδ-specific inhibitor idelalisib compromises the suppressive
function of Tregs in vitro and ex vivo in patients with chronic
lymphocytic leukemia,100 together with the fact that common side
effects of idelalisib treatment resemble the inflammatory mani-
festations of a loss of PI3Kδ activity,101 strongly suggest immune
dysregulation owing to the inadequate suppressive function of
Tregs in this IEI.94

ABERRANT T-CELL RECEPTOR (TCR) SIGNALING
TCR signaling controls the development and peripheral responses
of T cells, ensuring both effective immunity and immune
tolerance.102 TCR signaling defects could compromise central
tolerance by affecting negative selection of autoreactive T cells. In
addition, aberrant TCR signaling can affect the development and
function of regulatory T cells, impairing the induction of peripheral
tolerance. Finally, mutations in molecules involved in the TCR
signaling cascade may result in autoimmunity by hyperactivating
autoreactive T cells or depriving TCR signaling from tolerogenic
aspects, such as the induction of anergy or activation-induced
cell death.

ORAI1/STIM1 deficiency
The pathway of store-operated calcium entry (SOCE) is the main
mode of calcium influx in immune cells and is involved in TCR, B-
cell receptor (BCR), Fc gamma receptor (FcγR), and Fc epsilon
receptor (FcεR) signaling as well as downstream effector
responses.103,104 SOCE is activated in response to the depletion
of intracellular stores of calcium, particularly of the endoplasmic
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reticulum. Stromal interaction molecule 1 (STIM1) has been
identified as the major calcium sensor in the ER membrane that
activates calcium channels in the plasma membrane upon calcium
store release. Orai1 is the major calcium channel activated by
STIM1 in most immune cells, especially in B cells and T cells.
Biallelic loss-of-function mutations in STIM1 and ORAI1, leading

to STIM1 or ORAI1 deficiency, respectively, manifest with
combined immunodeficiency and autoimmunity in the form of
autoimmune hemolytic anemia and thrombocytopenia.104

Patients with STIM1 deficiency, as well as those with ORAI1
deficiency, display reduced Treg counts.105,106 The role of store-
operated calcium entry (SOCE) in the development of regulatory
T cells has been demonstrated in mice with T-cell-targeted
deletion of both STIM isoforms, which have reduced peripheral
and tissue-resident Tregs and develop autoimmunity and
lymphoproliferation.107,108 While a reduction in Treg counts could
explain autoimmunity in those patients, even in the case of STIM1
deficiency, which is more consistently associated with immune
dysregulation, patients do not display an IPEX-syndrome-like
phenotype. Impaired negative selection may also contribute to
autoimmunity, though the normal Vβ repertoire of TCRαβ+ T cells
in patients with STIM1 mutations suggests the absence of major
defects in the induction of central tolerance.109,110 The recently
reported regulatory function of STIM1 in controlling type I
interferon responses111 could also be relevant in the pathogenesis
of autoimmunity, at least in STIM1-deficient patients, and is
consistent with the SLE-like autoantibody profile detected in these
patients.105

Activated phosphoinositide 3-kinase δ syndrome
Phosphoinositide 3-kinase delta (PI3Kδ) mediates signal transduc-
tion downstream of diverse immune receptors, including the TCR,
the BCR, costimulatory molecules, and cytokine receptors.94 The
hyperactivation of PI3Kδ due to monoallelic gain-of-function
mutations in PIK3CD or due to monoallelic loss-of-function
mutations in PIK3R1 or PTEN results in immunodeficiency and
immune dysregulation.112,113 In particular, the hyperactivation of
PI3Kδ results in combined immunodeficiency, characterized by
recurrent respiratory tract infections, bronchiectasis, mucocuta-
neous candidiasis, and susceptibility to viral infections, including
failed control of herpesviruses.
Immune dysregulation as a consequence of the hyperactivation

of PI3Kδ leads to benign lymphoproliferation, manifesting as
lymphadenopathy, hepatomegaly, splenomegaly, and nodular
lymphoid hyperplasia of mucosal surfaces as well as malignant
lymphoproliferative disease and especially B-cell lymphomas.
Further, patients with immune dysregulation due to the hyper-
activation of PI3Kδ display a broad spectrum of autoimmune
manifestations, including cytopenias, endocrinopathies, glomer-
ulonephritis, and Sjögren’s syndrome. Immune dysregulation in
patients with hyperactivated PI3Kδ is most likely the consequence
of the hyperactivation of T cells.94,112–114 Studies on mice with
hyperactivated PI3Kδ suggest defects in thymic negative selection
but also ineffective peripheral tolerance due to resistance to
activation-induced cell death and increased secretion of effector
cytokines by T cells, which has also been demonstrated in patients
with activated phosphoinositide 3-kinase δ syndrome (APDS).

