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Abstract

Generalized regression neural networks (GRNN) may act as crowdsourcing

cognitive agents to screen small, dense and complex datasets. The concurrent

screening and optimization of several complex physical and sensory traits of

bread is developed using a structured Taguchi-type micro-mining technique. A

novel product outlook is offered to industrial operations to cover separate aspects

of smart product design, engineering and marketing. Four controlling factors

were selected to be modulated directly on a modern production line: 1) the

dough weight, 2) the proofing time, 3) the baking time, and 4) the oven zone

temperatures. Concentrated experimental recipes were programmed using the

Taguchi-type L9(3
4) OA-sampler to detect potentially non-linear multi-response

tendencies. The fused behavior of the master-ranked bread characteristics

behavior was smart sampled with GRNN-crowdsourcing and robust analysis. It

was found that the combination of the oven zone temperatures to play a highly

influential role in all investigated scenarios. Moreover, the oven zone

temperatures and the dough weight appeared to be instrumental when attempting
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to synchronously adjusting all four physical characteristics. The optimal oven-zone

temperature setting for concurrent screening-and-optimization was found to be

270e240 �C. The optimized (median) responses for loaf weight, moisture,

height, width, color, flavor, crumb structure, softness, and elasticity are: 782 g,

34.8 %, 9.36 cm, 10.41 cm, 6.6, 7.2, 7.6, 7.3, and 7.0, respectively.

Keywords: Industrial engineering, Food science

1. Introduction

1.1. The need of neural networks in small scale experimentation

Probabilistic Neural Networks (NN) have provided a useful solver platform for a

wide range of applications in data mining and knowledge discovery (Murphy,

2012). Still, there are crucial fields where NNs’ capabilities have not been explored

in as much depth yet. One such field deals with deciphering structured experimen-

tation outcomes (Skrjanc, 2015; Tortum et al., 2007). It is of high demand in indus-

trial product development and process improvement as well as in discovery projects.

Practicality, timeliness, programmability and economics are the primary drivers that

call for structured trial recipes. A great proponent of quick-and-easy “micro-mining”

in production operations has been the internationally-known quality-guru Dr Geni-

chi Taguchi (Taguchi et al., 2000, 2004). The great payback for engaging optimally

organized trials in Japanese manufacturing has been well acknowledged. Taguchi

methods promote rapid combinatorics plans deployed through Design of Experi-

ments (DOE) aiming at shortening the knowledge discovery cycle under real work-

ing conditions and tight economic constraints. Taguchi proposed a series of

compact-structure data-arrangements to accelerate the capturing of complex input-

output relationships. Those predefined trial plans, known as orthogonal arrays

(OAs), were to dramatically reduce the cost and time to collect meaningful data

while offering a well-balanced view of the investigated physical phenomena. Search-

ing the Scopus database, one will come across several thousand articles and reviews

that refer to tools and techniques adopting Taguchi methods. However, reaching to

solid judgements from analyzing standardized (OA-programmed) datasets has been

an on-going topic for several decades. Remarkably, more than a hundred statistical

methods have been published with the ultimate objective to robustify OA-solver pre-

dictability. Substantial hassle has been geared toward interpreting saturated Taguchi

OA-datasets since OAs maximize the potential usability of the information content

for the given data collection effort. It is pragmatic needs in operations that boost de-

mand for screening non-linear, multi-parameter, multi-response, multi-data-type,

saturated Taguchi-type OA-datasets. Surprisingly, there is a paradox with respect

to the compatibility of Taguchi methods with NN-based solvers. Although Taguchi

methods have been profitably used in the past to optimize neural network
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performance, the reverse has not been proven to be true. Indeed, neural networks

have not found a niche yet in screening complex Taguchi-type datasets (Cohn,

1996; Hering and Simandl, 2010; Issanchou, and Gauchi, 2008).
1.2. Collective intelligence and neural networks in small data

In this work, we introduce the idea of collective intelligence to be gathered from a

crowd which is formed by participants that are machine learning entities

(Abrahamson et al., 2013; Howe, 2009; Surowiecki, 2005). Each of the crowd’s

NN-members is capable of delivering a “private” decision in screening Taguchi-

type input-output relationships.We show how the aggregated “learning from a crowd”

may be mapped to reliable conjoint (pooled) judgments from a horde of “RankBots”.

As a “RankBot”, we define a machine-learning solution, which is extracted from

manipulating Taguchi-type OA-input/output datasets. At the core of the “supervised

learning” of the RankBots rests a conventional NN-solver strategically selected to

convert “small data”. Consequently, the generalized regression neural networks

(GRNN) are plausibly picked to be the standardNN-engine to represent the converting

capacity for each of the individual members in the “RankBot community”. The end

deliverable of a RankBot is the strength of the hierarchy results of the screened effects

as they are gleaned from the GRNN-solver sensitivity-analysis report.

Full-array DOE screening requires a fuzzy solver with high aptitude in the ability to

handle: 1) “scarce data” and 2) “uncertain uncertainty”. The inherent data scarcity

which is unavoidably encountered in Taguchi-type OA datasets is a restricting con-

dition that opposes the potential usefulness behind the adoption of the typical machine

learning philosophy. However, it might be reasonably remedied by employing

GRNNs. The GRNNs are propped up for stringent function approximation and clas-

sification problems. Additionally, GRNNs manage to sustain network performance

when there is a demand for exclusively handling of small datasets (Specht, 1995).

GRNNs have demonstrated a great efficiency in translating mini-datasets, sometimes

200,000 faster than backpropagating NNs while tolerating erroneous samples

(Specht, 1995). The ultra-high speed of training is related to the special built-in

feature that permits the parallel GRNN-processing of the sparse dataset. GRNN-

generated decision surfaces approach the Bayesian optimal, a feature pivotal for

robust decision making. The GRNN is an one-pass learning algorithm that is well-

tested and known to be suitable for implementation when the sparse dataset is not

anticipated to follow linearity, hence making it perfectly ideal to fit non-linear Tagu-

chi-type OA datasets (Ozyildirim and Avci, 2013, 2016). Optimal utilization of non-

linear OAs is achieved when a selected OA plan is loaded up with the maximum num-

ber of examined effects that it is designed to carry, i.e. it becomes saturated (Atkinson

et al., 2007). Saturated OA-datasets are simple input-output relationships where no

degrees of freedom can be spared for estimating an experimental uncertainty. This
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is because all degrees of freedom are absorbed by the investigated parameter settings.

This becomes a major source for spawning “uncertain uncertainty”. In practice, the

condition of “uncertain uncertainty” short-circuits all mainstream pure statistical

data treatments, like ANOVA/MANOVA etc. Consequently, it strips off the inferen-

tial character of the outcomes of ordinary multivariate techniques downgrading them

to mere (subjective) descriptive statistics. Still, a single supervised GRNN run is not

expected to furnish a single terminal solution. This is not possible for two reasons: 1)

“uncertain uncertainty” remains unresolved from a single GRNN-based solution and

2) the GRNN piles up additional uncertainty on the prediction since subsetting re-

serves part of the OA-dataset for testing/verification. Because of the latter complica-

tion, the compactness of an OA-dataset is bound to be destroyed as the unique trial

recipes need to be redistributed in two more phases of NN-processing following

the initial NN-training phase. The destruction of the orthogonality of the OA planner

magnifies the mysterious influence of “uncertain uncertainty” in the GRNN data

modelling process. Training in a single GRNN run has to proceed while shedding

an unknown amount of information which was gained from the strict regimented

OA trials and was intended for model fitting. We note that when we refer to “training

in a single GRNN run” it is meant equivalently to “training a single RankBot”.

For a crowd to be wise, it needs to conform to four fundamental criteria. The four

perfect conditions are: 1) diversity of opinion, 2) independence, 3) decentralization,

and 4) aggregation. All four elements are met here in our approach. Diversity of

opinion is automatically enforced in the Rankbot crowd because the trial (input/

output) data that GRNN is fed with for training are only a subset of the uniquely

executed OA-trial recipes. The training dataset for each individual RankBot is

randomly determined and hence the maximum of diversity of opinion is attained.

The second condition e independence e also automatically holds since each Rank-

Bot is by design an independent solution with no ties or interactions to be allowed to

influence or to be influenced by the results of other RankBots. Since each trial recipe

offers only a unique piece of information, the combination of recipes that eventually

comprise the training data subset for each individual RankBot “specializes on the

local knowledge” of those particular RankBots involved. Therefore, the condition

of decentralization is also present. Finally, we present the collective decision of

the RankBot crowd using simple robust depictions of box-plotted results which is

a preferred mechanism to ciphering “private” RankBot judgements. Thus, the con-

dition of the fourth element e aggregation of RankBot opinions e is met.

