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	   Abstract: RNA 5-methylcytosine (m5C) is one of the pillars of post-transcriptional modification 
(PTCM). A growing body of evidence suggests that m5C plays a vital role in RNA metabolism. Accu-
rate localization of RNA m5C sites in tissue cells is the premise and basis for the in-depth understand-
ing of the functions of m5C. However, the main experimental methods of detecting m5C sites are lim-
ited to varying degrees. Establishing a computational model to predict modification sites is an excel-
lent complement to wet experiments for identifying m5C sites. In this review, we summarized some 
available m5C predictors and discussed the characteristics of these methods. 

A R T I C L E  H I S T O R Y 

Received: October 24, 2019 
Revised: January 17, 2020 
Accepted: January 31, 2020 
 
DOI: 
10.2174/2213346107666200219124951 

Keywords: 5-methylcytosine, RNA modification, machine learning, prediction, sequence encoding, pseudo dinucleotide  
composition. 

1. INTRODUCTION 

 RNA 5-methylcytosine (m5C) is a pervasive regulatory 
mark in both eukaryotes and prokaryotes [1, 2]. Recent ad-
vances in m5C mapping technologies have verified the pres-
ence of m5C in tRNA, rRNA, mRNA and lncRNA, which 
revived the community’s interest in studying the functions 
and mechanisms of m5C [3, 4]. In tRNAs, m5C is known to 
influence both structural and metabolic stabilization [5]. 
Lack of modified residues may reduce conformational stabil-
ity that leads to degradation of tRNAs [6-8].  
 Ribosomal RNA m5C modification is widespread in all 
kingdoms of life and they are usually evolutionarily con-
served in genomes [1]. Recent studies suggest that m5C 
methylation status is involved with the efficiency of the nu-
clear export of mRNA by affecting the activity of nuclear 
factor ALYREF/THOC4 [9, 10]. It is also reported that m5C 
influences the translation of proteins. Modifications that oc-
cur at different positions may either promote or inhibit trans-
lation efficiency [11, 12]. However, the regulatory functions 
of m5C are still not fully understood. 
 A fundamental step for further research on the functions 
and mechanisms of RNA m5C modification is to obtain the 
position of the modification sites. Up to now, several exper-
imental methods have been proposed to detect RNA m5C 
sites, including bisulfite sequencing, meRIP-seq, Aza-IP and 
meCLIP [13-16]. Here we introduced these four methods 
briefly: 1) Bisulfite sequencing: This method is based on the 
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different reactions between m5C and the general cytosine 
when they are exposed to a sodium bisulfite environment. 
The general cytosine will convert into uridines with the de-
amination of sodium bisulfite while the m5C will not be af-
fected. 2) MeRIP-seq: This method was first applied to de-
tect m6A methylome in RNA. The antibody against m5C will 
pull down the m5C-containing RNA fragments during the 
immunoprecipitation and locate the m5C at the transcription 
level. 3) Aza-IP: In the process of methyltransferase cataly-
sis, the cysteine of methyltransferase forms a temporary co-
valent bond with the modified cytosine at carbon 6, after 
which the methyltransferase reverts to the free enzyme state. 
Aza-IP incorporates 5-azacytidine, a cytidine analog, into 
RNA and this compound can prevent the separation of the 
complex mentioned above. In this process, a C-to-G trans-
version occurs at methyltransferases targeted sites, which 
allows precision identification of m5C modification sites. 4) 
miCLIP.: Unlike Aza-IP, which “trapped” methyltransferase 
by 5-azacytidine, miCLIP directly mutated the cysteine resi-
dues in methyltransferase into alanine, so as to achieve the 
goal to sequester methyltransferase after its binding to the 
modification sites. The reverse transcription will be termi-
nated at the -1 position of the methylated site because of the 
hindrance from enzyme-RNA cross-binding.  
 Although the experimental methods for detecting m5C 
sites have convincing accuracy, they have limitations more 
or less. For instance, bisulfite sequencing needs alkaline 
conditions that may cause RNA degradation, which is an 
obstacle for subsequent reverse transcription. Another defect 
is the low conversion rate of cytosine in RNA stem region. 
MeRIP-seq also suffers from detecting folded RNA second-
ary structures. A limitation of Aza-IP is the nonquantitative 
transversion of C-to-G because of the toxicity of 5-azaC. As 
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for miCLIP, it relies on the mutation rate of methyltransfer-
ase but may cause changes in methylation patterns in the 
process of keeping a high rate of mutation. In addition, high-
throughput wet experiments are all laborious and time-
consuming. For the most commonly used bisulfite sequenc-
ing, it usually costs more than one month for sample prepa-
ration and sequencing, and costs more than 1000 dollars as 
per our collaborative company. 
 Based on this situation, several computational predictors 
for identifying RNA m5C sites have been established and 
Fig. (1) shows the workflow of these predictors. Typically, 
three essential elements are required to constitute a se-
quence-based RNA m5C site predictor, i.e., training dataset 
(where the known RNA m5C sites settle), sequence feature 
encoding strategy (how to describe the proximal sequences 
of RNA m5C sites as mathematical formulation), and the 
machine-learning algorithms (how to classify the sites based 
on the sequence features). As summarized in Table 1, all of 
the available predictors were established with popular ma-
chine-learning algorithms like support vector machine 
(SVM) and random forest (RF). Nevertheless, they are sub-
stantially differed in the sequence feature encoding strategy 
and training dataset used. In this review, we provided an 
overview of these computational approaches from the per-
spective of the training dataset, encoding strategy and ma-
chine learning algorithm implementation. 