ITCH E3 ubiquitin ligase deficiency
The ubiquitination of TCRs reduces their expression and therefore
regulates T-cell activation.115 Itchy E3 ubiquitin-protein ligase,
referred to hereafter as Itch, is a key tolerogenic molecule involved
in this process. In addition to TCR subunits, Itch is involved in the
ubiquitination of molecules involved in proximal TCR signaling,
such as the TCRζ chain and mitogen-activated protein kinase
kinase1 (MEKK1). In addition, Itch regulates Notch, a transcription
factor promoting TCR signaling. The dysregulation of TCR-Notch
signaling can drive both lymphoproliferation and autoimmunity.116

Itch-deficient T cells have a lower activation threshold, which, in the
case of autoreactive T cells, could enhance their activation and
prevent tolerogenic mechanisms, such as their conversion into
anergic T cells.115 In addition to controlling T-cell activation,
evidence from Itch-knockout mice suggests the direct involvement
of Itch in regulating proinflammatory NF-κB activation in response
to TNF or IL-1.117 Biallelic mutations in itchy E3 protein ubiquitina-
tion ligase (ITCH) result in syndromic polyautoimmunity and
immunodeficiency, highlighting the regulatory role of ubiquitina-
tion in controlling TCR signaling and regulating inflammation.118,119

Patients with Itch defects display recurrent infections, including
bacterial sepsis; however, clinically more prominent is their
craniofacial dysmorphism and immune dysregulation, resulting in
hepatosplenomegaly, interstitial lung disease, enteropathy, auto-
immune hepatitis, and endocrinopathy, including hypothyroidism
and T1D.

Biallelic loss-of-function mutations in LAT
Biallelic loss-of-function mutations in LAT, the gene encoding
linker for activation of T cells (LAT), result in early-onset
combined immunodeficiency and autoimmunity.120 In particular,
those patients suffer from recurrent pneumonias, bronchiectasis,
and herpesvirus infections, especially due to EBV or CMV.
Immune dysregulation manifests as lymphadenopathy, spleno-
megaly, interstitial lung disease, and autoimmune cytopenia.
Mechanistically, mutant LAT prevented TCR-downstream phos-
phorylation of phospholipase Cγ1 (PLCγ1). Mouse studies
preceding the identification of the human PID due to biallelic
LAT mutations have revealed the tolerogenic importance of TCR-
induced docking PLCγ1 on LAT.121 In particular, mice harboring a
homozygous mutation replacing the docking site of PLCγ1 on
LAT, i.e., the tyrosine residue at position 136 of LAT, displayed
lethal lupus-like autoimmunity. T cells from these mice displayed
enhanced TCR-mediated activation. Further studies on these
mice suggested that the uncoupling of LAT-PLCγ1 signaling may
alter thymocyte selection, resulting in thymic release of auto-
reactive T cells, which would otherwise be eliminated through
negative selection.122

Biallelic loss-of-function mutations in LCK
Autosomal-recessive deficiency of lymphocyte-specific protein
tyrosine kinase (LCK) has been reported in a girl with early-onset
recurrent respiratory tract infections, including pneumonia com-
plicated by pneumatocele.123 This patient additionally displayed
neutrophilic panniculitis, polyserositis, and recession after the
introduction of a TNF inhibitor and ITP, suggesting immune
dysregulation. In addition to defects in thymic selection of T cells
as a consequence of aberrant TCR signaling, LCK deficiency
appears to result in resistance to activation-induced cell death and
reduced Treg counts.