It may be construed as an inherent impediment in our approach the fact that there is

actually no formal mechanism that generates a (prescribed) crowd in order to extract

wisdom from. However, a virtual crowd is assembled “on the way” as groups of

RankBots complete a series of individual astute data screenings. The convenient

way to accomplish this is to start analyzing a prudent pilot sample and based on

that sample then to predict a wise (terminal) crowd. Collecting sufficient individual
on.2018.e00551
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RankBot opinions should drive to the converging of their aggregated outcomes. The

practicality to reach to intelligent decisions by actually approximating a crowd, i.e.

surveying only an adequate subset of the crowd (a subcrowd), is a subject that has

been previously addressed (Ertekin et al., 2014). Contrary to the traditional notion

that it is imperative that a crowd must exist before subsetting it, our approach re-

verses this idea by resorting to the novel, yet distinct, feature of “building a crowd

through”. In a nutshell, the availability of a presumptive crowd base is not required

beforehand and the final sample base is tailored to the requisites of the specific prob-

lem. Our crowdsourcing plan permits a simple collective assessment and prediction

which does not impose any comparison against a “golden standard” (Malone and

Bernstein, 2015). A key advantage is that it expects uniform attentiveness across

the members of the “RankBot subcrowd”. Consequently, latency across its members

is also uniform and its minimization is sustained through the particular selection of

the fast GRNN solver. Moreover, the overall methodology receives a boost in overall

execution because the RankBots do not have to undergo assessment on “gold-stan-

dard” datasets. No RankBot judgements will have to be dismissed because they

failed to meet a minimum “gold-standard” specified performance. Such negation

would either demand opinion replacement by soliciting extra RankBot judgements

or, in a forgiving scenario, opting to have sub-par RankBot opinion weighted and

downplayed. Consequently, either scenario would lead in delayed or compromised

decision-making. Our method exploits the redundancy of RankBot judgments which

materializes in a majority voting where there are several nominations. The data

generated from RankBot annotations are democratic in nature and hence amenable

to translation by ordinary robust statistical inference methods.

In our methodology, we claim no intent to ameliorate the prediction accuracy of the

GRNN model by directly tweaking in some manner its inner workings. Instead, our

strategy is to ensnare and quantify all unknown and unknowable uncertainty that is

generated from the unique partnering of the collected OA-planned trials as surfaced

after a barrage of GRNN model-fitting attempts. Practically, this is achieved by

permitting an army of RankBots to perturb the OA dataset structure from a number

of angles that are deemed sufficient only after the terminal RankBot subcrowd has

been statistically determined. It should be highlighted the fact that our approach rec-

onciles the two cultures of statistical modeling (Breiman, 2001). This is because col-

lective intelligence is needed to be gathered from small, dense and complex data

using the primitive machine learning capabilities of a GRNN application. This is

true because we are constrained to convert information well outside the realms of

large-data theory, where one would expect undeniably most machine learning algo-

rithms are bound to thrive. Nevertheless, the machine learning culture is present in

our approach. However, blurred information prevails, since there is no much data to

sift through. Thus, machine learning is compelled to appear to act dumb. Henceforth,

the stochastic precision from the aggregation of the RankBot judgements is the only
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compass that the RankBot views significantly converge. To stamp significance on

the effect hierarchy status, we rely on simple robust (boxplot) theory and thus the

second culture has been honored too.
1.3. The bread as a popular highly-complex product

Bread has been among the most prevalent food preparations in the world since an-

tiquity (Mondal and Datta, 2008). The bread-making procedure has evolved over the

centuries from crafting loaves in home-made and artisan wood-fired ovens to mass

producing on large automated systems (Cauvain and Young, 2006; Singh and

Heldman, 2013). This progress has necessitated standardization of the bread-

making processes while in the meantime homogenizing terminal bread characteris-

tics that suit sensory expectations for a broad consumer base (Decock and Cappelle,

2005; Heenan et al., 2009; Therdthai and Zhou, 2003). Published work that epito-

mizes techniques for improving bread quality from organized e physical and sen-

sory e trial data is rather rare. Reaching meaningful conclusions for engineered

bread formulations ordinarily demand a substantial volume of trials on large-scale

operations as well as expert evaluation on sensory trait preferences (Gao et al.,

2015). Such realizations may only be consummated through elaborate experiments

on industrial facilities. Nevertheless, producers are usually wary about surrendering

precious machinery availability for conducting intricate experiments. Perhaps, the

notion of disturbing a busy production line may be considered a ‘risky’ venture after

all. To remedy this dilemma, current literature on bread-baking processes attempts to

explore difficult bread-making phenomena through simulations (Chhanwal et al.,

2012; Feyissa et al., 2012; Purlis, 2011). Particularly scarce to retrieve is industrial

bread-processing research that accomplishes synchronous harmonization of physical

and sensory traits. The need for specialized knowledge and data-driven mining tech-

niques to describe bread quality has been well exposed both in theory and practice

(Della Valle et al., 2014; Hadiyanto et al., 2008; Liu and Scanlon, 2003; Parimala

and Sudha, 2015; Zanoni et al., 1993, 1994; Zhang and Datta, 2006). Data-driven

product development e supported by modern data-mining and knowledge discovery

tools e is well within the broader future scope of food engineering in general as this

field is called upon to make the most of the innovative information technology

(Hubert et al., 2016; Saguy et al., 2013; Thakur et al., 2010).

Developing bread products implicates highly complex activities. Dough materials

undergo vast physical and biological transformations (Rask, 1989; Scanlon and

Zghal, 2001). After the mixture formulation has been determined, a barrage of con-

voluted processes are executed that involve: mixing, kneading, portioning, rounding,

pre-molding, pre-proofing, molding, proofing, baking, cooling, slicing and pack-

aging. The continuous interplay of bio-rheological and chemo-physical morphing

immensely sensitizes a loaf of bread permitting any opportunity for a process
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inefficiency to be imprinted on the final product characteristics (Autio et al., 2001;

Dobraszczyk and Morgenstern, 2003; Dobraszczyk, 2004; Jefferson et al., 2006;

Martinez and Gomez, 2017; Purlis and Salvadori, 2007; Sliwinski et al., 2004;

Stojceska and Butler, 2012; Vanin et al., 2009). The design of bread products

may perhaps be oblivious to complicating phenomena such as the bread collapse

which often requires more sophisticated treatment (Rzigue et al., 2016). It may be

contemplated that the propensities of a poly-mechanized modern bread product

might be propitiously screened and analyzed by making effective use of flexible

and robust techniques. Unknown and unknowable intrusions may interfere with

bread-baking, hence rendering imperative the utilization of a rigorous profiler to

carry out the task of the data analysis. To confidently interpret bread features, the

selected statistical profiler should be capable to intelligently outmaneuver any

sampled data oddities. It is a particularly welcomed attribute for an agile data-

driven screening method to ensure guarding against opportunities of compromised

integrity in the collected dataset.

To gather exploitable industrial data, it is vital that the selected trial programming to

be cogent by adhering to a short, structured and balanced schedule. Taguchi-type

orthogonal arrays (OAs) provide the sampling medium to economically organize

the trial recipes such that to accelerate the overall experimental effort (Taguchi

et al., 2000, 2004). OAs are also flexible by facilitating the simultaneous testing

of numerical and categorical inputs. In general, Taguchi-type OA samplers have

been well accepted in food engineering applications (Besseris, 2015; Das

Mohapatra et al., 2009; Oztop et al., 2007; Pouliou and Besseris, 2013; Sharif

et al., 2014; Tasirin et al., 2007). However, the subsequent task of data conversion

requires intensive and careful manipulation when addressing to complex materials

like breads. This is because the advantageous assumptions of data normality and

linearity may not be suitable for probing phenomena which are associated with

bread-making. The multi-phase processing of doughs elevates the chances that un-

known and unknowable intrusions may fortuitously dart in at any moment during

data collection and blur the trial observations. Modern fuzzy-based techniques

appear to be more resilient in dealing with multifaceted uncertainty because they

are more tolerant to the lack of exactness when defining a screening problem

(Besseris, 2014a; Lamrini et al., 2012; Ndiaye et al., 2009; Rousu et al., 2003).

Reasonably then, we are motivated to introduce intelligent sampling in our develop-

ment as a preferred option to homogenize the various sources of uncertainty.
1.4. The purpose of this study

The purpose of this study is to synthesize an intelligent instrument to aid the ‘smart-

and-robust’ data analysis of complex processes. Small data is at the crux of the study

as a strategy for figuring out rapidly the strength of screened effects. The concepts of
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GRNN and Wisdom of Crowds complement each other in an attempt to wrap-up

strong influences from structured DOE mini-data. The Wisdom of Crowds may be

actually represented by a subcrowd that carries the satisfactory information content.

Technically, a subcrowd is and may be also referred equivalently to as smart sample.

