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ABSTRACT Unconventional oil and gas (UOG) extraction is increasing exponentially
around the world, as new technological advances have provided cost-effective methods to
extract hard-to-reach hydrocarbons. While UOG has increased the energy output of some
countries, past research indicates potential impacts in nearby stream ecosystems as meas-
ured by geochemical and microbial markers. Here, we utilized a robust data set that com-
bines 16S rRNA gene amplicon sequencing (DNA), metatranscriptomics (RNA), geochemistry,
and trace element analyses to establish the impact of UOG activity in 21 sites in northern
Pennsylvania. These data were also used to design predictive machine learning models to
determine the UOG impact on streams. We identified multiple biomarkers of UOG activity
and contributors of antimicrobial resistance within the order Burkholderiales. Furthermore,
we identified expressed antimicrobial resistance genes, land coverage, geochemistry, and
specific microbes as strong predictors of UOG status. Of the predictive models constructed
(n = 30), 15 had accuracies higher than expected by chance and area under the curve val-
ues above 0.70. The supervised random forest models with the highest accuracy were con-
structed with 16S rRNA gene profiles, metatranscriptomics active microbial composition,
metatranscriptomics active antimicrobial resistance genes, land coverage, and geochemistry
(n = 23). The models identified the most important features within those data sets for clas-
sifying UOG status. These findings identified specific shifts in gene presence and expression,
as well as geochemical measures, that can be used to build robust models to identify
impacts of UOG development.

IMPORTANCE The environmental implications of unconventional oil and gas extraction
are only recently starting to be systematically recorded. Our research shows the utility of
microbial communities paired with geochemical markers to build strong predictive ran-
dom forest models of unconventional oil and gas activity and the identification of key
biomarkers. Microbial communities, their transcribed genes, and key biomarkers can be
used as sentinels of environmental changes. Slight changes in microbial function and
composition can be detected before chemical markers of contamination. Potential con-
tamination, specifically from biocides, is especially concerning due to its potential to pro-
mote antibiotic resistance in the environment. Additionally, as microbial communities
facilitate the bulk of nutrient cycling in the environment, small changes may have long-
term repercussions. Supervised random forest models can be used to identify changes
in those communities, greatly enhance our understanding of what such impacts entail,
and inform environmental management decisions.
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The economic extraction of unconventional oil and gas (UOG) has expanded the ac-
cessible global fossil fuel reserves, changing energy trade dynamics worldwide. For

example, in 2019 the United States became a net exporter of energy, a feat that had
not been achieved since 1952 (1). Unconventional hydrocarbon reserves are trapped in
impermeable rock formations, such as shale. Horizontal drilling coupled with hydraulic
fracturing (HF), a process using highly pressurized water, sand, and chemicals to frac-
ture impermeable rocks, has facilitated the profitable extraction of UOG.

The benefits of UOG extraction are accompanied by negative impacts, including fu-
gitive methane emissions (2), surface and groundwater ecosystem degradation (3–5),
increased water scarcity (6), and wastewater handling hazards (7). The wastewater pro-
duced from the HF process, called produced and flowback water (PFW), may contain
naturally occurring radioactive material from the subsurface, salt concentrations up to
7 times higher than seawater, and unknown chemical transformation products from
the original proprietary blend of chemicals used to pressurize and fracture the bedrock
(8). PFW can reach the environment through accidental spills or equipment failure and
from incompletely treated PFW in wastewater facility effluent released into bodies of
water (9).

Biocides are used in the HF process to prevent biofilm formation and corrosion due to
microbial activity (10). Biocide use has been previously associated with antimicrobial resist-
ance in other environments (11–14). Additionally, one study noted a shift in antimicrobial
resistance genes in downstream sites from HF wastewater release (15). Therefore, in this
study we hypothesized that UOG activity could potentially promote antimicrobial resist-
ance genes in the surrounding ecosystems in addition to the other aforementioned envi-
ronmental impacts.

Streams are particularly important environments. Headwater streams often make
up 60 to 80% of the total length of a river network (16). They are also vital for nutrient
cycling within their watersheds (17, 18). Headwater streams support a large diversity of
wildlife to the extent that they are considered crucial to maintaining biodiversity in
their larger river systems (19). Additionally, humans make use of streams, with 13.1 mil-
lion people in the United States estimated to have fished in rivers and streams in 2016
(20). Stream ecosystems have previously been noted to be especially sensitive to dis-
turbance (17). Furthermore, stream water quality can also influence well water quality
through a process known as infiltration, in which stream water flows into a nearby aq-
uifer (21). Consequently, it is important to be able to determine if UOG activity impacts
nearby streams for proper environmental management, function, and protection.