2. TRAINING DATASET 

 Intuitively, the training dataset is composed of positive 
samples (known as m5C site) and negative samples (non-
modified sites). However, technically, the selection of train-
ing samples is not a trivial issue for building m5C site predic-
tors. On the one hand, as what is introduced above, there are 
several distinct high-throughput sequencing methods for 
m5C identification, and each method has its unique principle 
and protocol. Besides, RNA modification like m5C often 
exhibits species, tissue and cell-type specificity. Therefore, a 
set of mixed positive samples from different organisms, tis-
sues and experiment types is preferred to assemble a robust 
training set. Early studies adopted human m5C sites identi-
fied by bisulfite sequencing [13], which were collected from 
the early version of RMBase [22]. However, as demonstrated 
by Li et al., predictors trained on this dataset often show 
noticeably reduced accuracy on heterogeneous datasets mix-
ing m5C site data from different experimental studies in 
Gene Expression Omnibus (GEO) [19]. Notably, the updated 
RMBase V2.0 has been released recently [23], providing a 
much enriched source of known m5C sites. Therefore, more 
updated, mixed m5C datasets from GEO and/or RMBase 
V2.0 would be a good choice to train and test the m5C site 
predictors. On the other hand, there is still no golden stand-
ard negative samples for m5C site prediction. Most predic-
tors, if not all, use randomly picked cytosine residues that 
have not yet been reported to be modified as the negative 
samples. However, such randomly picked negative samples 
should include a considerable fraction of false negatives, i.e., 
the potential m5C sites that have not been identified in one 
particular experiment. To this end, a mixed dataset incorpo-
rating more experimental m5C site data could be helpful to 
rule out some false negatives in the training datasets. Never-
theless, a golden standard negative set identified with a novel 