Biallelic loss-of-function mutations in CD3G
Finally, autosomal-recessive CD3γ deficiency results in variable
immunodeficiency, more commonly manifesting with hypogam-
maglobulinemia and recurrent respiratory tract infections.124,125

So far, all ten reported patients with CD3γ deficiency displayed
autoimmune disease, most commonly manifesting as hypothyr-
oidism and autoimmune cytopenias. Autoimmunity in CD3γ
deficiency has been suggested to stem from thymic release of
autoreactive T cells and in parallel Tregs with limited TCR diversity
and reduced suppressive function.124,125

COMPLEMENT DEFICIENCIES CAUSING AUTOIMMUNITY
Complement deficiencies, especially those of early components
of the complement activation cascade, can lead to both recurrent
infections and autoimmunity.12 Early classic complement defi-
ciencies (C1, C2, or C4) cause susceptibility to infections with
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encapsulated bacteria and are frequently associated with
autoimmunity, especially SLE.126,127 A deficiency of C4 or any of
the components of the C1 complex results more commonly in SLE
than C2 deficiency (88% of patients with C1q deficiency, 75% in
the case of C4 deficiency, 57% of those with C1s/r vs. 10% in the
case of C2 deficiency). Further, SLE associated with C4 or one of
the C1 complex deficiencies displays an earlier onset and more
severe disease course than C2 deficiency-associated SLE.126,128

Defects in the lectin pathway of complement activation can also
cause or contribute to the pathogenesis of autoimmunity.
Mannose-binding lectin (MBL) deficiency has a prevalence of
5% and is the most common complement deficiency.129 A
deficiency of MBL increases the risk of pyogenic infections,
especially in infants. In addition, it is associated with an increased
risk for autoimmunity.130 Mannan-binding lectin-associated ser-
ine protease 2 (MASP-2) activates the lectin pathway of
complement, assuming a role analogous to that of C1s/C1r in
classic activation of complement. In addition to susceptibility to
infections, MASP-2 deficiency results in SLE-like autoimmunity.131

Early complement components are implicated in the effective
clearance of self-antigens, exposing apoptotic cells and immune
complexes.12,130 Defects in both of these processes can lead to
autoimmunity or contribute to its pathogenesis.

IMMUNE DYSREGULATION DUE TO APOPTOSIS DEFECTS
Lymphocyte expansion in the context of an adaptive immune
response is controlled by apoptosis. Human defects in apoptosis
leading to autoimmune lymphoproliferative disease (ALPS)
highlight the homeostatic role of apoptosis-mediated clonal
contraction.132

ALPS typically presents with chronic benign lymphoproliferation
(lymphadenopathy, splenomegaly, and hepatomegaly), which
may be accompanied by autoimmune cytopenias.133,134 Immune
dysregulation in ALPS may also manifest with uveitis, thyroiditis,
hepatitis, or SLE-like disease. Further, ALPS patients display an
increased incidence of lymphoid malignancies. Susceptibility to
infections is rare, mostly attributed to splenectomy or auto-
immune neutropenia.135 Patients with Fas deficiency typically
display marked elevations in CD4-CD8- double-negative T cells.136

Other typical laboratory findings include elevated vitamin B12, IL-
10, and soluble Fas ligand (FasL/CD95L) levels. Although
polyclonal hypergammaglobulinemia is also relatively common
in ALPS, less than 10% of patients display hypogammaglobuline-
mia, which in some cases may be associated with previous
immunosuppressive treatment.137 The diagnosis of ALPS is based
on clinical and laboratory findings (Table 3A).
Immune dysregulation in ALPS is attributed to defects in

lymphocyte apoptosis and especially aberrations in Fas-mediated
extrinsic apoptosis.138,139 T-cell activation induces the expression of
FasL, which binds Fas on nearby cells, including T cells. Fas is a
death receptor containing intracellular death domains. The
activation of Fas leads to the formation of the death-inducing
signaling complex, which recruits and activates caspases 8 and 10,
which are initiator caspases of the extrinsic apoptotic pathway.
The majority of ALPS patients harbor heterozygous germline
mutations in FAS (Table 3B).134 Incomplete penetrance and variable
expressivity of the same FAS variants suggest the role of additional
genetic modifiers.140 Consistent with the latter is the observation
of an additional somatic FAS mutation accounting for a more
severe phenotype in some patients.141,142 Germline mutations in
the genes encoding FasL (FASLG) or caspase 10 (CASP10) have
been identified in a small subgroup of patients with ALPS.133,134,143

The identification of NRAS and KRAS mutations in patients with
ALPS and a propensity for hematopoietic malignancies suggests
that in addition to extrinsic apoptosis, defects in the intrinsic
apoptotic pathway can cause immune dysregulation.144,145