Microbes are robust indicators of ecosystem quality and functioning. Past studies have
evaluated their response to HF fluids, including biocides, in microcosms (22–25). Those
studies showed a distinct microbial response to hydraulic fracturing fluids between sam-
ples from UOG-impacted streams and controls, as determined by diversity metrics and mi-
crobial composition and function. Microcosms have also been used been used to study
the functional capabilities of microbial communities associated with produced water; for
example, Borton et al. (26) utilized metabolite, metaproteomic, and metagenomic analyses,
with a focus on interaction among community members and the importance of glycine be-
taine. Other previous studies identified geochemical markers (27) and microbial biomarkers
of UOG impact (28–31) on nearby areas, while others did not find significant differences
(32). The discrepancies, particularly the lack of differences found in microbial communities,
may stem from the use of low-resolution operational taxonomic units (OTUs) for 16S rRNA
gene data and a focus only on diversity metrics. Past studies have focused on microbial
community composition and functional potential. These past studies extrapolated func-
tional differences, leaving a knowledge gap in the identification of expressed genes. This
distinction is important, as shifting microbial communities can show functional redundancy
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to continue supporting important environmental functions, independent of the composi-
tional changes observed (33).

While past studies have expanded our understanding of UOG impacts on geochem-
istry and microbial community structures of streams, none of them has coupled meta-
transcriptomics with geochemical markers to understand the functional differences
related to UOG proximity. Metatranscriptomics analysis reveals the active genes and
the microbes expressing them. We sought to determine if UOG activity impacted the
microbes present and their gene expression. Functional gene information can help
expand our understanding of long-term environmental impacts of UOG extraction. We
also investigated potential differences in various geochemistry and water quality meas-
urements based on proximity to UOG activity.

Here, we hypothesized that there is a relationship between UOG activity and micro-
bial community structure and gene expression (including antimicrobial resistance
genes [ARGs] due to the stress caused by proximity to UOG practices and the chemi-
cals used in HF, such as biocides), and geochemical markers in headwater streams and
streambed sediments.

Furthermore, these high-resolution data sets can be utilized to build predictive ran-
dom forest (RF) models that infer UOG impacts, which can be applied to other UOG
locations to identify universal microbial biomarkers of UOG activity. To test these
hypotheses, we combined 16S rRNA gene profiling, metatranscriptomics, geochemis-
try, and trace element analyses to establish the impact of UOG activity in 21 sites in
northern Pennsylvania streams.

RESULTS AND DISCUSSION
Site description, geochemical properties, and ecosystem function indicators.

Samples were taken from 21 sites in northern Pennsylvania (Fig. 1) during the summer
of 2019. Of these, 9 were classified as UOG2 (no well pads with active wells present in
the watershed) and 12 were classified as UOG1 (at least one well pad with at least one
active well present in the watershed). Only active wells present in the watershed were
included in the well count number for UOG1 streams. However, Hagerman Run
Upstream was still considered UOG1 due to being downstream of a compressor station
and adjacent to a haul road used for HF activities, despite having no active wells in its
watershed, and Alex Branch Run and Little Laurel Run were classified as UOG1 princi-
pally because they both had been previously impacted by HF fluid spills (34). We uti-
lized a watershed-level approach, collecting samples upstream and downstream of
UOG activity, to determine if UOG activity impacted the ionic and trace metal markers
in a stream.

Two data sets were used for all analyses (16S sediment, 16S water, ARG sediment, gene
sediment, and metatranscriptome sediment): (i) a data set with all samples, named UOG,
which included samples from all 21 sites, and (ii) a subset, named PAIRED, which contained
data from streams where upstream and downstream sampling from UOG activity was con-
ducted to help minimize differences stemming from comparing multiple watersheds (see
Table S1 in the supplemental material). Furthermore, to test if balancing the data set
yielded better models, another data set with an equal number of UOG1 and UOG2 sam-
ples, named BALANCED, was created and used for RF models and total AMR contributors
only.

Significant differences (Wilcoxon rank sum test, P # 0.05) were identified for the mean
of each geochemistry and water quality measure within each data set based on UOG sta-
tus. Stream water temperature (UOG1 = 16.0°C; UOG2 = 13.8°C), total dissolved solids
(TDS) (UOG1 = 50.16 mg/liter, UOG2 = 26.63 mg/liter), and conductivity (UOG1 = 77.867
mS, UOG2= 43.100mS) were higher in UOG1 streams than UOG2 streams. Within the water
UOG and PAIRED data sets, a total of eight terrain and land cover variables were signifi-
cantly higher (Wilcoxon rank sum test, P # 0.05) in UOG1 samples: area (UOG1 = 37.117
m2, UOG2 = 2.552 m2, PAIRED UOG1 = 41.812 m2, PAIRED UOG2 = 1.098 m2), Water_11
(UOG1 = 0.161 m2, UOG2 = 0 m2, PAIRED UOG1 = 0.128 m2, PAIRED UOG2 = 0), Barren_31
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FIG 1 Map of all streams sampled in Pennsylvania for this study. The map shows sampling location, well pads location, cleared area,
location of compressor stations, the pipeline right-of-way, wastewater pond, and watershed boundaries.
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(UOG1 = 0.231 m2, UOG2 = 0.063 m2, PAIRED UOG1 = 0.328 m2, PAIRED UOG2 = 0),
Dev_LI_22 (UOG1 = 0.042 m2, UOG2 = 0), Grassland (UOG1 = 0.412 m2, UOG2 = 0.248 m2,
PAIRED UOG1 = 0.428 m2, PAIRED UOG2 = 0), Pasture_81 (UOG1 = 8.160 m2, UOG2 =
2.249 m2), For_Everg_ (PAIRED UOG1 = 3.655 m2, PAIRED UOG2 = 0.120 m2), and
For_Mix_43 (PAIRED UOG1 = 18.460 m2, PAIRED UOG2 = 8.487 m2). Six of these eight ter-
rain and land cover variables corresponded to the presence of materials and spaces made
by humans (see Table S2), indicating a different landscape between UOG statuses.
Significant correlations were also present among elements and ions and other metadata
based on the water UOG data set (Fig. 2).