We are motivated to showcase a complex and yet a much familiar case which is

drawn from the breadmaking process since bread is an every-day consumed product

to billions of people around the globe. The stochastic interpretation is based on ter-

minal bread properties. Relying on systematically collected observations, all trials

are executed on massive operations. The data reduction process involves a strategy

to concurrently decipher in an ‘intelligently robust’ fashion the multi-response multi-

factorial outcomes of non-linear product/process screening. The suggested approach

is agile since it is apt to accommodating a wide spectrum of complex characteristics

that may be expressed in numerical and categorical forms. In this work, we diversify

bread-baking screening in three distinct scenarios by reflecting upon the product

from three crucial stand points: 1) product engineering, 2) product marketing and

3) product design. Regardless the scope of the screening, we propose a fast multi-

response multi-factorial profiler which is equipped to resolve potential non-

linearity in the examined effects while maintaining a distribution-free probabilistic

framework. Non-linear Taguchi-type OA-samplers swiftly program and adeptly

compile the compact dataset that includes multiple physical bread properties along

with a comprehensive sensory performance. The investigated white pan bread

data that will be illustrated in the case study have been exclusively accumulated

from line operations in a large baked-goods enterprise. The master-ranking transfor-

mation concept is demonstrated to provide the homogenization medium to simulta-

neously treat a score of responses from various origins. Moreover, the master-

ranking tactic consolidates the differentiated groups of weighted physical and sen-

sory responses in order to simplify the concurrent smart-and-robust profiling effort

(Besseris, 2012, 2013a).
2. Materials and methods

2.1. White pan bread materials

The investigated product is a white pan-bread brand. All experiments were conducted

on production-line machinery and equipment in the premises of a world-class enter-

prise specializing in bakery goods. Dough formulation ingredients were not allowed

to be altered as they constituted proprietary information. The collected dataset was

to assist management in gleaning information from three distinct viewpoints. The first

aspect regards terminal product profiling to be solely based on product engineering

concerns. Therefore, the four physical responses of immediate impact that were

conferred upon for researching were: 1) the bread weight (BW), 2) the bread moisture

(M), 3) the bread height (H) and 4) the bread width (W). BW andM are characteristics
on.2018.e00551
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that are routinely monitored in conjunction to federal regulations. The four physical

characteristics belong in the ‘nominal-the-best’ category (Taguchi et al., 2000). Prod-

uct specification limits were designated as follows: 1) BW: 765� 20 g, 2) M: 34.5�
1.5%, 3) H: 9.70 � 0.30 cm, and 4) W: 10.5 � 0.5 cm. Furthermore, priority (impor-

tance) weight contribution for each characteristic was assigned based on the kaizen

team deliberations: 1) BW: 40%, 2) M: 30%. 3) H: 20%, and 4) W: 10%.

The marketing performance of the white pan bread product relies heavily on its sen-

sory characteristics. To cover separately this aspect, the five tracked components

were: 1) color (CL), 2) flavor (FL), 3) crumb structure (CR), 4) softness (SF), and

5) elasticity (EL). A ten-grade Likert scale was used to score the performance for

each trait (minimum rating ¼ 1 to maximum rating ¼ 10). All five sensory traits

identify to the ‘larger-is-better’ category (Taguchi et al., 2000). A five-member

expert panel representing the aforementioned departments was surveyed on sampled

bread loaves. Each member recorded their marks for each conducted trial run, sepa-

rately. The scores were accumulated to a total rating for each individual repetition/

replicate run. The corresponding priority weights for the sensory traits were allo-

cated as follows based on past experience: 1) CL: 25%, 2) FL: 20%, 3) CR: 10%,

4) SF: 20%, and EL: 25%.

The third aspect relates to the overall product design. It incorporates information by

joining physical and sensory product performances from the preceding two sce-

narios. The priority weights have been allotted in this case such that the physical

to sensory ratio to be 30/70.

The kaizen improvement team reasoned that the less explored e and hence less un-

derstoode controlling (process) factors should be investigated. The final list was: 1)

the dough weight (DW) in g, 2) the proofing time (PT) in min, 3) the baking time

(BT) in min, and 4) the oven zone temperatures (BTP) in �C. This decision was

reached after realizing the lack of any previous integrated research in trade and sci-

entific literature that might involve the examination of those four controlling factors.

The restriction to proceed with testing merely four factors was balanced by the

amount of experimentation which was permitted to replace operational availability.

It should also be noted that while the first three controlling factors are continuous

numerical variables, BTP will be treated as a categorical variable because it ex-

presses empirically the selected oven temperature settings in pairs for both upper

and lower zones. The collected dataset which is segregated in terms of physical char-

acteristics (Table 1) and sensory traits (Table 2) may be accessed in Athanasiadou

(2010). The same source details the scoring which is awarded by each expert panel

member for each executed repetition/replicate trial run.

Because of the limited access to materials and machinery time, the study has been

constrained to a minimal sampling effort in order to survey repeatability and repro-

ducibility. Thus, repeats and replicates were only duplicated.
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Table 1. Original white pan bread data for the four physical characteristics (Athanasiadou, 2010).

Run # BW
1A

BW
1B

BW
2A

BW
2B

M
1A

M
1B

M
2A

M
2B

H
1A

H
1B

H
2A

H
2B

W
1A

W
1B

W
2A

W
2B

1 755 759 757 763 34.8 34.7 34.6 34.9 9.65 9.13 9.3 9.53 10.19 10.33 10.37 10.58

2 759 755 752 754 35 34.2 34.4 34.8 9.32 9.35 9.49 9.26 10.73 10.68 10.67 10.66

3 751 753 749 753 35 33.9 33.9 34.4 9.62 9.28 9.42 9.08 10.05 10.24 10.41 10.47

4 784 780 781 789 35.4 35.2 35 34.9 9.54 9.49 9.52 9.45 10.11 10.21 10.2 10.26

5 760 762 754 761 33.6 33.9 33.3 34.7 9.5 9.53 9.37 9.59 10.31 10.54 10.45 10.35

6 783 782 777 785 35.7 35.4 34.3 34.9 9.44 9.44 9.39 9.36 10.33 10.41 10.41 10.53

7 791 794 790 782 35.1 34.8 34.3 34.7 9.28 9.49 9.35 9.34 10.26 10.29 10.34 10.26

8 807 804 799 801 36 35 34.8 35.6 9.59 9.4 9.49 9.51 10.05 10.2 10.17 10.27

9 783 786 783 787 33.3 33.9 34.4 34.7 9.5 9.51 9.49 9.49 10.25 10.47 10.57 10.51
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Table 2. Original white pan bread data for the five sensory traits (Athanasiadou, 2010).

Run # CL
1A

CL
1B

CL
2A

CL
2B

FL
1A

FL
1B

FL
2A

FL
2B

CR
1A

CR
1B

CR
2A

CR
2B

SF
1A

SF
1B

SF
2A

SF
2B

EL
1A

EL
1B

EL
2A

EL
2B

1 25 27 31 30 32 28 35 31 32 38 37 39 31 33 30 31 33 28 31 31

2 33 31 34 32 36 35 36 35 38 43 40 38 37 39 40 39 34 33 38 34

3 29 34 31 31 33 31 27 29 37 39 35 39 33 33 32 30 36 34 34 33

4 34 31 30 35 38 34 35 36 42 39 39 36 38 35 38 35 37 36 33 33

5 25 26 25 26 32 31 28 30 38 36 31 34 26 32 27 30 25 28 28 28

6 29 35 33 33 37 36 36 36 34 35 39 35 37 36 36 38 33 37 33 35

7 32 35 33 32 33 37 35 35 36 40 38 39 33 36 36 36 35 36 37 35

8 32 33 34 33 40 39 37 36 39 41 39 41 41 38 37 38 38 33 32 35

9 29 29 29 30 32 30 31 33 34 35 33 36 36 35 33 35 36 34 34 35
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2.2. Non-linear Taguchi-type OA-sampling

It is imperative to minimize the non-productive consumption of machinery availabil-

ity on large-scale operations. Therefore, any experimentation on production line

should call for a short schedule of trials to be rapidly performed. To program struc-

tured and balanced experiments that pack multi-effect variability information, the

Taguchi-type OA-samplers furnish convenience in planning the required trials

(Besseris, 2013b; Taguchi et al., 2000; Taguchi et al., 2004). Moreover, additional

savings in time and materials are anticipated when profiling simultaneously for

possible effect non-linearity (Besseris, 2014b). An appropriate non-linear OA-

sampler that tracks down each examined effect on at least three predetermined set-

tings while compounding variation from all four controlling factors on each mea-

surement is the L9(3
4) OA. The resulting nine recipes that combine in saturated

mode the four input settings have been listed in Table 3.
2.3. Smart-sampling (subcrowding) the condensed multiple
responses

For each of the three screening scenarios, there is a procedure that involves the

reduction of: 1) the number of trial repetitions, 2) the number of replicates, and

3) the number of weighted responses to form a single cumulative response. The

condensation process relies on a combination of ranking and fusing the dataset

columns and it is outlined in Section 3 (Theory/Calculation). The sequential trans-

mutation of the originally replicated multi-response dataset terminates to a single

homogenized ‘unreplicated-saturated’ response (Besseris, 2014a; Milliken and

Johnson, 1989, 2009). This is repeated for each of the three respective scenarios

separately. For each scenario, we resort to an intelligent engine to de-fuzzify the
Table 3. Taguchi-type OA-sampling (L9(3
4) OA) schedule for the white pan

bread trials (Athanasiadou, 2010).