TYPE I INTERFERON-MEDIATED IMMUNE DYSREGULATION
Type I interferons have numerous effects on the innate and
adaptive immune systems.146 In particular, they modulate antigen-
presenting function; promote inflammation, apoptosis, myeloid
cell activation, and B-cell differentiation; and affect the function of
several cells, such as microglial and endothelial cells. The
activation of type I interferon-mediated responses can contribute
to the pathomechanism of autoimmunity. Type I interferonopa-
thies are a group of monogenic disorders caused by abnormal
upregulation of type I interferons and typically manifest as
vasculopathy, early-onset SLE or myositis.147,148 Known type I
interferonopathies and their main clinical findings are listed in
Table 4. Type I interferonopathies reflect the pathogenic role of
constitutive activation of type I interferon-mediated immune
responses.146,147 Defects in nucleic acid sensing, including the
chemical modification or clearance of self-nucleic acids, deregu-
lated activation of nucleic acid sensors and defects in molecules or
pathways that regulate type I interferon signaling, can all result in
diseases falling under type I interferonopathies. For example,
mutations in genes encoding nucleases, such as TREX1 and RNase
H2, which cause the prototype type I interferonopathy, Aicardi-
Goutières syndrome (AGS), suggest the pathogenic role of the
accumulation of self-nucleic acids, which results in systemic
inflammation and autoimmunity by activating type I interferon
responses.

STAT1 gain of function
Signal transducer and activator of transcription 1 (STAT1) is
involved in both type I (IFNα and IFNβ) and type II (IFNγ) interferon
receptor signaling.149 The activation of the IFNγ receptor results in
phosphorylation and STAT1, which forms a homodimer that
translocates in the nucleus, where it induces IFNγ-regulated genes.
Stimulation with type I interferons in addition to STAT1 homo-
dimers results in the formation of a STAT1-STAT2 and p48
(ISGF3G) heterotrimer that transactivates type I interferon-
regulated genes, whose collective induction is referred to as the
type I interferon signature. Heterozygous gain-of-function muta-
tions in STAT1 result in immunodeficiency, typically manifesting as
chronic mucocutaneous candidiasis (CMC).150 However, a sig-
nificant proportion of patients (37%) display autoimmune
manifestations, including endocrinopathy, autoimmune cytopenia,
and SLE. STAT1 gain-of-function mutations do not affect the
expression of FOXP3 or CTLA-4 or the development of Tregs.151

Despite the phenotypic overlap between APECED and immuno-
deficiency due to STAT1 gain of function, there is no evidence of a
pathomechanistic connection between these two monogenic
disorders. Considering the phenotypic similarities of interferono-
pathies such as SLE and the fact that treatment with interferon α
results in endocrinopathy (such as thyroiditis), enhanced cytokine
and interferon responses provide a plausible pathomechanism
accounting for autoimmunity in the context of STAT1 gain of
function.152,153 The recently identified enhanced expression of
interferon signature genes in patients with STAT1 gain-of-function
mutations154 is in accordance with the aforementioned hypoth-
esis. Although, so far, there is no clear genotype-phenotype
correlation, considering the varying gain-of-function effect of
STAT1 variants, it would be interesting to evaluate whether
autoimmunity associates with STAT1 variants resulting in stronger
interferon signaling.

Deficiency of ADA2
Patients with a deficiency in adenosine deaminase 2 (ADA2) due
to biallelic loss-of-function mutations in CECR1 display varying
immunodeficiency mainly associated with hypogammaglobuli-
nemia but also early-onset polyarteritis nodosa.155,156 The
severity of polyarteritis nodosa in those patients ranges from
cutaneous vasculitis to organ involvement, including early-onset
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and/or recurrent strokes. ADA2 is mainly expressed by myeloid
cells and catalyzes the conversion of adenosine and 2′-
deoxyadenosine to inosine and deoxyinosine, respectively. In
contrast to adenosine deaminase 1 (ADA1), whose deficiency
results in SCID, ADA2 has a considerably lower affinity for its
substrates and is not acting intracellularly but is rather secreted.
Phenotypic similarities between ADA2 deficiency (DADA2) and
type I interferonopathies, such as AGS, suggest a shared
pathogenic background.157 In accordance with this is the fact
that DADA2 patients display a type I interferon signature
correlating with disease activity, as shown in transcriptome
analysis of their peripheral blood cells.157,158 The identification of
DADA2 as a monogenic form of polyarteritis nodosa suggests
that defects in adenosine catabolism result in inflammation by
inducing the production of type I interferons.