A comparison between UOG1 and UOG2 data within the sediment UOG data set
(all reported concentrations are in milligrams per liter, except Sulfate is in mM) showed
that sulfate (UOG1 = 6.961, UOG2 = 5.063), Cl (UOG1 = 3.879, UOG2 = 1.754), Na
(UOG1 = 14.300, UOG2 = 9.838), Mg (UOG1 = 2.585, UOG2 = 1.325), Ca (UOG1 =
23.368, UOG2 = 8.452), Na determined by inductively coupled spectroscopy (Na ICP;
UOG1 = 5.560, UOG2 = 2.527), and S (UOG1 = 2.588, UOG2 = 1.874) were significantly
higher in UOG1 sediments, while Zn (UOG1 = 0.015, UOG2 = 0.432) and F (UOG1 =
0.076, UOG2 = 0.094) were higher in UOG2 sediments (Wilcoxon rank sum test,

FIG 2 Correlogram of sample metadata showing significant Spearman rank correlations. Correlations were calculated using the water UOG data set. The
square colors show whether the correlation was positive (blue) or negative (red), with darker squares indicating stronger correlations.
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P # 0.05). In the PAIRED data set, sediment samples showed that Mg (PAIRED UOG1 =
2.709, PAIRED UOG2 = 1.116), sulfate (PAIRED UOG1 = 7.051, PAIRED UOG2 = 5.667),
Ca (PAIRED UOG1 = 26.141, PAIRED UOG2 = 8.230), and Sr (PAIRED UOG1 = 0.127,
PAIRED UOG2 = 0.060) were significantly higher in UOG1 downstream sediment (see
Table S2). Additionally, the comparison between UOG1 and UOG2 in the water UOG
data set revealed that the concentrations of Ba (UOG1 = 0.061, UOG2 = 0.008),
S (UOG1 = 1.291, UOG2 = 0.810), Na ICP (UOG1 = 2.185, UOG2 = 0.465), Sr (UOG1 = 0.032,
UOG2 = 0.012), and sulfate (UOG1 = 4.530, UOG2 = 3.173) were significantly higher in
UOG1 water, with Fe (UOG1 = 0.014, UOG2 = 0.226) and Zn (UOG1 = 0, UOG2 = 0.001)
significantly higher in UOG2 water. The PAIRED stream samples showed that Sr (PAIRED
UOG1 = 0.038, PAIRED UOG2 = 0.009), K (PAIRED UOG1 = 0.762, PAIRED UOG2 = 0.282),
S (PAIRED UOG1 = 1.406, PAIRED UOG2 = 0.705), Ca ICP (PAIRED UOG1 = 9.076, PAIRED
UOG2 = 2.529), and Na ICP (PAIRED UOG1 = 2.390, PAIRED UOG2 = 0.530) were signifi-
cantly higher in UOG1 water.

Others have found that Na, Ca, Cl, Li, B, Br, Sr, and Ba are effective tracers of produced
water (35–38). Higher conductivity has also been associated with UOG activity, as shales
contain high levels of brines (4). Marcellus shale has characteristic Na-Ca-Cl brines due to
old and evaporated seawater (4). Therefore, as observed in our sediment samples, elevated
concentrations of Na-Ca-Cl in UOG1 sediment, and particularly between upstream and
downstream comparisons of the same stream (Ca ICP and Na ICP in water PAIRED samples)
are strong geochemical indicators of a significant impact from Marcellus shale extraction
activity in the area.

Our Ca, Cl, and Na measurements were similar to those reported in other studies of
the impact of UOG activity on nearby streams. Our Na ICP and Ca ICP values were simi-
lar to those from Mumford et al. (32), in which samples were also collected from head-
water streams overlying a Marcellus shale formation, with different proximities to UOG
activity (Na = 2.26 mg/liter, Ca = 8.13 mg/liter). Several (n = 9: 6 UOG1, 3 UOG2) of our
Cl values were higher than the maximum value reported by Mumford et al. of
100.09 mg/liter (32). Additionally, we found significant differences among Na ICP and
Ca ICP water measurements based on UOG status, while Mumford and colleagues did
not (32). This and other differences in geochemistry results could possibly be due to
samples being grouped simply based on the presence of UOG activity (active well
pads) upstream in our study, instead of by degree of impact, as in the Mumford et al.
study. Interestingly, the Cl values in this study were roughly comparable to those
reported in a study that collected samples downstream of a fracking fluid injection site
(Akob et al. [39]) (Cl = 218.53 mg/liter). However, the Akob et al. study reported much
higher Na and Ca values than ours (Na = 60.94 mg/liter, Ca = 31.31 mg/liter) (39), indi-
cating that these UOG1 streams were likely less impacted by UOG than the stream ana-
lyzed by Akob et al. Similarly, higher Na, Ca, and Cl values were observed in a study in
North Dakota that took multiple measurements over time in a stream following a HF
spill (Cozzarelli et al. [38]) (Na = 371 mg/liter, Ca = 115.5 mg/liter, Cl = 117.60 mg/liter).
Therefore, the elevated NA ICP and Ca ICP measurements in the UOG1 samples in our
study suggest that those streams were impacted.