experimental design is still highly demanded. For example, a 
microarray-based experimental design, which quantifies the 
relative m5C methylation level at each site, might be useful 
to identify the sites that are rarely modified as the true nega-
tive sites. 
 To further illustrate the challenges from the heterogene-
ous nature of current m5C site data, we here introduced a 
newly released m5C dataset from GEO (GSE90963) as the 
testing set [24]. This testing dataset is released after the pub-
lication of all the abovementioned predictors, therefore it 
would be mostly independent of the training dataset of pre-
vious predictors. ROC (receiver operating characteristic) 
curve is generally used to show the performance of predic-
tors in machine learning area and it can intuitively and accu-
rately reflect the relationship between sensitivity and speci-
ficity, but it is not applicable here due to the lack of variable 
threshold of most m5c site predictors. In order to directly 
compare the predictors’ recognition ability of positive and 
negative samples, we took one positive and one negative 
sample from each transcript to verify whether these predic-
tors can recognize both of them. We picked 333 author-
reported high-confidence m5C sites and corresponding 333 
randomly picked non-modified sites from the new bench-
mark dataset. Then this independent test set was used to pre-
liminarily evaluate the performance of the predictors and the 
result is shown in Table 2. Notably, iRNA-PseColl correctly 
identified most of the m5C sites, but it also wrongly assigned 
most of the non-modified sites into false positives. M5C-
HPCR was more balanced than iRNA-PseColl in terms of 
true positive rate and false positive rate, but it still wrongly 
recognized more than half of the negative samples. Since we 
only adopted a 1:1 positive-to-negative ratio for this prelimi-
nary benchmarking test, the false positive rate will be even 
higher when running predictions on real RNA sequences 
where the number of non-modified sites overwhelms that of 
modified sites. It is noticeable that the size of training data 
for these methods is relatively small (Table 1), indicating 
large and heterogeneous training dataset is important to im-
prove the robustness of the predictor and reduce the false 
positive rate. By contrast, RNAm5Cfinder turns out to be 
just too conservative, recognizing only 36.9% of m5C sites. 
One reason is that the RNAm5Cfinder used a training dataset 
with an extremely imbalanced positive-to-negative ratio 
(1:30), which made it robust in ruling out false positives but 
insensitive to true positive on the other hand. The one that 
showed the best overall performance in this testing set was 
PEA-m5C. It is a predictor for plant m5C sites. As the m5C 
sites in this new testing dataset are of high-confidence and 
therefore more likely to be evolutionarily conserved, it is 
unsurprising to observe the good performance of PEA-m5C. 
Nevertheless, the ability of this predictor to find evolutionar-
ily less conserved, species-specific m5C sites remains to be 
evaluated.  
 However, in the independent test dataset, there is a possi-
bility that those negative samples may be the potential posi-
tive samples that have not yet been identified. Therefore, we 
then utilized two evaluation methods to estimate the propor-
tion of potential positive samples among the negative dataset 
and obtained the range values of the performance statistics 
for a better evaluation of the predictors [25]. For the con-
servative estimation, the ratio of 8.5%, which was the 
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Fig. (1). Workflow of the computational pipeline to predict RNA m5C sites. (A higher resolution / colour version of this figure is available in the 
electronic copy of the article). 

 
Table 1. The dataset, encoding strategy and corresponding machine-learning algorithm of the predictors. 

Name of the Predictors 
or Platforms 

Coding Strategy Machine 
Learning 

Algorithm 

Training Dataset 
Source 

Species URL 

iRNAm5C-PseDNC [17]  PseDNC encoding RF RMBase (475 posi-
tive samples) 

Mostly Human 
and Mouse 

http://www.jci-bioinfo.cn/iRNAm5C-
PseDNC (server) 

iRNA-PseColl [18]  PseKNC encoding SVM SRA027832 (120 
positive samples) 

Human http://lin.uestc.edu.cn/server/iRNA-PseColl 
(server) 

RNAm5Cfinder [19] One-hot encoding RF GSE90963 

GSE93749 

GSE83432 

(19798 positive 
samples) 

Human 

Mouse 

http://www.rnanut.net/rnam5cfinder (server) 

PEA-m5C [20]  One-hot encoding 

mer encoding 

PseDNC encoding 

RF GSE80054 (1196 
positive samples) 

Arabidopsis https://github.com/cma2015/PEA-m5C 
(source code) 

m5C-HPCR [21]  HPCR SVM SRA027832 (120 
positive samples) 

Human http://cslab.just.edu.cn:8080/M5C-HPCR 
(server) 

 
Table 2. Observed performance of the independent test of predictors. 