B-CELL-INTRINSIC DEFECTS
Autoreactive B cells are subject to the mechanisms of central
tolerance, which are deployed within the bone marrow and
include clonal deletion and receptor editing.1,159 However, similar
to T cells, the central tolerance of B cells is incomplete, and as a
consequence, a considerable proportion of B cells escaping the
bone marrow are autoreactive. The frequency of autoreactive B
cells decreases along the course of B-cell maturation, falling from
the staggering level of more than 55% within the population of
early immature B cells to ~20% within mature B cells.1,160,161 The
control of this sizable proportion of autoreactive mature B cells
can be achieved through anergy, clonal ignorance, clonal
deletion, and receptor revision. Somatic hypermutation in the
context of the germinal center reaction can convert previously
nonautoreactive cells into autoreactive cells. Germinal center
checkpoints are employed in this case to prevent the breakdown
of tolerance and are largely the mechanism inducing T-cell
tolerance. T cells are gatekeepers of B-cell tolerance, and
mechanisms of T-cell tolerance are relevant for the induction of
B-cell tolerance.

Autosomal-recessive AID deficiency
Activation-induced cytidine deaminase (AID) catalyzes the
deamination of cytosine into uracil, creating DNA mutations,
and AID is involved in immunoglobulin class-switch recombina-
tion (CSR) and somatic hypermutation.162 Biallelic mutations in
AICDA result in AID deficiency, which is the most common B-cell-
intrinsic CSR defect.163,164 Autosomal-recessive AID deficiency
causes hyper-IgM syndrome with low IgG and IgA levels. Apart
from recurrent bacterial infections, reflecting antibody failure,
the majority of patients display lymphadenopathy, and ~30%
develop autoimmunity, presenting as autoimmune cytopenia,
SLE, arthritis, autoimmune hepatitis, and Crohn’s disease.
Autoimmunity in AID deficiency is a B-cell-intrinsic defect.165

Both defects in central and peripheral tolerance have been
described, though the exact mechanism accounting for B-cell
autoreactivity is not clearly understood. The resistance of B cells
to apoptosis and the overexpression of BAFF could result in the
skipping of the checkpoints of B-cell tolerance in these
patients.166 An additional pathogenic correlate of autoimmunity
in AID deficiency is the reduction in Treg counts, which may be
explained through a T-cell-intrinsic mechanism, as T cells have
been reported to transiently express AID.167 Further, the
presentation of autoantigens by autoreactive B cells has been
suggested as an alternative mechanism promoting the activation
of autoreactive T cells.168

PKCδ deficiency
Protein kinase C δ (PKCδ) is a lymphocyte and primarily B-cell
signaling mediator.169 PKCδ is phosphorylated in response to the
activation of the BCR B-cell activating factor (BAFF) or in responseTa
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to cytokines such as IL-4 and interferons. PKCδ-mediated signaling
in B cells regulates their survival, proliferation, and apoptosis,
including the proapoptotic pathway resulting in negative selec-
tion. Biallelic loss-of-function mutations in PRKCD, the gene
encoding PKCδ, either result in PKCδ deficiency or affect its
phosphorylation; in addition, these mutations cause immunode-
ficiency with variable immunoglobulin values and consistently
reduced counts of class-switched memory B cells, characterized by
immune dysregulation.170–173 Six patients from four unrelated
families have been reported to develop disease as a consequence
of biallelic PRKCD mutations. All of these patients developed
autoimmunity before the age of 10 years, commonly manifesting
as SLE or SLE-like disease, including photosensitivity and nephritis,
arthritis, and antiphospholipid syndrome. The critical role of PKCδ
in B cell homeostasis and tolerance, especially in negative
selection in germinal centers, has been identified in PKCδ-
deficient mice, which – similar to patients with PKCδ deficiency
—display lymphoproliferation and systemic autoimmunity.174

UNCONTROLLED INFECTIONS AND AUTOIMMUNITY: THE
EXAMPLE OF FAILED CONTROL OF EBV AND MYCOBACTERIA
Pathogens of all kinds can cause tissue damage and elicit both
innate and adaptive immune responses that not only eliminate
them but also may result in the breakdown of tolerance.175–177 The
mechanisms by which infections can trigger or accelerate
autoimmunity have been extensively reviewed elsewhere.178–180