Microbial and functional composition and relationship to chemical and land
use parameters. 16S rRNA gene sequencing revealed a total of 43,044 amplicon sequence
variants (ASVs), providing a higher-resolution view (compared to OTUs) of microbial diversity
in these stream ecosystems. The Faith’s phylogenetic diversity metric differed significantly
between water UOG1 and water UOG2 samples in the water UOG data set (see Table S3).
The number of unique ASVs was significantly higher (P # 0.05, Kruskal-Wallis) in UOG2

water and sediment samples in the UOG data sets and sediment PAIRED data sets com-
pared to their respective UOG1 samples in those data sets. In contrast, the active microbial
composition data showed no significant differences in observed features and Pielou’s even-
ness between UOG status in either the UOG or PAIRED data sets. Lower alpha diversity has
been previously associated with UOG activity (28, 30, 39) though not consistently, as other
studies have found no significant differences in alpha diversity (29, 31, 32).

Beta diversity analysis of the bacterial community composition revealed differential

Differentiating Stream UOG Status Microbiology Spectrum

September/October 2022 Volume 10 Issue 5 10.1128/spectrum.00770-22 6

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.00770-22


clustering of UOG1 and UOG2 sediment samples (Fig. 3A) (weighted UniFrac, permutational
analysis of variance [PERMANOVA], P # 0.05). Conversely, the clustering of water samples
based on impact status was not significant (Fig. 3B) (weighted UniFrac, PERMANOVA,
P. 0.05). Interestingly, water and sediment samples from the UOG1 spill sites (Alex Branch
Run and Little Laurel Run) formed a unique cluster away from other samples. The metatran-
scriptomics active microbial community analyses revealed significant differences between
UOG groups for both the UOG (Fig. 3C) (Bray-Curtis dissimilarity, PERMANOVA, P = 0.05) and
PAIRED upstream and downstream comparison data sets (PERMANOVA, P # 0.05), with
Alex Branch Run and Little Laurel Run samples clustering away from the other samples.
However, based on PERMANOVA, it was determined that the gene dissimilarity (Fig. 3D)
(Bray-Curtis dissimilarity, PERMANOVA, P . 0.05) and ARG-only dissimilarity (Fig. 3E) (Bray-
Curtis dissimilarity, PERMANOVA, P . 0.05) metatranscriptomics profiles were not signifi-
cantly different between UOG1 and UOG2. Beta diversity was visualized for these five data
sets using principal coordinates analysis (PCoA) plots (Fig. 3). In all data sets, geochemical,
land use, and organic acid parameters in the data sets significantly interacted with UOG sta-
tus and contributed to bacterial variation (see Table S4). 16S rRNA sediment comparisons
had the greatest number of explanatory parameters, with 19 in total, indicating that

FIG 3 Principal coordinates analyses (PCoA) with vectors, indicating significant environmental parameters and 95% confidence intervals around the
centroids, with lines connecting the centroids to their respective samples. Dark gray, UOG1 samples; light gray, UOG2 samples. Circles, UOG2 samples;
squares, UOG1 samples, with the exception of samples from the two spill sites (ABR and LLR), which are shown with diamonds. UOG data sets are
visualized in all panels. (A) Weighted Unifrac distance of total bacterial community, 16S rRNA gene-derived ASVs from streambed sediment. (B) Weighted
Unifrac distance of 16S rRNA gene-derived ASVs from stream water. (C) Bray-Curtis dissimilarity of active microbial community, metatranscriptomics of
streambed sediment. (D) Bray-Curtis dissimilarity of active genes, metatranscriptomics of streambed sediment. (E) Bray-Curtis dissimilarity of active
antimicrobial resistance genes, metatranscriptomics of streambed sediment.
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bacterial community composition was more affected by these factors than the active
(metatranscriptomics) community and expressed functional genes (Fig. 3). Br and Ba levels
significantly explained microbial community variation among the total bacterial sediment
community in conjunction with UOG impact status. These results agree with results of other
studies that found Br and Ba were present at elevated concentrations downstream of oil
and gas wastewater release (7, 36, 38). These results also showed that Br and Ba accumula-
tion in sediment can alter microbial communities, which could have an effect on ecosystem
function, such as nutrient cycling. Additionally, conductivity, TDS, temperature, dissolved
oxygen (DO), propionate, Ni, fluoride, and Zn also significantly explained variation
(PERMANOVA, P# 0.05) when coupled with UOG impact status and could potentially serve
as markers for UOG-impacted streams. Among UOG1 samples, the number of wells signifi-
cantly explained variation in the genes sediment data set, and well pads significantly
explained variation for that data set in addition to the metatranscriptome data set (see
Table S5).