Run # DW PT BT BTP

1 880 50 34 280e250

2 880 55 37 270e240

3 880 60 40 260e230

4 900 50 37 260e230

5 900 55 40 280e250

6 900 60 34 270e240

7 920 50 40 270e240

8 920 55 34 260e230

9 920 60 37 280e250
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inherent messiness in the transformed non-linear OA-dataset. The general-

regression neural-network (GRNN) processor is employed to properly deal with

the precarious smallness which is evidenced in all three versions of the condensed

data (Murphy, 2012; Specht, 1990, 1991). In Fig. 1, we depict the implemented

GRNN topology that relates each of the four considered inputs to the respective

transformed output vector according to the type of profiling: 1) the weighted

physical-characteristic screening, 2) the weighted sensory-trait screening or 3)

the weighted synchronous screening of physical and sensory features. The three

respective vectors that capture in each screening phase the total response fluctu-

ation are: the weighted sum of squared ranks for physical characteristics (wSSRp),

the weighted sum of squared ranks for sensory traits (wSSRs) and the weighted

sum of squared master ranks (wSSMR). During the smart sampling (subcrowding)

phase, Rankbot opinions (repeated independent GRNN runs) generate an effect-

hierarchy list (Hj: j ¼ 1, 2, 3.N; N ¼ total number of Rankbot opinions).

This list is created by sequentially appending the output rankings of the effects

from the GRNN sensitivity analysis report (Besseris, 2015). Therefore, the input

for each RankBot is the OA arrangement of Table 3 and any one of the three vec-

tors, wSSRp, wSSRs or wSSMR. This means that three separate subcrowds might

need to be formed to delineate the three different situations. The information re-

sulting from collecting all RankBot subcrowd opinions are then bucketed sepa-

rately for the three cases to be analyzed robustly with the approach in Section

2.4. The idea of crowdsourcing the OA dataset with RankBots and the smart sam-

ple processing is portrayed in Fig. 2.
Fig. 1. The GRNN topology for creating smart samples (subcrowding process) e for all three investi-

gated scenarios.
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To initialize a smart-sample dataset, the GRNN module is run thirty consecutive

times (Besseris, 2014a). The adequacy of the smart-sample count is approximated

by a cycle of checking, predicting and adjusting the smart-sample size until conver-

gence to a final count value is achieved. Each time, the statistical estimator that

feeds the test cycle is the largest of the standard deviation values of the examined

effects. To rank statistically each effect, the margin of error e at a confidence inter-

val of 95% e is designated at an absolute value of 0.5. This limiting value indicates

a practical boundary which denotes the traversing to an adjacent rank position.

When the series of prescribed transformations on the OA-dataset has been

completed, the smart sample is robustly summarized by estimating the (distribu-

tion-free) central tendencies of the effects. The medians of the individual effects,

at a 95%-confidence interval, are computed using the (one-sample) Wilcoxon’s

signed-rank test (Wilcox, 2010).
2.4. Robust and intelligent data analysis toolbox

For each of the three screening scenarios, the condensed L9(3
4) OA dataset as rep-

resented by the architecture in Fig. 1 is analyzed by the ‘Intelligent Problem Solver’

(IPS) module. The IPS module is accessed from the submenu ‘Neural Networks’ of

the professional software Statistica 7.0 (StatSoft). The selected network-type option

is ‘GRNN’ with a maximum limit of tested networks set at 10,000. The preferred cri-

terion for retaining networks is: ‘Balance error against diversity’. Seven data entries

are randomly allocated at the beginning for training and the balance is shared for se-

lection and testing. Only the predicted effect hierarchy list e expressed in ranks e is
on.2018.e00551

or. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
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retained from the GRNN sensitivity analysis report. The rank ordering is initiated

according to the largest GRNN network-error ratio value. Smart-sample adequacy

is verified by iteratively comparing e and augmenting (if necessary) e the sample

size with the predicted sample size (Besseris, 2015). This is accomplished by recur-

sively calculating and determining each time the maximum standard deviation value

among the examined effects. By inputting the maximum standard deviation value in

the module ‘Power and Sample Size for 1-sample t-test’ (MINITAB 17.0), the

maximum smart-sample count is approximated. The median and its associated con-

fidence interval estimations for the final smart sample are individually predicted for

each effect using the ‘1-sample Wilcoxon’ module (MINITAB 17.0).

For illustrational purposes, main-effects graphs and box-plot depictions are ap-

pended to further support the findings which are derived from the proposed

screening method. Graphical portrayals for checking repetition consistency for the

four physical characteristics have been prepared using linear regression fittings.

Cross-correlations between the rank-condensed physical responses to detect possible

associations between characteristics are computed using the Spearman’s r correla-

tion test. Linear cross-regressions between sensory traits have been carried out to

inspect possible relationships on their cumulative values, i.e. by compounding

both their repeats and replicates. To check the stability of the replicates and repeats

of the sensory traits, the Spearman’s r correlation test has been used. All required

linear regression fittings and correlation estimations along with the main-effects

graphs and box-plots have been obtained using the software package MINITAB

17.0.
3. Theory/calculation

3.1. Screening physical characteristics

The group of the investigated physical characteristics is homogenized twice in order

to accrue stratified information from the two separate data layers e associated with

trial repeats and replicates. Next, our tactic entails the weighted non-parametric

merging of the multiple homogenized responses. This leads to shaping into a new

vector quantity which contains the concentrated information of the studied influ-

ences as well as accounting for their repeatability and reproducibility. A generalized

arrangement of the saturated L9(3
4) OA-dataset structure for the four controlling fac-

tors, DW, PT, BT and BTP is depicted in Fig. 3. The uniform representation of the

three-level factor-settings is maintained for convenience in the generic formalism {1,

2, 3} (Taguchi et al., 2004). The conducted replication and repetition rounds are de-

noted as R and r, respectively. The matrix elements for the four physical responses

are symbolized as (Eqs. 1, 2, 3, and (4)):
on.2018.e00551
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BWij ¼ fbwijkji¼ 1;2;.;R; j¼ 1;2;.; r; k¼ 1;2;.;9g ð1Þ

Mij ¼ fmijkji¼ 1;2;.;R; j¼ 1;2;.; r; k¼ 1;2;.;9g ð2Þ

Hij ¼ fhijkji¼ 1;2;.;R; j¼ 1;2;.; r; k¼ 1;2;.;9g ð3Þ

Wij ¼ fwijkji¼ 1;2;.;R; j¼ 1;2;.; r; k¼ 1;2;.;9g ð4Þ

For each of the four physical responses, the data processing is initiated by quanti-

fying their absolute discrepancies from their corresponding target values (TBW,

TM, TH, TW). It is followed by two successive phases of ranking and consolidation

in order to compress both the repeats and the replicates. In all cases, by default,

ordering precedence always awards rank ‘1’ to the quantity possessing the smallest

magnitude. In compact form, the sequence of the data manipulation steps culminates

to the respective compressed vectors, bw0
k, m0

k, h0k, w0
k (k ¼ 1, 2,., 9):

bwijk/
��bwijk � TBW

��¼ dbwijk/rdbwiðjkÞ0/
Xr

j0¼1

rdbwiðjkÞ0

¼ srdbwik0/rsrdbwðik0Þ0/
XR
i0¼1

rsrdbwðik0Þ0 ¼ bw0
k ð5Þ
on.2018.e00551
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mijk/
��mijk � TM

��¼ dmijk/rdmiðjkÞ0/
Xr

j0¼1

rdmiðjkÞ0

¼ srdmik0/rsrdmðik0Þ0/
XR
i0¼1

rsrdmðik0Þ0 ¼ m0
k ð6Þ

hijk/
��hijk � TH

��¼ dhijk/rdhiðjkÞ0/
Xr

j0¼1

rdhiðjkÞ0

¼ srdhik0/rsrdhðik0Þ0/
XR
i0¼1

rsrdhðik0Þ0 ¼ h0k ð7Þ

wijk/
��wijk � TW

��¼ dwijk/rdwiðjkÞ0/
Xr

j0¼1

rdwiðjkÞ0

¼ srdwik0/rsrdwðik0Þ0/
XR
i0¼1

rsrdwðik0Þ0 ¼ w0
k ð8Þ

The four homogenized vectors (Eqs. 5, 6, 7, and (8)) are rank-ordered once more to

form the respective vectors: rbw0
k, rm0

k, rh0k, rw0
k (k ¼ 1, 2,., 9). The process of

weighted compounding generates the condensed vector wSSRpk (k ¼ 1, 2, ., 9):

bw0
k/rbw0

k
m0

k/rm0
k

h0k/rh0k
w0

k/rw0
k

9>=
>;/bbw$rbw

02
k þ bm$rm

02
k þ bh$rh

02
k þ bw$rw

02
k/wSSRpk ð9Þ

The weights (Eq. (9)), bdw, bm, bh, and bw, obey the normalization restriction: bdw þ
bm þ bh þ bw ¼ 1. Thus, the finalized OA configuration that is fed to the intelligent

processor is given in Fig. 4.
Fig. 4. The condensed (saturated) L9(3
4) OA dataset arrangement for the concurrent screening of the four

physical characteristics.
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3.2. Screening sensory traits

A generalized arrangement for the saturated L9(3
4) OA sensory dataset structure

with the four controlling factors, DW, PT, BT and BTP, is depicted in Fig. 5.