Briefly, mechanisms accounting for infection-triggered autoimmu-
nity include the release of self-antigens, enhanced antigen
presentation, bystander activation, superantigen-induced immune
activation, and molecular mimicry. Mechanistic insight into the
pathogenesis of autoimmunity has been gained through animal
models of autoimmune disease, which also provides a platform for
the evaluation of the role of particular viruses and bacteria in the
initiation and maintenance of autoimmunity.181 Epidemiological
studies have associated several autoimmune diseases, such as T1D,
RA, SS, and SLE, with viral or bacterial infections.182–186 Further,
pathogen-derived antigens have been identified in tissues or cells
of patients with autoimmune diseases,182,185 and sequence
similarities between pathogen-derived epitopes and self-antigen-
derived epitopes that could elicit cross-reacting immune responses
have been identified in numerous autoimmune diseases.187–190

Given the evidence suggesting the role of infections in precipitat-
ing autoimmunity, it is tempting to speculate that, at least in some
IEI, susceptibility to infections, and especially chronic or persistent
infections, may precipitate autoimmunity. As this is an extremely
broad topic that should be addressed with a pathogen-specific
approach, we will focus here on EBV, whose failed control is a
hallmark of T-cell immunodeficiency and atypical mycobacterial
infections, which are associated with Mendelian susceptibility to
mycobacterial disease (MSMD).
Several lines of evidence connect EBV with autoimmunity.

Epidemiological studies have associated EBV with autoimmune
diseases such as RA, SLE and multiple sclerosis (MS).178,190 EBV-
induced infectious mononucleosis has been suggested to induce
the production of various autoantibodies, such as those against
DNA, ribonucleoproteins, and erythrocytes.182,191,192 Further, EBV-
derived proteins and nucleic acids have been more commonly
identified in patients with SLE. In SLE patients, it has been shown
that EBV-specific CD8+ T cells are diminished and less
cytotoxic.193,194 Decreased CD8+ T-cell activity against EBV-
infected B cells has been suggested to account for the accumula-
tion of EBV-infected B cells in MS.195 RA patients displayed
decreased percentages of IFNγ-producing EBV-specific CD8+

T cells.196 The abovementioned findings link defective control of
EBV with autoimmunity. Several IEI primarily compromise the
handling of EBV.197 For example, mutations in ITK, CD27, MAGT1,
and CORO1A result in failed control of EBV infection and EBV-driven

lymphoproliferation.198 Autoimmunity is neither a cardinal nor an
early-onset feature of most of those disorders and has been
reported in a minority of patients with ITK deficiency or X-linked
immunodeficiency with magnesium defect, EBV infection and
neoplasia (XMEN) syndrome who more commonly developed
autoimmune cytopenia.199,200 Considering the plausible epidemio-
logical and biological evidence of the role of EBV in autoimmunity,
it can be speculated that EBV-driven mechanisms in the context of
failed EBV control can at least partially induce the breakdown of
tolerance in PIDs that selectively affect immune responses
against EBV.
Mycobacterial infections, especially with nontuberculous myco-

bacteria, can induce autoantibody responses, such as those found
in SLE, RA, and systemic vasculitis, and M. tuberculosis-derived
antigens, such as heat shock protein 60 (HSP60) and HSP65, have
been identified in the sera of patients with SLE.201–203 Non-
tuberculous mycobacterial infections have a relatively high
prevalence among SLE patients.204 Epidemiological studies
revealed a significant association of SjS with a history of previous
nontuberculous mycobacterial infection.205 In addition to mole-
cular mimicry, persistent antigenic stimulation in the context of
mycobacterial infection could activate innate immune sensors and
lower the activation threshold of autoreactive T cells.202 Common
IEI resulting in MSMD,206 such as interleukin 12 receptor beta 1
(IL12Rβ1) or interferon γ receptor 1 (IFNγR1) deficiency, has only
rarely been linked to autoimmunity, which manifests as SjS or SLE-
like disease.207–210 The relatively low proportion of patients with
monogenic defects in the IL-12/IFNγ axis and autoimmunity (3.4%
among patients with IL12Rβ1 deficiency)207 suggests an additional
genetic predisposition to autoimmunity other than the MSMD-
causing genetic variation. Given the evidence suggesting that
mycobacteria can precipitate autoimmunity, persistent mycobac-
terial infection may at least in part account for the breakdown of
tolerance in these patients.