While landscape had an effect on differences in microbial community function and
composition, the results presented here indicate it is not the only factor. However, a li-
mitation of the current study is the age of the land coverage database, as it was last
updated in 2011 (40), while sampling was conducted in 2019. Another limitation is that
well density alone might not fully explain the effects caused by other UOG develop-
ment parameters, such as pipeline infrastructure and spills (41).

Active community composition differs more than functional gene expression.
Both microbial composition and function differed based on UOG status; however, vari-
ation was more pronounced in active composition profiles, as seen in the PCoA plots
(Fig. 3) and the significant PERMANOVA results compared to the gene expression pro-
files. Environmental microbial communities are complex adaptive systems, and system
dynamics might allow for microbial community composition to shift while bulk func-
tional profiles stay the same due to functional redundancy, functional resilience, stabil-
ity of function, and/or resistance to disturbance (42). Thus, as microbial composition is
disturbed, different community members with versatile physiologies may adapt to per-
form functions needed for system survival (33, 42). In this system, bacterial community
composition (16S rRNA genes) can be used to determine UOG activity near streams,
supporting previous findings (28, 30, 31). In contrast, Bray-Curtis dissimilarity metrics of
both active genes and ARG data sets showed no significant (PERMANOVA, P . 0.05)
clustering between UOG statuses (see Table S3). These differences and the variable
results of others (28–32) suggest that diversity alone is not a good marker of UOG ac-
tivity and should be combined with other metrics and modeling.

Biomarkers of UOG activity. Features (microbes and genes) that differed significantly
in abundance based on UOG status, i.e., biomarkers of UOG activity, were identified using
linear discriminant analysis (LDA) of effect size (LEfSe) and ANOVA-like differential expres-
sion (ALDEx2). Multiple overlapping UOG2 biomarkers were identified in the 16S sediment
UOG (see Fig. S1A) and 16S sediment PAIRED samples (see Fig. S1B). Active sediment UOG
(see Fig. S1C) and active sediment PAIRED data sets (see Fig. S1D) shared several bio-
markers with a few exceptions. In the water data sets, 16S water UOG (see Fig. S2A) identi-
fied two overlapping UOG1 biomarkers, while 16S water PAIRED (see Fig. S2B) identified
multiple overlapping UOG2 biomarkers and only one UOG1. Taxonomic UOG status pre-
dictors from the total and active microbial sediment community indicated that while there
was some overlap, namely, Alphaproteobacteria, such as Xanthobacteraceae, Reyranellaceae,
and Rhodobiaceae being strong indicators of UOG2 (see Fig. S1A to D), different bio-
markers emerged as indicators of UOG1. Furthermore, a greater percentage of the active
microbial sediment community was identified as differential compared to the total sedi-
ment community (UOG active community, 0.272%; PAIRED active community, 0.472%;
UOG total community, 0.198%; PAIRED total community, 0.198%). However, both total and
active microbial communities could be used to identify multiple Betaproteobacteria bio-
markers of UOG1, specifically, members of Burkholderiales. The order Burkholderiales is
ubiquitous in stream ecosystems (43) and has been found in high concentrations in other
UOG1 streams in Pennsylvania (30) and in other streams impacted by anthropogenic
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activity, as Burkholderiales seem to degrade and thrive in the presence of complex organic
compounds (44, 45); this may explain why members such as Rubrivivax, Ramlibacter,
Methylbium, Pelistega, Polaromonas, and Inhella are all active biomarkers of UOG activity
(see Fig. S1C and D). The consistency of these bacterial assemblages, compounded with
their increased activity in UOG streams, suggest members of Burkholderiales could be use-
ful indicators for determining UOG impact.

Both ARG and active genes had very few UOG biomarkers identified compared to
total and active microbial community composition data sets. Active gene biomarkers
were not detected in either the UOG or PAIRED data sets based on ALDEx2. In contrast,
8 biomarkers were identified in the UOG data set (see Fig. S3) and 5 were identified in
the PAIRED data set (see Fig. S4) using LEfSe. Large subunit ribosomal proteins (L28
and L35) were identified in UOG and PAIRED data sets, indicating that protein synthesis
was highly expressed in UOG1 samples. Large subunit ribosomal proteins have a role
in peptide bond formation and have an active role in the bacterial translation stress
response to nutrient depletion, toxins, and antimicrobials (46). Bacteria in UOG waste-
water have previously shown an active stress response due to nutrient depletion, high
salt content, extreme pH, and biocide usage (47, 48). Another biomarker of UOG1 sta-
tus was the pilus assembly protein CpaE. Pili are common among bacteria, but their
expression in UOG1 is of interest, as pili are involved in adhesion, biofilm formation,
motility, DNA uptake, and pathogenicity (49). Biofilm formation is common in UOG
wastewater and is a recurrent issue that can cause fouling and equipment failure due
to microbiologically induced corrosion (50). Biofilms in UOG equipment and waste-
water have also been shown to have a higher tolerance to biocides commonly used in
UOG practices (50), and wastewater from Marcellus shale UOG activity has been shown
to carry transcripts for biofilm formation (47).