Following a similar rationale as in Section 3.1, we define the matrix elements for

the five sensory traits (Eqs. 10, 11, 12, 13, and (14)):

CLij ¼
�
clijkji¼ 1;2;.;R; j¼ 1;2;.; r; k¼ 1;2;.;9g ð10Þ

FLij ¼
�
flijkji¼ 1;2;.;R; j¼ 1;2;.; r; k¼ 1;2;.;9g ð11Þ

CRij ¼
�
crijkji¼ 1;2;.;R; j¼ 1;2;.; r; k¼ 1;2;.;9g ð12Þ

SFij ¼
�
sfijkji¼ 1;2;.;R; j¼ 1;2;.; r; k¼ 1;2;.;9g ð13Þ

ELij ¼
�
elijkji¼ 1;2;.;R; j¼ 1;2;.; r; k¼ 1;2;.;9g ð14Þ

Sequentially, repeats and replicates are aggregated to form their respective single

sensory vectors:

clijk/
Xr

j¼1

clijk ¼ cl0ik/
XR
i¼1

cl0ik ¼ cl00k ð15Þ

flijk/
Xr

j¼1

flijk ¼ fl0ik/
XR
i¼1

fl0ik ¼ fl00k ð16Þ
Fig. 5. A generalized L9(3
4) OA dataset arrangement for the concurrent screening of the five sensory traits.

on.2018.e00551

or. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00551
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00551
crijk/
Xr

j¼1

crijk ¼ cr0ik/
XR
i¼1

cr0ik ¼ cr00k ð17Þ

sfijk/
Xr

j¼1

sfijk ¼ sf 0ik/
XR
i¼1

sf 0ik ¼ sf 00k ð18Þ

elijk/
Xr

j¼1

elijk ¼ el0ik/
XR
i¼1

el0ik ¼ el00k ð19Þ

The five aggregate vectors (Eqs. 15, 16, 17, 18, and (19)) are rank-ordered to form rclk,

rflk, rcrk, rsfk, and relk (k¼ 1, 2,., 9). In all cases, by default, ordering precedence al-

ways awards rank ‘1’ to the quantity possessing themaximummagnitude. In turn, their

weighted compounding generates the condensed vector wSSRsk (k ¼ 1, 2,., 9):
cl00k/rclk
fl00k/rf lk
cr00k/rcrk
sf 00k/rsfk
el00k/relk

9>>>>=
>>>>;
/bcl$rcl

2
k þ bfl$rfl

2
k þ bcr$rcr

2
k þ bsf $rsf

2
k þ bel$rel

2
k/wSSRsk ð20Þ

The weights (Eq. (20)) bcl, bfl, bcr, bsf, and bel are normalized accordingly: bcl þ bfl

þ bcr þ bsf þ bel ¼ 1. The finalized OA configuration that is fed to the intelligent

processor is given in Fig. 6.
Fig. 6. The condensed saturated L9(3
4) OA dataset arrangement for the concurrent screening of the five

sensory traits.
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3.3. Concurrent weighted physical and sensory screening

Acquiring joint information from both types of responses becomes indispensable for

improving overall product designing. It is a plausible extension to attempt streamlin-

ing physical feature integration with sensory performance. The two consolidated

vectors, wSSRpk and wSSRsk, carry the required information for completing this inte-

gration. However, they need to be rank-ordered such that to be aligned in the same

scale. This is because the formation of the two vectors has been derived from

compiling dissimilar response group sizes with variant weight criteria.

The corresponding master responses, MRpk and MRsk are prepared and their

weighted squared rank summation generates the terminal vector wSSMRk

(Besseris, 2012, 2013a):

wSSRpk/MRpk
wSSRsk/MRsk

�
/bMRp$MRp2k þ bMRs$MRs2k/wSSMRk ð21Þ

The weights bMRp and bMRs (Eq. (21)) are normalized to form the constraint for the

joint screening attempt: bMRp þ bMRs ¼ 1. The final OA configuration that is fed to

the intelligent processor is given in Fig. 7. The complete sequence of data manipu-

lation and decision steps have been outlined in Fig. 8.

It should be noted that small, dense and complex data will cause most of the machine

learning algorithms to act really dumb. Unfortunately, this is true. We picked GRNN

because will reasonably resist to express dumbness at small dataset requirements. By

blending the responses, we reduce by 1/n (n ¼ number of characteristics) the oppor-

tunities for the ML algorithm to be wandering across multiple blurred surfaces.
Fig. 7. The arrangement of the saturated L9(3
4) OA dataset for the concurrent (weighted) screening of

physical and sensory bread responses.
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Ranks in this situation are always proper because they provide strong protection to

super reduced-size structured data similar to our paradigm where multi-micro data-

sets are generated using Taguchi-type OA. For example, the experimental recipe

requirement which directly influences the total trial volume has been reduced by 9

times in the illustrated L(34) OA. Ranks are associated to promoting robust median

statistics which carry the highly-desired property of maximum achievable break-

down point at a rate of 50% (Wilcox, 2010). Resolving the ever-present data mess-

iness that lurks in non-linear systems and feeds on the imposing small data constraint

supersedes any elusive efficiency concerns associated with normality.

After rank ordering the various response replicates, the scale across characteristics

now becomes uniform, easing the strain on the NN. To quantify effects across

different multiple groups, usually squaring ranks becomes a reasonable operation

according to Kruskal-Wallis theory of multi-level effects (Wilcox, 2010). Therefore,

blending naturally consolidates the data fusion process because it reduces: 1) the

overall time of execution and 2) the stress from the NN to work with many different

small data groups associated with the various characteristics. This decongests the

NN as it would otherwise strive to fit little data to many different surfaces and stu-

pefy more the NN output process. Not a pleasant situation for NN regression. On the

other hand, data compression of trial replicates is central to classical Taguchi

methods (data means or signal-to-noise ratios). So, replicates will always need to

be reduced to an unreplicated form.
4. Results

4.1. Screening physical characteristics

4.1.1. Data prescreening

The collected raw data of the physical characteristics for the white pan bread exper-

iments are tabulated in Table 1. A prescreening phase to assess the repeatability status

of the four replicated datasets is useful before proceeding with the data reduction

steps. The minimum requirement was to record two measurements (repetitions) per

replicate. In Figs. 9, 10, 11, 12, we provide a view of the repeatability tendencies after

performing a linear regression for each of the two characteristic replicates. The index

number e 1 or 2 e next to the response symbol denotes the replication round.

Likewise, the capital letter e A or B e denotes the repetition sequence. The BW fit-

tings are judged as satisfactory; both slopes are higher than 90% and their associated

coefficients of determination also match at values over 90%. The fittings of W, M and

H are less consistent. Their notably departing trends indicate an insidious destabiliza-

tion when compared to the BW fittings. In particular, the fittings of M and H reveal

declining slope magnitudes well below 50%. Ostensibly, such output instability will
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impose substantial blurring when attempting to filter out any weak effects. Further-

more, there is a persistent presence of outlier points in all eight graphs justifying

the necessity for implementing a resilient data analyzer. However, this propensity

is in accord with the complex physics that harness the modeling of bread properties.

We conclude that messiness arguably rules the basic data structure. Hence, product

characterization would be more fruitful if it fosters a distribution-free framework.

In Table 4, we list the transformed responses of the physical characteristics from

Table 1. Results have been obtained after a sequential data manipulation for each

of the four physical responses. The tabulation commences with entering the differ-

enced response magnitudes from their respective target values (Section 3.1). Inter-

mediate computed quantities are also exhibited to facilitate transparency of the
on.2018.e00551

or. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
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Fig. 10. Regression of repeatability trials of bread (95% CIs) for width(W) e replicate 1 (A) and 2 (B).
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conversion process. Sequential rank ordering and compounding in two layers e first

for repeats and then for replicatese lead to the condensed and homogenized vectors:

BW0, M0, W0 and H0. Finally, the computed (two-way) cross-correlations (Spear-

man’s r test) of BW0, M0, W0 and H0 are listed in Table 5. The outcomes suggest

no direct relationships between any of the physical responses at a significance level

of 0.05. Hence, there is no obvious reason for excluding any of the four examined

responses from the concurrent screening procedure.
4.1.2. Concurrent screening of the four physical responses

Ranking individually the four homogenized responses according to prescription of Sec-

tion 3 and subsequently fusing them together using the weight distribution as stated in

Section 2, we contrive the single condensed response, wSSRp (Table 6). We feed the
on.2018.e00551
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Fig. 11. Regression of repeatability trials of bread (95% CIs) for moisture(M) e replicate 1 (A) and 2 (B).
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entries from the four non-linear inputs, in the L9(3
4) OA format (Table 3), along with

the corresponding output values of the condensed responsewSSRp into theGRNNpro-

cessor according to the layout of Fig. 1 to form the proper smart sample. We gather the

start-up effect-hierarchy scores which are generated through the sensitivity-analysis re-

ports after 30 consecutive rounds of GRNN-module runs (Table 7). Checking for ade-

quacy, the largest estimated standard deviation valuewas attributed toBT at 0.828min.