Predictors or Platforms Sensitivity Specificity ACC MCC 

iRNAm5C-PseDNC Website inaccessible Website inaccessible Website inaccessible Website inaccessible 

iRNA-PseColl 0.925 0.081 0.503 0.011 

RNAm5Cfinder 0.369 0.766 0.568 0.147 

PEA-m5C 0.426 0.784 0.605 0.225 

M5C-HPCR 0.631 0.423 0.527 0.055 

 
proportion of high-confidence m5C sites to all candidate sites 
in the GSE90963 dataset, was set to represent the possibility 
that a negative sample is a potentially positive sample. And a 
radical estimation was also employed to evaluate the predic-
tion result, where all of the negative samples that were not 
recognized by predictors were considered to be the potential 

positive samples. And the result of the estimated perfor-
mance ranges is shown in Table 3. Due to the consideration 
of false negatives in the dataset, the performance statistics of 
the predictors would show varying degrees of changes. As 
expected, iRNAm5C-PseDNC has the best sensitivity but 
unsatisfactory specificity among four predictors. This also 
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indicates that iRNAm5C-PseDNC is more suitable when 
users prefer to find as many m5C sites as possible, regardless 
of the false positive rate. On the other hand, PEA-m5C, fol-
lowed by RNAm5Cfinder, showed the tightest ranges of 
MCC, suggesting their overall robust performance as com-
pared with the other two predictors. Nevertheless, all predic-
tors exhibited compromised performance on the new testing 
dataset. Thus, the importance of timely update of the m5C 
site datasets is again emphasized, in order to establish robust 
m5C predictors. 

3. METHODS 

3.1. Sequence Encoding Strategy 

 To train a machine learning model, a key procedure is to 
translate the RNA sequence flanking the modified/non-
modified sites into a numeric form. In this section, we sum-
marized several sequence encoding strategies, including: 1) 
one-hot encoding, which is a group of bits that all bits are ‘0’ 
except one ‘1’. The ‘1’ in different places represents differ-
ent states. It is usually applied to process natural language 
and indicate state characteristics. 2) k-mer encoding: k-mers 
are the subsequences of k-length in a biological sequence. 
The normalized frequency of each kind of k-mer consists of 
the k-mer encoding. It is widely used in genome assembly, 
clustering and capturing nucleotide or protein sequences’ 
features [26-28]. 3) PseDNC/PseKNC:compared with k-mer, 
PseDNC/PseKNC considered more global information and 
introduced the physical and chemical properties of nucleo-
tides. PseDNC/PseKNC is also a popular sequence encoding 
strategy especially in DNA or RNA modifications. 4) HPCR: 
HPCR adopted the same sequence encoding strategy as 

PseDNC but the difference is the choice of physical-
chemical properties of nucleotides. HPCR utilizes the heuris-
tic algorithm to select the optimal set of properties among 23 
properties as the parameters of PseDNC. Fig. (2) shows a 
brief illustration of each kind of encoding strategy. 

3.1.1. One-hot Encoding 

 The one-hot encoding is a sample strategy which uses n-
bit state registers to encode n states. Each state has its own 
register bit and only one register is valid at any time. In the 
process of nucleotide base sequence encoding, four bits of 0 
or 1 represent four kinds of nucleotide. The A, G, C, U are 
translated into vectors of (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) 
and (0, 0, 0, 1), respectively [19, 20]. Although one-hot en-
coding is simple, it is easy to use and often show a substan-
tial contribution to the prediction accuracy when the posi-
tion-specific sequence propensity is prominent around the 
modified sites.  

3.1.2. k-mer 

 The frequency distribution of short sequence fragments 
composed by nucleotide is stable in the whole genome and 
carries certain features of the concerned sequences. For an n-
length sequence, k-mer cuts the sequence into n-k+1 sub-
strings containing k nucleotides. And the feature vector 
could be expressed as: 

( )1 2 3 4
F= , , , , kf f f f⋅⋅⋅

                                                     (1) 
where fi represents the frequency of the corresponding fea-
ture. 

Table 3. Estimated performance ranges of the independent test of predictors by considering potential false negatives in the dataset. 