MULTIFACTORIAL IMMUNE DYSREGULATION: THE EXAMPLE
OF IEI DUE TO DEFECTS IN THE CANONICAL NF-ΚB PATHWAY
The activation of NF-κB transcription factors, especially those of the
canonical pathway, plays a central role in the immune system and
is a ubiquitous target of immune signaling211; therefore, it is
discussed separately in this review. Diverse immune receptors,
including antigen receptors, Toll-like receptors (TLRs), members of
the tumor necrosis factor receptors (TNFRs) and the interleukin 1
receptor (IL-1R), activate the canonical NF-κB pathway, which
converges in the nuclear translocation of an NF-κB dimer, which
consists of c-Rel, RelA/p65 and/or p50.211 Heterozygous loss-of-
function mutations in NFKB1, the gene encoding the precursor of
p50, i.e., NF-κB1/p105, are the most common monogenic cause
of CVID in Europeans, and, in addition to immunodeficiency, they
are commonly associated with autoimmunity.212 More than half of
patients with immunodeficiency due to damaging monoallelic
NFKB1 mutations display autoimmune manifestations such as
autoimmune cytopenias, arthritis, enteropathy, and vasculitis, and
the frequency of autoimmunity increases with age.213,214 Hetero-
zygous gain-of-function mutations in NFKBIA, the gene encoding
the “nuclear factor of kappa light polypeptide gene enhancer in B
cells inhibitor alpha” (IκBα), block IκBα degradation and therefore
NF-κB1 release from its complex with IκBα and nuclear transloca-
tion, having a loss-of-function effect on the canonical NF-κB
pathway.215 Approximately half of all 19 reported patients with PID
due to NFKBIA mutations displayed autoimmune or autoinflamma-
tory disease manifesting as SLE, RA, IBD, or hepatopathy.215–219

Despite mouse studies suggesting the involvement of the
canonical NF-κB pathway in the development and function of
Tregs,220,221 both Treg counts and in vitro suppressive function
appear normal in tested patients with immunodeficiency due to
monoallelic NFKB1 mutations.222 However, a recent study revealed
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reduced expression of ICOS in Tregs from all 5 tested patients with
NFKB1 haploinsufficiency, which is consistent with the reduced
effector function of Tregs.223 Those patients displayed reduced
Treg counts, deviating from the rest of patients with monoallelic
NFKB1 mutations,222 so it is unclear whether all pathogenic NFKB1
mutations consistently impair Treg counts or function and
whether this is associated with autoimmune disease. Dysregulated
stimulation-induced cytokine secretion and especially increased
production of TNF can result in autoimmunity.224 Increased
production of TNF has been described in patients with hetero-
zygous NFKB1 mutations and may be an additional or alternative
explanation for autoimmune or autoinflammatory disease in the
context of immunodeficiency due to heterozygous NFKB1 muta-
tions. Myeloid cell hyperactivation and the oversecretion of IL-1b
have been reported to be the consequence of a recently identified
gain-of-function NFKBIA mutation in a patient with autoinflamma-
tory hepatopathy.219 Another mutation in NFKBIA, replacing Ser32,
did not cause the oversecretion of IL-1β.225 However, the patient’s
leukocytes displayed reduced LPS-induced production of all other
tested proinflammatory cytokines (IL-6 and TNFα), except IL-1β,
supporting the idea of a cytokine imbalance favoring IL-1β
production as the cause of inflammatory disease in these patients.
The activation of the canonical NF-κB pathway, especially after

triggering TCR or BCR, is controlled by the assembly of a protein
complex consisting of CARD11, BCL-10, and MALT1, the so-called
CBM signalosome.226 Germline mutations in the genes encoding
the components of the CBM signalosome result in a broad
spectrum of immunological phenotypes, including combined
immunodeficiency, atopy, and autoimmunity, which is more
clearly linked with Treg dysfunction. Germline gain-of-function
mutations in CARD11 underlie B-cell expansion with NF-κB and T-
cell anergy (BENTA) disease, which is a PID with recurrent
respiratory tract and viral infections such as molluscum con-
tagiosum and EBV viremia.227 BENTA patients also display
autoimmune lymphoproliferative syndrome (ALPS)-like lympho-
proliferation and SLE-like autoimmunity, including autoimmune
cytopenias. Most BENTA-causing mutations are located in the
coiled-coil or the LATCH domain of CARD11, interrupting the
autoinhibitory interaction with the linker domain, resulting in
CARD11 aggregation, the recruitment of BCL-10 and MALT1 and
constitutive NF-κB activation in B cells and T cells.226,228 Interest-
ingly, dominant-negative (DN) CARD11 mutations disrupting