Thus, a prediction at a margin of error of 0.5 (confidence interval at 95%) returns amin-

imum sample base of fourteen runs. The estimated test power for the thirty-run sample

was at least 90% which strengthens the credibility of the sampling process. Hence, we

conclude that the initial intelligent sampling effort (subcrowding) is rendered sufficient

and capable to predict any weak influences. Nevertheless, we observe that out of the

possible twenty-four permutation outcomes (hierarchy sequences), only nine made
on.2018.e00551
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Fig. 12. Regression of repeatability trials of bread (95% CIs) for height (H) e replicate 1 (A) and 2 (B).
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an appearance at least once. Leading the hierarchy is the BTP effect in the 26 out of the

30 intelligent runs. Next in order is the DW effect with 18 occurrences to claim the sec-

ond place. The c2-test statistic value of 130 was highly significant (p < 0.001) when

checking equality of proportions across the twenty-four possible permutations. The

subcrowding median estimations and the 95%-confidence intervals from Wilcoxon’s

one-sample (rank-sum) test are listed in Table 8. Clearly, BTP is the predominant effect

which registers no variation at all at its predictive interval since location and dispersion

values all collapse to the top (rank) performance of ‘1’. Next, DW retains securely the

sole second positioning. The estimated median value of ‘2’ coincides with the second

available position in the hierarchy which is also well-confined within the margin of er-

ror with respect to the upper boundary (2.5). Effects BT and PT are rather statistically
on.2018.e00551
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Table 4. Physical characteristics OA-dataset transformations.

A. Bread weight(BW) transformations

Run # dBW
1A

dBW
1B

dBW
2A

dBW
2B

rdBW
1A

rdBW
1B

rdBW
2A

rdBW
2B

srBW
1

srBW
2

rsrBW
1

rsrBW
2

BW0

1 10 6 8 2 5.5 3.5 3 1 9 4 4.5 2 6.5

2 6 10 13 11 3.5 5.5 8 4.5 9 12.5 4.5 6 10.5

3 14 12 16 12 8 7 9.5 6.5 15 16 7 8 15

4 19 15 16 24 13 9 9.5 15 22 24.5 11 12 23

5 5 3 11 4 2 1 4.5 2 3 6.5 1 3 4

6 18 17 12 20 11.5 10 6.5 13 21.5 19.5 10 9 19

7 26 29 25 17 15 16 16 11 31 27 16 15 31

8 42 39 34 36 18 17 17 18 35 35 17.5 17.5 35

9 18 21 18 22 11.5 14 12 14 25.5 26 13 14 27

B. Moisture(M) transformations

Run # dM
1A

dM
1B

dM
2A

dM
2B

rdM
1A

rdM
1B

rdM
2A

rdM
2B

srM
1

srM
2

rsrM
1

rsrM
2

M0

1 0.3 0.2 0.1 0.4 3 1 2.5 13 4 15.5 1.0 7.5 8.5

2 0.5 0.3 0.1 0.3 6 3 2.5 10.5 9 13 2.0 5.0 7.0

3 0.5 0.6 0.6 0.1 6 9.5 16 2.5 15.5 18.5 7.5 9.0 16.5

4 0.9 0.7 0.5 0.4 14 12 15 13 26 28 14.5 17.0 31.5

(continued on next page)
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Table 4. (Continued )
B. Moisture(M) transformations

Run # dM
1A

dM
1B

dM
2A

dM
2B

rdM
1A

rdM
1B

rdM
2A

rdM
2B

srM
1

srM
2

rsrM
1

rsrM
2

M0

5 0.9 0.6 1.2 0.2 14 9.5 18 7 23.5 25 11.0 13.0 24.0

6 1.2 0.9 0.2 0.4 16.5 14 7 13 30.5 20 18.0 10.0 28.0

7 0.6 0.3 0.2 0.2 9.5 3 7 7 12.5 14 4.0 6.0 10.0

8 1.5 0.5 0.3 1.1 18 6 10.5 17 24 27.5 12.0 16.0 28.0

9 1.2 0.6 0.1 0.2 16.5 9.5 2.5 7 26 9.5 14.5 3.0 17.5

C. Bread (loaf) height(H) transformations

Run # dH
1A

dH
1B

dH
2A

dH
2B

rdH
1A

rdH
1B

rdH
2A

rdH
2B

srdH
1

srdH
2

rsrdH
1

rsrdH
2

H0

1 0.05 0.57 0.4 0.17 1 18 16 2 19 18 11.0 9.0 20.0

2 0.38 0.35 0.21 0.44 15 14 6.5 17 29 23.5 17.5 13.0 30.5

3 0.08 0.42 0.28 0.62 2 16.5 10 18 18.5 28 10.0 16.0 26.0

4 0.16 0.21 0.18 0.25 4 9.5 3 9 13.5 12 6.5 2.0 8.5

5 0.2 0.17 0.33 0.11 7.5 5 12 1 12.5 13 3.0 4.5 7.5

6 0.26 0.26 0.31 0.34 11.5 11.5 11 13 23 24 12.0 14.0 26.0

7 0.42 0.21 0.35 0.36 16.5 9.5 14 15 26 29 15.0 17.5 32.5

8 0.11 0.3 0.21 0.19 3 13 6.5 4 16 10.5 8.0 1.0 9.0

9 0.2 0.19 0.21 0.21 7.5 6 6.5 6.5 13.5 13 6.5 4.5 11.0
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D. Bread (loaf) width(W) transformations

Run # dW
1A

dW
1B

dW
2A

dW
2B

rdW
1A

rdW
1B

rdW
2A

rdW
2B

srdW
1

srdW
2

rsrdW
1

rsrdW
2

W0

1 0.31 0.17 0.13 0.08 15 4.5 9 6 19.5 15 11.0 8.5 19.5

2 0.23 0.18 0.17 0.16 9 6 13 11.5 15 24.5 8.5 12.0 20.5

3 0.45 0.26 0.09 0.03 17.5 12 7.5 2.5 29.5 10 15.0 4.5 19.5

4 0.39 0.29 0.3 0.24 16 13 17 15.5 29 32.5 14.0 18.0 32.0

5 0.19 0.04 0.05 0.15 7 2 4 10 9 14 3.0 7.0 10.0

6 0.17 0.09 0.09 0.03 4.5 3 7.5 2.5 7.5 10 2.0 4.5 6.5

7 0.24 0.21 0.16 0.24 10 8 11.5 15.5 18 27 10.0 13.0 23.0

8 0.45 0.3 0.33 0.23 17.5 14 18 14 31.5 32 16.0 17.0 33.0

9 0.25 0.03 0.07 0.01 11 1 5 1 12 6 6.0 1.0 7.0
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Table 5. Spearman’s r cross-correlations for the four physical responses and their

associated p-values (in parenthesis).

M0 H0 W0

H0 �0.651

(0.057)

W0 0.067 �0.029

(0.864) (0.940)

BW0 0.368 0.126 0.452

(0.330) (0.748) (0.222)

Table 6. The weighted rank condensed vector wSSRp for intelligent processing.

Run # rM0 rH0 rW0 rBW0 wSSRp

1 2 5 4.5 2 9.83

2 1 8 6 3 20.30

3 4 6.5 4.5 4 21.68

4 9 2 8 6 45.90

5 6 1 3 1 12.30

6 7.5 6.5 1 5 35.43

7 3 9 7 8 49.40

8 7.5 3 9 9 59.18

9 5 4 2 7 30.70
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indistinguishable since they share the likelihood to coexist in the third position

obscuring each other’s potency. Summarizing, it is BTP andDW that outrightly control

synchronously the four examined physical responses.
4.2. Screening sensory traits

4.2.1. Data prescreening

The collected raw data for the five sensory traits are listed in Table 2. In Table 9, we

computed the cross-correlations for the two layers of datasets for all five sensory re-

sponses, i.e. for: 1) repeats (within each replicate), and 2) replicates (after pooling the

repeats). It appears that FL and SF exhibit strong repeatability while the remaining

three traits appear less distinguishing. Additional sampling would perhaps amelio-

rate the need for higher resolution. Since the measurement scale is by definition uni-

form for all five sensory traits, it is meaningful to aggregate the scores on the

replicate level. In Table 10, we pool the repeats for each response replicate sepa-

rately. With the exception of EL0, the rest of the four responses seem to show

more convincing reproducibility (Table 9). CR’ would be benefited with supplying

extra data to refine further its outcome on a significance level of 0.05. The overall
on.2018.e00551

or. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
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Table 7. Smart (subcrowd) samples for the three screening scenarios.