Predictors or  
Platforms 

The Range of Sensitivity 
(Conservative/radical) 

The Range of Specificity 
(Conservative/radical) 

The Range of ACC 
(Conservative/radical) 

The Range of MCC 
(Conservative/radical) 

iRNAm5C-PseDNC Website inaccessible Website inaccessible Website inaccessible Website inaccessible 

iRNA-PseColl 0.925–0.959 / 0.925–0.961 0.081–0.509 / 0.081–1.000 0.503–0.923 / 0.503–0.962 0.011–0.473 / 0.011–0.706 

RNAm5Cfinder 0.369–0.480 / 0.369–0.489 0.766–0.973 / 0.766–1.000 0.568–0.674 / 0.568–0.685 0.147–0.483 / 0.147–0.518 

PEA-m5C 0.426–0.521 / 0.426–0.528 0.784–0.978 / 0.784–1.000 0.605–0.704 / 0.605–0.713 0.225–0.524 / 0.225–0.552 

M5C-HPCR 0.630–0.758 / 0.630–0.766 0.423–0.898 / 0.423–1.000 0.527–0.791 / 0.527–0.815 0.055–0.570 / 0.055–0.640 

 

 
Fig. (2). The overall structure of each encoding. f represents the frequency of the corresponding feature. d and λ are illustrated in equation (6) 
and (7). (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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For example, when k = 1, 

( )F ( ), ( ), ( ), ( )f A f G f C f U=                                       (2) 
when k = 2, 

( )F ( ), ( ), ( ), ( ), ( ), , ( )f AA f AG f AC f AU f GA f UU= ⋅⋅⋅             (3) 
 Clearly, as the value of k increase, the feature vector’s 
dimension will rise sharply which may draw into not only an 
intensive computational burden but also the curse of dimen-
sionality and/or overfitting problem. Thus, the value of k is 
usually not greater than 10 in practice and often concatenates 
feature vector obtained by using a different value of k to 
constitute the final input feature encoding. 

3.1.3. PseDNC/PseKNC 

 Although k-mer encoding considers the most contiguous 
short sequence pattern information, it ignores the global or-
der of such short sequences. That is to say, k-mer is less sen-
sitive to the position-specific sequence propensity around 
m5C modification sites. One solution could be to combine k-
mer with position-specific sequence encoding like the one-
hot encoding. Another is to construct a more sophisticated 
encoding schema to reflect local short sequence patterns and 
global order information at the same time. Encouraged by 
the successful application of pseudo amino acid composition 
(PseAAC) in protein/peptide sequence encoding, the pseudo 
dinucleotide composition (PseDNC) strategy was proposed 
to code RNA sequence with m5C modification [17, 29]. To 
reflect the global sequence-order information, like PseAAC, 
PseDNC defined the corresponding factors as: 
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where N represents the nucleotide; L is the length of the se-
quence; θ1 is called the first-tier correlation which reflects 
the sequence-order correlation between any two dinucleo-
tides which are next to each other; θ2 is called the second-tier 
correlation and it represents the sequence-order correlation 
between any two dinucleotides which separated by one dinu-
cleotide; θ3 is called the third-tier correlation and it repre-
sents the sequence-order correlation between any two dinu-
cleotides which separated by two dinucleotides, and so on. λ 
represents the highest rank of the interval of two dinucleo-
tides. Ψ is a function that reflects the correlation between 
two dinucleotides which can be calculated by the following 
equation: 
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where PC is the normalized value of RNA physical-chemical 
property for the dinucleotide composed by two adjacent nu-
cleotides; u is the number of PC considered. As for the de-
tection of RNA m5C, three physical-chemical properties 
have been adopted, i.e., enthalpy, entropy and free energy 
[30]. Finally, the mathematical expression of the sequence 
can be described as: 

[ ]1 2 16 16 1 16D= Td d d d d λ+ +⋅⋅⋅ ⋅⋅⋅                                         (6) 
And the d values in the above equation can be calculated by: 
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Where k is the index of d in Eq. (6); fk is the same as f in Eq. 
(1); w is the weight factor range from 0 to 1. The value of λ 
and w should be obtained by grid search (which usually 
based on cross-validation performance on the training da-
taset) [30].  