An additional enzyme, tyrosinase, an oxidoreductase related to pigmentation (51),
was also upregulated in UOG1. The increased expression of tyrosinase and large subu-
nit ribosomal protein L35 may be related to the high expression of Burkholderiales, as
their functional profile overexpressed those two enzymes. Moreover, the PAIRED data
set comparison also identified bacterioferritin, another oxidoreductase, as a biomarker
of UOG1. Bacterioferritin can sequester Fe and protect the cell from oxidative stress
(52). Iron acquisition has been previously identified as a genetic marker present in
UOG wastewater (48). The upregulation of both tyrosinase and bacterioferritin may
indicate the UOG1 cells were under more oxidative stress, which could have been
caused by increased metal concentrations. This can be corroborated by levels of metals
such as Mg, Zn, and Sr, which were detected at higher levels in UOG1 sites (P# 0.05).

Similarly, ARG biomarkers were not identified with ALDEx2; however, when we
used LEfSe, 4 ARG biomarkers were identified in the UOG data set (see Fig. S5) and 5
biomarkers were identified in the PAIRED data set (see Fig. S6). The rifampin-resistant
beta subunit of RNA polymerase was identified in both UOG and PAIRED data sets as a
biomarker of UOG1, whereas beta-lactam class B beta-lactamases were identified as
biomarkers of UOG2 in both data sets. Rifampin resistance has been found previously
in the environment, as Actinomycetes naturally produce rifampin in the environment;
thus, this resistance gene may also be carried by multidrug-resistant microbes (53). In
contrast, macrolide-resistant 23S rRNA mutation and aminoglycoside-resistant 16S
were biomarkers of both UOG1 and UOG2, indicating that those genes are ubiquitous
in the environment or are contributed by a common anthropogenic source.

Identification of microbial contributors to the ARG profile of streams. Differential
genes, taxa, and stream characteristics were also identified by examining feature importance
from the RF models. The most predictive ARG types were macrolide-resistant 23S rRNA
mutation, aminoglycoside-resistant 16S ribosomal subunit protein, rifampin-resistant beta
subunit RNA polymerase, tetracycline-resistant 16S ribosomal subunit protein, multidrug-
resistant 23S rRNA mutation, phenicol-resistant 23S mutation (MEG5781), and pactamycin-
resistant 16S ribosomal subunit protein. The top contributors vary by ARG, but the core
contributors of ARG were the same in both UOG statuses; these included Acidobacteria,
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Actinobacteria, Alphaproteobacteria, Burkholderiales, Firmicutes, and Gammaproteobacteria,
among others (see Table S6).

Analysis of the number of taxa expressing ARGs in the BALANCED data set revealed
that 6,431 different microbes had at least one ARG in UOG1, while 6,317 had at least
one in UOG2. In contrast, 4,726 taxa expressed ARGs in at least 70% of the UOG1 sam-
ples, while 4,641 taxa contributed to ARG expression in 70% of the UOG2 samples.
However, the difference in the number of taxa expressing ARGs was not significant
(Wilcoxon rank sum test, P. 0.05).

Functional profile of Burkholderiales, a group identified as UOG biomarkers
and carrier of ARGs.Members of the family Burkholderiales were identified as biomarkers
for UOG1 activity based on ALDEx2 and LEfSe results. A functional profile of its members
was built to identify expressed genes and determine if expression differed based on UOG
status. The top 20 most highly expressed genes in Burkholderiales UOG2 and UOG1 are
shown in Fig. 4. Thirteen of the top 20 active genes overlapped in both UOG statuses.
Multiple large subunit ribosomal proteins were identified among the most expressed in
UOG1 Burkholderiales. Specifically, L35 (K02916), L28 (K02902), L27 (K02899), L20 (K02887),
and L13 (K02871) coding sequences were among the most expressed in UOG1 but not
UOG2. Among the 20 most active genes in both statuses, large subunit ribosomal protein
L35 (K02916), iron-sulfur cluster assembly protein (K13628), large subunit ribosomal protein
L20 (K02887), large subunit ribosomal protein L13 (K02871), and small subunit ribosomal
protein S12 (K02950) were significantly more highly expressed in UOG1 (see Table S7).

FIG 4 Burkholderiales top 20 most expressed genes in UOG1 (left) and UOG2 (right), with genes highly expressed in both shown in the middle. The
difference between each gene’s average normalized (based on counts per minute) expression in UOG2 from its average in UOG1 is shown on the x axis.
Therefore, negative values indicate higher expression in UOG1, while positive values indicate higher expression in UOG2. Axes are not consistent across
panels. Several of the differences in expression were significant (see Table S7 in the supplemental material).
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The UOG1 Burkholderiales ARG profile included 51 different ARGs, and the UOG2

Burkholderiales ARG profile had 41 different ARGs. The difference between the number of
Burkholderiales expressed ARGs in UOG1 and UOG2 samples was not significant (Wilcoxon
rank sum test, P . 0.05). Additionally, the overall UOG2 Burkholderiales top ARG profile
was very similar to the UOG1 ARG profile, with the same 10 ARGs being the most highly
expressed. Still, we identified more ARGs in the UOG1 Burkholderiales functional profile
than in the UOG2 profile, indicating that environmental and/or anthropogenic stressors
may contribute to the ARG profile of Burkholderiales. While Burkholderialesmembers harbor
intrinsic ARGs, Burkholderiales was of particular interest as it contains many common soil
bacteria and many opportunistic human pathogens, making the detected levels of ARGs a
concern (54). Higher trace metal concentrations have been associated with higher ARG
expression in the environment, and in these streams Mg and Sr were detected at higher
levels in UOG1 streams.