GRNN
Run #

Weighted Physical
Characteristics

Weighted Sensory Traits Weighted Combination of
both groups

DW PT BT BTP DW PT BT BTP DW PT BT BTP

1 2 3 4 1 4 2 3 1 2 3 4 1

2 2 4 3 1 4 3 2 1 4 2 3 1

3 2 4 3 1 2 3 4 1 3 4 2 1

4 3 4 2 1 4 3 2 1 2 3 4 1

5 3 4 2 1 4 2 3 1 4 3 2 1

6 2 4 3 1 3 2 4 1 3 4 2 1

7 3 4 2 1 4 3 2 1 4 3 2 1

8 2 3 4 1 3 4 2 1 2 4 3 1

9 1 3 4 2 4 3 2 1 4 3 2 1

10 2 3 4 1 3 2 4 1 3 4 2 1

11 2 1 3 4 3 1 4 2 4 2 3 1

12 2 4 3 1 3 2 4 1 2 3 4 1

13 2 3 4 1 3 4 2 1 3 2 1 4

14 2 3 4 1 3 4 2 1 2 3 4 1

15 2 4 3 1 3 4 2 1 3 4 2 1

16 4 3 2 1 3 2 4 1 2 3 4 1

17 3 4 2 1 4 2 3 1 3 4 2 1

18 3 4 2 1 3 4 2 1 3 4 2 1

19 1 3 2 4 3 4 2 1 2 4 3 1

20 2 3 4 1 3 4 2 1 2 3 4 1

21 3 2 4 1 3 2 4 1 3 2 4 1

22 3 4 2 1 3 2 4 1 2 3 4 1

23 1 4 3 2 4 3 2 1 3 4 2 1

24 2 3 4 1 4 3 2 1 3 4 2 1

25 2 3 4 1 4 3 2 1 3 1 4 2

26 2 3 4 1 3 2 4 1 4 3 2 1

27 2 4 3 1 2 4 3 1 2 3 4 1

28 2 4 3 1 4 3 2 1 3 4 2 1

29 3 4 2 1 3 2 4 1 3 4 2 1

30 2 4 3 1 4 3 2 1 2 4 3 1
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(mixed) sensory performance may not be considered unusual because the organo-

leptic process itself carries a certain degree of subjectiveness. A second round of

data aggregation that involves the pooling of the sensory replicates generates the

single-vector responses that are listed in Table 11. Before proceeding with the con-

current screening procedure, the five sensory responses are tested for cross-
on.2018.e00551

or. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).
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Table 8. Effect screening results from robust subcrowding sample analysis.

GRNN-Results

Confidence Interval (95%)

Factors N Median Lower Upper

Physical DW 30 2.0 2.0 2.5

Characteristics PT 30 3.5 3.5 3.5
BT 30 3.0 3.0 3.5
BTP 30 1.0 1.0 1.0

Sensory Traits DW 30 3.5 3.0 3.5
PT 30 3.0 2.5 3.0
BT 30 3.0 2.5 3.0
BTP 30 1.0 1.0 1.0

Physical DW 30 3.0 2.5 3.0

Characteristics PT 30 3.5 3.0 3.5

And BT 30 3.0 2.5 3.0

Sensory Traits BTP 30 1.0 1.0 1.0
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correlation. In Figs. 13, 14, 15, 16, 17, we provide linear regression plots for all ten

pairs. We infer that there is no strong evidence for excluding any of the five sensory

traits due to correlation from the concurrent screening procedure. We notice that the

adjusted coefficient of determination never exceeds 80% (EL00 vs CL00 graph), while
it may dip as low as 16% (EL0 vs CR00 graph). We remark that such disparate man-

ifestations may not be foreign to complex materials like breads. In turn, this may

encourage that a more relaxed screening approach might be advisable; one that relies

less on parametric distributions in modeling the effects.
Table 9. Spearman’s r cross-correlations for the five sensory responses and their

associated p-values for repeats and replicates (pooled repeats).

Replicate # Repetitions Spearman’s
P

p-value Replicates Spearman’s
r

p-value

CL 1 0.418 0.263 0.758 0.018

2 0.551 0.124

FL 1 0.782 0.013 0.828 0.006

2 0.830 0.006

CR 1 0.568 0.111 0.619 0.076

2 0.234 0.545

SF 1 0.745 0.021 0.962 0.001>

2 0.826 0.006

EL 1 0.295 0.441 0.300 0.432

2 0.503 0.168
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Table 10. Pooling of the repeats for the five sensory traits e combined data in

replicates.

Run # CL01 CL02 FL01 FL02 CR01 CR02 SF01 SF02 EL01 EL02

1 52 61 60 66 70 76 64 61 61 62

2 64 66 71 71 81 78 76 79 67 72

3 63 62 64 56 76 74 66 62 70 67

4 65 65 72 71 81 75 73 73 73 66

5 51 51 63 58 74 65 58 57 53 56

6 64 66 73 72 69 74 73 74 70 68

7 67 65 70 70 76 77 69 72 71 72

8 65 67 79 73 80 80 79 75 71 67

9 58 59 62 64 69 69 71 68 70 69
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4.2.2. Concurrent screening of the five sensory responses

In Table 11, we progress from homogenizing the ranked sensory quantities, rCL to

rEL, to their weighed compounding such that to form the condensed vector wSSRs.

We repeat the same intelligent processing for the wSSRs vector using the same pro-

cedure as with the physical characteristics. The hierarchy outcomes for the effects are

gathered from the subcrowding GRNN sensitivity analysis. The output after

completing thirty consecutive GRNN module runs is tabulated in Table 7. Checking

for subcrowd sampling adequacy, the largest estimated standard deviation value was

attributed to BT at 0.925 min. This predicts a minimum subcrowd sampling effort of

sixteen module runs at a margin of error of 0.5 (confidence interval at 95%). The esti-

mated test power for the thirty-run smart sample was at least 82%. The start-up intel-

ligent sampling is sufficient to filter-out dormant effects. Only seven out of the
Table 11. Pooled replicates and weighted consolidation of the ranked sensory

responses.

Run # CL0 FL0 CR0 SF0 EL0 rCL rFL rCR rSF rEL wSSRs

1 113 126 146 125 123 8 6.5 6 8 8 56.85

2 130 142 159 155 139 4 4 2 1 3 10.05

3 125 120 150 128 137 6 9 5 7 7 49.75

4 130 143 156 146 139 4 3 3 4 3 12.15

5 102 121 139 115 109 9 8 8 9 9 75.90

6 130 145 143 147 138 4 2 7 3 5.5 19.06

7 132 140 153 141 143 1.5 5 4 5 1 12.41

8 132 152 160 154 138 1.5 1 1 2 5.5 9.23

9 117 126 138 139 139 7 6.5 9 6 3 38.25
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Fig. 13. Cross-regressions of pooled sensory-trait data: A) flavor vs color, B) crumb structure vs flavor.
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twenty four possible permutations of the effect orderings made an appearance at least

once in the GRNN smart sample. The BTP effect comes out superior in 29 out of the

30 intelligent runs. The DW effect follows next with 16 occurrences at the second

place. The c2-test statistic value of 134 was highly significant (p < 0.001), thus re-

jecting the equality of the 24 proportions. The subcrowding median estimations and

their assorting 95%-confidence intervals from Wilcoxon’s one-sample (rank-sum)

test are listed in Table 8. Again, the BTP effect retains its top placement as evidenced

from a diminishing variability around its median estimation. The rest of the effects,

DW, BT and PT, appear to share the third positioning.
on.2018.e00551
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Fig. 14. Cross-regressions of pooled sensory-trait data: A) elasticity vs flavor, B) crumb structure vs

color.
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This occurrence confounds any chance for declaring the three effects as contributing.

Summarizing, it is the sole influence of BTP that controls in a synchronous manner

the five sensory responses.
4.3. Screening physical and sensory traits

4.3.1. Data prescreening

The weighted and condensed vectors, wSSRp and wSSRs, which have been

computed in Tables 6 and 11, respectively, are inspected for possible correlation.

In Fig. 18, we display their linear regression fitting. We discern no relationship
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Fig. 15. Cross-regressions of pooled sensory-trait data: A) softness vs flavor, B) softness vs crumb

structure.
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between the two master responses as the fitted slope (0.54) and the adjusted coeffi-

cient of determination (54%) do not fare strongly. Moreover, glancing Fig. 18, the

persistence of outlier points emerges as frequent enough to justify a robust data

treatment.
4.3.2. Concurrent screening of physical and sensory responses

In Table 12, we create the master-rank vectors MRp and MRs by rank-ordering inde-

pendently the two corresponding condensed vectors, wSSRp and wSSRs. The
on.2018.e00551
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Fig. 16. Cross-regressions of pooled sensory-trait data: A) elasticity vs softness, and B) softness vs color.
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weighted-squared sum of the two vectors returns the terminal wSSMR vector that

fuses together internal information from all nine monitored responses. We repeat

once more the intelligent processing on the wSSMR vector as in the previous two

scenarios. The effect-hierarchy outcomes of crowdsourcing are tabulated in

Table 7. Checking for subcrowd sampling adequacy, the largest estimated standard

deviation value was attributed to BT at 0.961 min. This predicts a minimum smart

sampling effort of seventeen GRNN module runs at a margin of error of 0.5 (confi-

dence interval at 95%). The estimated test power for the thirty-run subcrowd sample

was at least 79%. Only seven out of the twenty four possible permutations of the ef-

fect orderings made an appearance at least once in the GRNN output. The BTP effect
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Fig. 17. Cross-regressions of pooled sensory-trait data: A) elasticity vs crumb structure, and B) elasticity
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Table 12. Weighted consolidation of the master physical and sensory responses.

Run # MRp MRs wSSMR

1 1 8 45.1

2 3 2 5.5

3 4 7 39.1

4 7 3 21.0

5 2 9 57.9

6 6 5 28.3

7 8 4 30.4

8 9 1 25.0

9 5 6 32.7
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comes up superior in 28 out of the 30 intelligent runs. The BT effect follows next

with 14 occurrences at the second place. The c2-test statistic value of 126.8 was

highly significant (p < 0.001), thus rejecting the equality of the 24 proportions.