 Pseudo k-tuple nucleotide composition (PseKNC) is a 
more general coding strategy which takes k nucleotides (ra-
ther than two nucleotides) as the input to construct the pseu-
do nucleotide encoding [18, 31]. Compared with one-hot or 
k-mer encoding, both PseDNC and PseKNC associate short 
sequence order information with RNA physical-chemical 
properties. And they are widely used in other functional site 
prediction tasks like predicting recombination spots, RNA 
splicing sites and RNA m6A modification sites [18, 32-34] 
Besides, practically, combining multiple sequence encoding 
could often be helpful to predictor performance improve-
ment. As recently demonstrated by Song et al. in the m5C 
site prediction task, combining PseDNC with one-hot and k-
mer encoding could further enhance the prediction accuracy 
[20]. Finally, PseKNC could be calculated with custom pa-
rameters at http://lin-group.cn/pseknc/default.aspx.  

3.1.4. HPCR 

 Considering that there are at least 23 physical-chemical 
properties of nucleotides which are: (1) Rise [35]; (2) Roll 
[35]; (3) Shift [35]; (4) Slide [35]; (5) Tilt [35]; (6) Twist 
[35]; (7) Stacking energy [35]; (8) Enthalpy [36]; (9) Enthal-
py2 [36]; (10) Entropy [36]; (11) Entropy2 [37]; (12) Free 
energy [37]; (13) Free energy2 [37]; (14) Adenine content 
[38]; (15) Cytosine content [38]; (16) GC content [38]; (17) 
Guanine content [38]; (18) Keto (GT) content [38]; (19) Pu-
rine (AG) content [38]; (20) Thymine content [38]; (21) Hy-
drophilicity [39]; (22) Hydrophilicity [39]; (23) Base tacking 
energy [39]. And there is no evidence proving that the en-
thalpy, entropy and free energy used by PseDNC are always 
superior to the other 20 ones. Zhang et al. presented a heuris-
tic reduction algorithm to screen non-redundant, informative 
features to make a further improvement in the accuracy of 
prediction tools [21]. This method first quantifies the redun-
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dancy of each property in the context of all properties with 
the following equation:  

( , ) ( ) ( )i i
redundancyV S PC Acc S PC Acc S= − −                    (8) 

where S is the set of the total properties; PCi is the i-th prop-
erty in S; Acc(S) is the prediction accuracy considering the 
properties in S; If Vredundancy>=0 means that PCi is a redun-
dant property in set S. Then the top K properties with the 
highest redundancy are selected as the initial element of the 
K redundant subsets. Each redundant subset is expanded 
with an iterative procedure which selects the property with 
max redundancy to the corresponding rest non-redundant 
subset and appends it to the redundant subset, until the non-
redundant subset does not contain any redundant properties 
(Fig. 3). HPCR provides an efficient scheme for the rational 
selection of RNA physical-chemical properties and further 
improves the performance of the RNA m5C predictor. How-
ever, since the prediction accuracy is used in assessing the 
feature importance and redundancy, an independent valida-
tion/testing dataset is necessary to avoid over-fitting problem 
induced during feature selection [40].  
 

 
Fig. (3). The expansion of the k-th redundancy subset in HPCR 
encoding. (a) The k-th redundant subset only contains the initial 
PC, which belongs to the top K redundancy PC. The k-th non-
redundant subset consists of all PCs except the one in the left sub-
set. (b) The PC with the highest value of redundant in the set of the 
candidate will be moved to the set of redundancy. (c) Repeat the 
previous step until the set of candidate PCs does not contain any 
redundancy PCs, and finally, the rest members (dots on the right) of 
the set of candidate PCs are deeded as optimal PCs. (A higher reso-
lution / colour version of this figure is available in the electronic copy 
of the article). 