Random forest models can successfully identify UOG-impacted samples. Thirty
RF models were constructed, in which features (ASVs, active species, expressed genes, or
expressed ARGs, depending on the data set) were used as separate variables to try to cor-
rectly classify samples’ UOG statuses. Models were evaluated using accuracy, i.e., how
many times they correctly classified samples. They were also evaluated using area under
the curve (AUC) values for precision-recall (PR) and receiver operating characteristic (ROC)
curves to directly take into account misclassifications. An AUC value of at least 0.70 for ROC
curves is generally considered indicative of a good model (55). We also used 0.70 as a cut-
off for relevant PR curve values. Models were constructed with geochemistry and land cov-
erage data alone, total bacterial community, active microbial community, functional genes
expression profile, and ARGs (see Table S8). Overall accuracy was expected to be around
70% or better based on RF modeling done in a previous study (30), and most models did
yield .70% overall accuracy. However, only 17 of the models had accuracy higher than
expected by chance for both classes, and of those, 15 had AUC values above 0.70 for both
curves. The failure of many models was likely due to imbalanced sample sizes, i.e., having
more UOG1 then UOG2 samples in most data sets. This was supported by the overall
improved performance of the water UOG model after samples from another study (56)
were added to increase the number of UOG2 samples, with accuracy for the worse-
performing class increased from 11.7% to 34.3% (see Table S8). Additionally, models made
with microbial composition data derived from metatranscriptomics data performed better
than those made with active genes (see Table S8). Still, models made with expressed ARGs
and metadata performed very well too, having accuracies and AUC values all above 0.90
(see Table S8). Furthermore, to test if balancing the data set yielded better models, the
BALANCED data set, with an equal number of UOG1 and UOG2 samples, was also used to
create RF models. Considering accuracy alone, the four best models were the BALANCED
land coverage and geochemistry, PAIRED ARGs sediment with metadata, BALANCED active
microbial composition, and UOG 16S rRNA gene sediment models, with BALANCED mod-
els only including upstream (UOG2) and their matched downstream samples. The best pre-
dictors for the models are shown in Fig. 5, and all predictors for all models are shown in
Table S9.

Microbial composition RF models are very versatile and have been used in the past to
predict 26 geochemistry parameters, like uranium in groundwater (57), and in up to 20 dis-
tinct geographical locations across the ocean (58). RF models have also been able to predict
past contamination (e.g., an oil spill) even though geochemical signatures have returned to
baseline measurements, indicating a lasting effect in microbial communities (57). In this
study, ARG, land cover and geochemistry data, active microbial composition, and bacterial
community composition were the best inputs to create predictive RF models for UOG activ-
ity. RF models have been used previously to predict UOG statuses of sediment samples in a
longitudinal 5-year study (30), and those samples were used to create the RF model yielding
a 68.6% overall accuracy (30). Conversely, another study that only used sediment data had a
higher performance, 82.03% (31), but in that instance the model was constructed using only
taxa identified by LEfSe as differentially abundant. This indicated the accuracies of our
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sediment models, using either land coverage and geochemistry alone (UOG 82.92%, PAIRED
86.33%, BALANCED 100%), ASVs alone, (89.87% overall accuracy), a combination of land
coverage, geochemistry, and ASVs (UOG 89.34%, PAIRED 89.26%, BALANCED 82.53% accu-
racy), active microbial composition (PAIRED 91.07% and BALANCED 93.45%) or with land
coverage and geochemistry (UOG 92.16% and PAIRED 89.23%), and ARGs and land cover-
age and geochemistry (UOG 95.91%, PAIRED 96.27%, BALANCED 96.13% accuracy) had the
highest performance in UOG activity prediction (see Table S8). Surprisingly, genes detected
through metatranscriptomics were not effective inputs for the model. This could have been
caused by an overwhelming prevalence of housekeeping genes, or genes needed for sys-
tem function, independent of the environmental pressures. Overall, this study showed that
RF can harness differences in environments to predict UOG status at a finer scale than stand-
ard diversity metrics.

This study showed that UOG activity has an impact on land coverage, geochemistry,
total and active microbial community, and ARGs that together can be used to predict
UOG status of streambed sediment. These models can be used as a monitoring tool to
assess UOG activity impacts even when geochemical signatures have not drastically
changed. In addition, biomarker taxa and expressed genes identified in this study
could help facilitate the future development of quantitative PCR or chromatin immu-
noprecipitation-based assays for the rapid detection and prioritization of watersheds
impacted by UOG activity.