The subcrowding median estimations and the 95%-confidence intervals from Wil-

coxon’s one-sample (rank-sum) test are listed in Table 8. The BTP effect maintains

its outstanding performance. The rest of the effects e DW, BT and PT e possess

overlapping confidence intervals. Thus, their potency may not be contemplated

any further. Summarizing, it is the sole influence BTP that synchronously adjusts

all physical and sensory responses. The optimized (median) responses for BW, M,

H, W, CL, FL, CR, SF, and EL are e with interquartile range in parenthesis: 782

(28.25) g, 34.8 (0.65) %, 9.36 (0.1) cm, 10.41 (0.34) cm, 6.6 (0.3), 7.2(0.2),

7.6(0.7), 7.3(0.5), and 7.0(0.5), respectively.
5. Discussion

A robust and intelligent screening scheme was implemented to profile white pan

bread properties in three distinct scenarios that involved the probing of: 1) four phys-

ical characteristics, 2) five sensory traits and 3) the synchronous screening of the

physical and sensory responses. The datatypes of the examined controlling factors

are non-restrictive. It is worth mentioning that the categorical variable BTP was

transmuted by piecing together e into a single effect e the pairs of (numerical)

ranges that signified the relevant oven-zone baking temperatures. This was a simpli-

fication trick that aided in restraining the total number of tested parameters down to

four. Otherwise, complementing the experimental design with two separate temper-

ature controls would double up the total volume of the projected trials. This is

because trial runs would have been programmed by the next larger OA planner,

the 18-run sampler (L18 OA), which is primed to accommodate five or more non-

linear (three-level) controlling factors.
on.2018.e00551

or. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00551
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00551
The study spotlighted several aspects that an engineer is bound to face in product

design and development: 1) the data-driven decision-making approach for delin-

eating the complex bread behavior on pragmatic mass-production conditions, 2)

the urgency to make product performance forecasts relying on small samples due

to economic and availability limitations, 3) the inevitability to handle small but

dense datasets, 4) the inherent data messiness of complex materials, 5) the demand

for smart and robust tools to model complex (food) properties on minimum assump-

tions and 6) the power of the Wisdom of NN Crowds to overcome the data conver-

sion and mining of limited, messy and complex datasets. We note that the underlying

data messiness is coped with early on during our data compression process. This

stems from the fact that bread-making is dictated by a plethora of intricate activities

constituting its supply chain. The mathematics that describe the complete product

development cycle are not tractable. Consequently, the task of deterministically pre-

dicting bread properties in full through detailed modeling remains elusive. To this

end, our strategy was conceived to diagnose any potent effects from a nominated

list of controlling effects by rounding up all sources of error into a single “mas-

ter”-uncertainty. It is advantageous that we bypass seeking thorough details of the

mechanism that governs this master-uncertainty. We merely monitor and homoge-

nize the master-uncertainty as a single entity such that to effectively control its

perturbation on the stochastic landscape. The actual sources that blur the studied ef-

fects and contribute to the collective vagueness may include any remnant effects of

unexplored parameters and other unknown and unknowable intrusions. Irrespective

of their origin, all unresolved influences have been disorderly bunched together to

form the master uncertainty in our formalism. A sizeable uncertainty when present

interferes by overshadowing the profiling process, thus making any potent effects

hard to discover. This is true when the comparative frame of reference expects the

quantified uncertainty to be the measuring stick. Even strong effects are virtually

downsized on comparison and they are rendered to appear deflated. So the strategy

of direct contrasting of the estimated variances of the studied effects with a “lump

sum” residual error may not be prudent. Ordinary multi-response multi-factorial

treatments such as the multivariate analysis of variance (MANOVA) or the general

linear model (GLM) are based on F-ratio testing. Thus, the preferred measure of the

strength of the effects is set per a residual-error basis. It is this aspect that may be

amenable to dubious diagnostics. Oppositely, the proposed method may have a

promising feature to offer on that respect by countering uncertainty whereas averting

its direct involvement when mediating the terminal effect hierarchy.

The full exploitation (saturation) of the small L9(3
4) OA planning scheme e for the

economic and practical reasons discussed previously e along with the dramatic

condensation of the dataset rendered impervious to checking the validity of basic as-

sumptions such as: 1) normality, 2) heteroscedasticity and 3) sparsity. Such assump-

tions must hold in order for the standard treatments of MANOVA and GLM to be
on.2018.e00551

or. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00551
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00551
fruitful. On the contrary, the new solver is not obstructed in extracting impartial in-

formation despite the fact that the validity of those assumptions may be absent.

Although the proposed methodology rests on a fully robust framework which em-

ploys an intelligent “meta-sampling” (crowdsourcing) approach, it is instructive to

compare our results for agreement with other practical yet naïve techniques. In

Figs. 19, 20, 21, we depict how the controlling factors fare by summarizing their cor-

responding spreads in box-plots for all three available scenarios. The inner drawn

boxes indicate the 95% confidence interval for the estimated medians. It is discerned

that the BTP is undisputedly the major source that regulates variation in the doubly-

weighted nexus of physical and sensory responses (Fig. 21). This finding is in accord

with the individual performance of the two weighted groups of characteristics. The

scientific rationale for the physical characteristics is that increasing temperature in-

fluences all four responses. This is because BW and M decrease as water evaporates

while H and W increase with the growth of the air bubbles as bread dough expands.

Increasing temperature regulates bread texture and thus directly influences sensory-

related responses. Elasticity and softness decreases since entanglement density of

high-polymer gluten molecules increases with water evaporation. Darkening of

the crust is anticipated with increased oven temperature. In the case of the weighted

physical screening (Fig. 19), DW locks the second position in hierarchy as ascer-

tained by its diminutive confidence interval estimation of its median. The box plots

in Figs. 19, 20, 21 are also useful in illustrating the great diversity which is hidden in

the meta-data distributions which have been generated by smart-sampling (sub-

crowding). Moreover, they accentuate the great difficulty that the stochastic
4
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Fig. 19. Box-plot contrasting with 95%-confidence interval of median of the four effects for the weighted

profiling of the physical characteristics.
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decoding process stumbles upon in uncovering and prioritizing the strength of the

effects. The dicey asymmetry is prevalent around the median for all effects. The

enigmatic disturbance rhythm looms even on the weak performing effects. Such

data idiosyncrasies substantiate our strategy to resort to a robust and intelligent

data processing.
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It is also customary to comment on the insight which is gained by inspecting the clas-

sical main-effects plot, in spite of its known lack of statistical rigor. From Figs. 22,

23, 24, it visually stands out the dominance of BTP with the sharp non-linear mod-

ulations to be identified in at least the two of the three versions e including the
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Fig. 23. Main effects plots for wSSRs.
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master response. A favorable adjustment of the weighted physical responses coin-

cides to the BTP setting of 280e250 �C (Fig. 22). However, the total weighted sen-

sory performance (Fig. 23) as well as the outlook from the overall concurrent

screening (Fig. 24) conjointly locate the optimal setting of BTP at the range of

270e240 �C. The appreciable altering of the quirky BTP tendency from a dipping

monotonous profile in the physical screening to a convex-shaped curvature in the

sensory screening is also noteworthy. Furthermore, DW seems to compete in impor-

tance with BTP in the physical screening scenario projecting an optimal adjustment

at 880 g. It is the low-end material load that accommodates terminal specifications

for the baked loaf critical dimensions and weight more closely. On the overall con-

current screening scenario, BT traces a convex curve with its optimal minimum

setting to be pinpointed at 37 min.
6. Conclusions

A concurrent multi-response screening method was proposed to profile white pan

bread properties. This was achieved by bringing together the GRNN intelligence

and the concept of the Wisdom of Crowds. The main impetus of this proposal

was to provide an agile medium for rapid and robust product design and develop-

ment/improvement. The joint application of intelligent data homogenization with

fast distribution-free smart microanalytics showed promise in dealing with the

quirky morphologies of small, dense and diverse datasets, which plague the analysis

of complex bread-making processes.

Four controlling factors were gauged for simultaneous potency and non-linearity.

Three tested scenarios were elaborated to unravel accordingly product concerns
on.2018.e00551

or. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00551
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00551
with regards to: quality, marketing and design. Dense datasets were collected through

the non-linear L9(3
4) OA sampler to accommodate observations for as many as four

physical characteristics and five sensory traits. Replication assessment demonstrated

the omnipresent data messiness associated with bread-making. The profiled effects

were strategically analyzed in two layers employing order statistics on subcrowding

samples. Smart sampling was conducted by a GRNN engine on homogenized and

fused responses. On the first layer the two groups of physical and sensory responses

were separately analyzed to predict the presence of any statistically dominant effects.

This was achieved by allotting importance weights to each of the responses in their

respective groups. On the second layer, fused information for each of the two groups

which was extracted from the first layer was weighted and aggregated once more.

This action consolidated the total multi-response variation from all nine responses

to a single master response. It was predicted that the combination of the oven zone

temperatures to be highly influential in all three scenarios. The suggested optimal

setting was 270e240 �C. Dough weight appeared to be instrumental in synchro-

nously adjusting all four weighted physical characteristics at 880 g.

The simplicity and agility of treating in a comprehensive manner any combination of

physical and categorical variables alike foreshadows the usefulness of our approach.

Thus, it may be actually extended to many other combinations of effects and char-

acteristics for other kinds of complex food goods. Complementary assortment of in-

dicators with respect to issues of safety, quality, productivity and marketing offers

great potential for future studies.
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