3.2. Machine-learning Algorithm 

 Selecting an appropriate machine-learning algorithm is 
another important step for the successful prediction of RNA 
m5C sites. SVM (support vector machine) is a popular ma-
chine learning algorithm skilled in binary classification prob-
lems (i.e., the problems to classify samples into two classes). 
It maps the input vector to a high-dimensional feature space 
through a non-linear function, and constructs an optimal 
classification hyperplane in this space, thereby maximizing 
the separation boundary between positive and negative sam-
ples. Most of the predictors discussed here adopt SVM as 
their operation engine. Especially, in view of K groups of 
non-redundant feature sets obtained by HPCR, M5C-HPCR 
adopted an ensemble learning which utilizes K SVM classi-
fiers to fit the training data, respectively and ensembles these 
classifiers by a simple averaging scheme [21]. Another 
popular algorithm is the RF (random forest) which is adopt-
ed by RNAm5Cfinder and PEA-m5C. Random forest is an 
algorithm that integrates multiple decision trees through en-
semble learning. It integrates all the classification voting 
results and specifies the category with the most votes as the 
final output. Benefit from the ensemble learning, the accura-
cy is higher than a single decision tree. Moreover, due to the 
randomness of samples and characteristics, random forest 
avoids overfitting problems to a certain extent and has cer-
tain anti-noise abilities.  
 As usual, k-fold cross-validation, jack-knife cross-
validation and independent test can be used to examine the 
performance of these classifiers. ACC (accuracy) is the sim-
plest and most common index that reflects the performance 
of a predictor. Besides, most predictors also adopt Sn (sensi-
tivity), Sp (specificity), Pr (precision) and MCC (Matthews 
correlation coefficient) as their evaluation indexes. These 
indexes can be calculated as follows: 

+=

( ) ( )
( ) ( ) ( ) ( )

TP TNAcc
TP FP TN FN
TPSn

TP FN
TNSp

TN FP
TP TN FP FNMCC
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⎧
⎪ + + +⎪
⎪ =⎪ +⎪
⎨
⎪ =

+⎪
⎪ × − ×=⎪

+ × + × + × +⎪⎩      (9) 
where TP, TN, FP and FN represent the number of true posi-
tive, true negative, false positive and false negative samples, 
respectively. For a positive-to-negative balanced testing da-
taset, all of these evaluation indexes provide a reasonable 
assessment of predictor performance. However, due to the 
low absolute fraction of m5C compared to all cytosine resi-
dues in RNA sequences, there should be much more negative 
samples than positive samples in a real-world application. In 
such cases, some indexes like accuracy and specificity will 
underestimate the false positive rate of predictor, and more 
comprehensive indexes like MCC are therefore recommend-
ed.  

CONCLUSION 

 In this review, we introduced the computational methods 
for predicting the location of RNA m5C sites, in terms of the 
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training dataset, sequence encoding strategy and the ma-
chine-learning algorithm they used. These computational 
methods provide a powerful complement for traditional se-
quencing methods and offer great convenience for the further 
study of RNA m5C modification. Especially, mixed, hetero-
geneous training datasets and a combination of different fea-
ture encodings would be helpful for establishing a robust 
RNA m5C site predictor. However, as demonstrated by the 
preliminary test of the predictors in this mini-review, the 
prediction performance has reached a bottleneck. A promi-
nent problem is present predictors cannot handle the rela-
tionship between false positives and false negatives and usu-
ally appear sideways. For example, iRNA-PseColl has a 
higher false positive rate and RNAm5Cfinder has a higher 
false negative rate. Therefore, before choosing a predictor, 
the purpose must be clear: expect more potential modifica-
tion sites or more accurate sites. In general, the performance 
of the predictors has room for further improvement. More 
experimental data are still necessary to enrich the training 
dataset, but some other biological features like genomic fea-
tures and RNA structural features may also contribute to 
performance improvement. On the other hand, with the ac-
cumulation of RNA m5C data, the main challenge is moving 
from the identification of m5C sites to the functional charac-
terization of m5C modification. We can see some clues in 
RNAm5Cfinder and PEA-m5C which came up with the tis-
sue-specific m5C predictor aiming to provide tissue specifici-
ty information of RNA m5C modification [19, 20]. As will 
be readily seen, the focus in the future will shift from 
demonstrating where the m5C will be to why the m5C will be 
here and the functional analysis of the RNA m5C modifica-
tion. 
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