MATERIALS ANDMETHODS
Details of our methods pertaining to sampling design, site selection, and land cover are provided in

Text S1 in the supplemental material.
Water chemistry. Water quality (TDS, DO, conductivity, pH, and temperature) was also measured at

each site using a YSI Pro Plus probe. Anions, cations, and organic acids in water and sediment pore water
were measured using a Dionex ICS 50001 instrument (Thermo Fisher Scientific, Waltham, MA, USA) as
described in the supplemental material. A list of all ions can be found in Table S10. Dissolved trace ele-
ments were measured at the University of Tennessee Water Chemistry Core Facility using an inductively
coupled plasma optical emission spectrometer (ICP-OES) iCAP 7400 system (Thermo Fisher Scientific)

FIG 5 The four random forest models with the highest overall predictive accuracy for their input data. The top predictors of unconventional oil and gas
status for each model are listed; the x axis represents the mean decrease in Gini index for each predictor, and the y axis lists the top 10 predictors for each
model. (A) The BALANCED land cover and geochemistry model with metadata, overall accuracy 100%. (B) The PAIRED active antimicrobial resistance genes
and metadata model, overall accuracy of 96.27%. (C) The BALANCED active microbial composition model, overall accuracy 93.45%. (D) The 16S rRNA gene
amplicon ASVs UOG sediment model, overall accuracy 89.87%. These four models had AUC values .0.89.
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following EPA method 200.7 rev 4.4 (59). As an internal check, Ca, K, and Na were measured using both
IC and ICPOES; samples measured with ICP are labeled X_ICP. The Wilcoxon rank sum test was used to
determine statistical significance (a = 0.05) based on UOG status.

Nucleic acid extraction, 16S rRNA gene amplification, and sequencing. DNA was extracted using
a ZymoBiomics DNA Micro Prep kit, and RNA was extracted using a ZymoBiomics RNA Mini Prep kit
according to the manufacturer’s specifications (Zymo Research, Irvine, CA, USA). At each site, tripli-
cate sediment samples were collected for a total of 63 samples. All three samples from each site
were used for 16S analysis, while only two were used for metatranscriptomics. For sediment sam-
ples, 0.25 g of sediment was used as input. A single water sample was collected from each site by
pushing 200 to 600 mL of water through a 0.2-mm membrane filter (Millipore Sigma, Burlington,
MA, USA). The entire membrane was then used as input for extraction. The V4 region of the 16S
rRNA gene was amplified using primers and conditions previously described (60), and the libraries
were prepared as previously described (23). See Text S1 for primers, thermocycler conditions, library
preparation, and sequencing conditions. Data generated from sequencing were downloaded and
imported into QIIME2-2019.7 (61) for preprocessing, diversity, and biomarker analysis (see Text S1).

Metatranscriptomics library preparation, sequencing, and data processing. Metatranscriptomic
libraries were prepared with extracted RNA using the NEBNext Ultra II RNA library kit for Illumina (New
England Biolabs, Ipswich, MA, USA). See Text S1 for additional details on library preparation, purification,
quality checking, and sequencing. Raw data were processed and then annotated for community compo-
sition with Kraken2 (62) and for community function with Emapper (63). Diversity and biomarker analy-
ses are detailed in Text S1.

Random forest analysis. RF analysis was performed using R with a normalized feature table,
along with water quality and geochemistry for each data set. The R package caret (64) was used to
partition 66% of the data for training the RF model and the remainder for testing. The random forest
package (65) was then used with the training data to create a model to predict sample impact status
and calculate the predictive importance of each feature, as measured by Gini decrease. The model’s
effectiveness was evaluated with the test data. Overall accuracy as well as Gini decreases were
recorded. AUC values were calculated for both precision-recall (PR) and receiving operating charac-
teristic (ROC) curves with the PRROC package (66). This process was repeated 1,000 times to obtain
average accuracy and average Gini decreases and AUC values for each of the data sets, both with
and without metadata (16S sediment UOG, 16S sediment PAIRED 16S water UOG, 16S water PAIRED,
ARG sediment UOG, ARG sediment PAIRED, genes sediment UOG, genes sediment UOG, microbial
composition sediment UOG, and microbial composition sediment PAIRED). Notably, two upstream
sites (Hagerman’s Run and Lower Gray’s Run) were classified as UOG1. Therefore, for each of the
sediment data sets, the BALANCED data sets consisted of only samples that had matched UOG2

upstream and UOG1 downstream were also used for random forest modeling, i.e., samples from
Hagerman’s Run and Lower Gray’s Run were excluded from the BALANCED data sets due to those
streams’ upstream sites being classified as UOG1.

Data availability. 16S rRNA gene and metatranscriptomics sequence data are available from the
NCBI Short Read Archive database under BioProject PRJNA664393. Random forest code is available at
https://github.com/jcbioinformatics/MultiomicsFrackingSupplemental/tree/main/RandomForestCode, and
the random forest input files are available from the authors upon request.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 1.1 MB.
SUPPLEMENTAL FILE 2, XLSX file, 4.3 MB.
SUPPLEMENTAL FILE 3, XLSX file, 4.8 MB.
SUPPLEMENTAL FILE 4, XLSX file, 4.2 MB.
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