NF-κB activation have also been associated with autoimmunity.229

In addition to severe atopic disease, ~20% of patients with DN
CARD11 mutations display autoimmunity manifesting as alopecia,
idiopathic thrombocytopenic purpura, bullous-pemphigoid, or
even IPEX-like disease. Although severe opportunistic infections
(particularly Pneumocystis pneumonia) dominate the phenotype of
combined immunodeficiency due to biallelic loss-of-function
mutations in CARD11, Omenn syndrome and IBD have been
reported as manifestations of PID due to full CARD11 deficiency,
which results in compromised activation of the canonical NF-κB
pathway and an absence of Tregs.226,230 MALT1 deficiency, as a
consequence of germline biallelic loss-of-function mutations in
MALT1, causes CID, including IPEX-syndrome-like immune dysre-
gulation, which is associated with substantially reduced Treg
counts.231 The IPEX-syndrome-like autoimmunity of MALT1-
deficient patients is in accordance with the phenotype of mice
harboring a point mutation that selectively inactivates the
paracaspase activity of MALT1, which also display reduced Treg
counts and die of multiorgan autoimmunity.232 BCL10 deficiency,
similar to MALT1 deficiency, causes an IPEX-syndrome-like
phenotype associated with profound Treg deficiency.233

CONCLUDING REMARKS
Autoimmunity is an integral part of the clinical spectrum of PIDs or
IEI. In this review, we have presented the cellular and molecular
mechanisms accounting for the breakdown of tolerance to self-
antigens in selected IEI (Figs. 1 and 2).
The age of onset and the type of autoimmunity depend largely

on the genetic defect underlying an IEI and its impact on both
immunity and tolerance. Major defects in thymic negative
selection commonly cause early-onset polyendocrinopathy and
cutaneous autoimmunity, whereas major defects in Treg-induced
peripheral tolerance typically manifest with early-onset entero-
pathy, endocrinopathy, and eczema. Several genetic defects,
especially those affecting antigen receptor signaling or nodal
signaling molecules, can simultaneously impair more than one
layer of tolerance. On the other hand, unresolved infections may
directly affect tolerogenic lymphocyte functions or exert a
persisting adjuvant effect on immune cells, precipitating the
breakdown of tolerance. The latter may be relevant for monogenic
immune defects that predominantly compromise immunity and

Fig. 3 The interconnected pathogenic pathways of autoimmunity and primary immunodeficiency. Autoimmune disorders may result in
immunodeficiency through the production of autoantibodies or through disease-intrinsic mechanisms, whereas the immune defects
underlying immunodeficiency can affect the induction or the maintenance of immune tolerance and cause autoimmunity
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are associated with a lower prevalence and a later onset of
autoimmunity.
Autoimmunity can be the prominent or the first manifestation

of an IEI.10 In the case of the latter scenario, the diagnosis of
primary immunodeficiency may be missed, as patients may
receive glucocorticoids or other immunomodulatory agents
inducing secondary immunodeficiency.234 The increasing number
of genes linked to IEI facilitates an understanding of the
immunopathogenesis of autoimmune disease, affecting therapeu-
tic decision-making or even allowing the development of
individualized therapies. The emerging identification of genes
both involved in IEI and conferring susceptibility to systemic
autoimmune diseases, as well as the increasing identification of
autoantibodies and other intrinsic autoimmune disease mechan-
isms compromising immunity, strongly suggest the interconnect-
edness of the pathogenic pathways of autoimmunity and primary
immunodeficiency (Fig. 3).235–237 Therefore, the identification of
the mechanisms breaking immune tolerance in IEI may aid in the
understanding of the pathophysiology of systemic autoimmune
diseases and contribute to the development of pathophysiology-
oriented therapeutics.
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