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Abstract

Determination of pile bearing capacity is essential in pile foundation design. This study

focused on the use of evolutionary algorithms to optimize Deep Learning Neural Network

(DLNN) algorithm to predict the bearing capacity of driven pile. For this purpose, a Genetic

Algorithm (GA) was developed to select the most significant features in the raw dataset.

After that, a GA-DLNN hybrid model was developed to select optimal parameters for the

DLNN model, including: network algorithm, activation function for hidden neurons, number

of hidden layers, and the number of neurons in each hidden layer. A database containing

472 driven pile static load test reports was used. The dataset was divided into three parts,

namely the training set (60%), validation (20%) and testing set (20%) for the construction,

validation and testing phases of the proposed model, respectively. Various quality assess-

ment criteria, namely the coefficient of determination (R2), Index of Agreement (IA), mean

absolute error (MAE) and root mean squared error (RMSE), were used to evaluate the per-

formance of the machine learning (ML) algorithms. The GA-DLNN hybrid model was shown

to exhibit the ability to find the most optimal set of parameters for the prediction process.The

results showed that the performance of the hybrid model using only the most critical features

gave the highest accuracy, compared with those obtained by the hybrid model using all

input variables.

1. Introduction

In pile foundation design, the axial pile bearing capacity (Pu) is considered one of the most

critical parameters [1]. Throughout years of research and development, five main approaches

to determine the pile bearing capacity have been adopted, namely the static analysis, dynamic

analysis, dynamic testing, pile load testing, and in-situ testing [2]. It is needless to say each of

the above methods possesses advantages and disadvantages. However, the pile load test is con-

sidered as one of the best methods to determine the pile bearing capacity in view of the fact

that the testing process is close to the working mechanism of driven piles [3]. Having said that,

this method remains time-consuming and unaffordable for small projects [3], the development

of a more feasible approach is vital. Thus, many studies have been conducted to determine the
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pile bearing capacity in taking advantage of the in-situ test results [4]. Meanwhile, the Euro-

pean standard (Euro code 7) [5] recommends using several ground field tests such as the

dynamic probing test (DP), press-in and screw-on probe test (SS), standard penetration test

(SPT), pressuremeter tests (PMT), plate loading test (PLT), flat dilatometer test (DMT), field

vane test (FVT), cone penetration tests with the measurement of pore pressure (CPTu).

Among the above approaches, the SPT is commonly used to determine the bearing capacity of

piles [6].

Many contributions in the literature relying on the SPT results have been suggested to pre-

dict the bearing capacity of piles. As examples, Meyerhof [7], Bazaraa and Kurkur [8], Robert

[9], Shioi and Fukui [10], Shariatmadari et al. [11] have proposed several empirical formula-

tions for determining the bearing capacity of piles in sandy ground. Besides, Lopes and Lapro-

vitera [12], Decort [13], the Architectural Institute of Japan (AIJ) [14] have introduced several

formulations to determine the pile bearing capacity for various types of soil, including sandy

and clayed ground. Overall, traditional methods have used several main parameters to estimate

the mechanical properties of piles, such as pile diameter, pile length, soil type, number of SPT

blow counts of each soil layer. However, the choice of appropriate parameters, along with the

failure in covering other parameters, have led to the disagreement of results given by these

methods [15]. Therefore, the development of an universal approach for the selection of a suit-

able set of parameters is imperative.

Over a half-decade, a newly developed approach using machine learning (ML) algorithms

has been widely used to deal with real-world problems [16], especially in civil engineering

applications. Employing ML algorithms, many practical problems have been successfully

addressed and thus, paved the way for many promising opportunities in the construction

industry [17–26]. Moreover, miscellaneous ML algorithms have been developed, for instance,

decision tree [22], hybrid artificial intelligence approaches [27–29], artificial neural network

(ANN) [30–35], adaptive neuro-fuzzy inference system (ANFIS) [36,37] and support vector

machine (SVM) [16], for analyzing technical problems, including the prediction of pile

mechanical behavior.

It is worth noticing that the development of the artificial neural network (ANN) algorithm

has gained intense attention to treat design issues in pile foundation. For example, Goh et al.
[38,39] have presented an ANN model to predict the friction capacity of driven piles in clays,

in which the algorithm was trained by on-field data records. Besides, Shahin et al. [40–43]

have used an ANN model to predict the driven piles loading capacity and drilled shafts using a

dataset containing in-situ load tests along with CTP results. Moreover, Nawari et al. [44] have

presented an ANN algorithm to predict the settlement of drilled shafts based on SPT data and

shaft geometry. Momeni et al. [45] have developed an ANN model to predict the axial bearing

capacity of concrete piles using Pile Driving Analyzer (PDA) from project sites. Last but not

least, Pham et al.[15] have also developed an ANN algorithm and Random Forest (RF) to esti-

mate the axial bearing capacity of driven pile. Regarding other ML models, Support Vector

Machine Regression (SVR) and “nature inspired” meta-heuristic algorithm, namely Particle

Swarm Optimization (PSO-SVR) [46] have bene used to predict the soil shear strength. Fur-

thermore, Pham et al. [47] have presented a hybrid ML model combining RF and PSO

(PSO-RF) to predict the undrained shear strength of soil. Also, Momeni et al. [48] have devel-

oped an ANN-based predictive model optimized with Genetic Algorithm (GA) technique to

choose the best weights and biases of ANN model in predicting the bearing capacity of piles.

In addition, Hossain et al. [49] used GA to optimize parameters of three hidden layers deep

belief neural network (DBNN), include number of epochs, number of hidden units and learn-

ing rates in the hidden layers. It is interesting to notice that all the studies have confirmed the

effectiveness when implementing the hybrid ML models as a practical and efficient tool in
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solving geotechnical problems, and particularly the axial bearing capacity of pile. Despite the

recent successes of machine learning, this method has some limitations to keep in mind: It

requires large amounts of of hand-crafted, structured training data and cannot be learned in

real time. In addition, ML models still lack the ability to generalize conditions other than those

encountered during the training. Therefore, the ML model only correctly predicts in a certain

data range but is not generalized in all cases.

With a particular interest in a recently developed Deep Learning Neural Network (DLNN),

which has gained tremendous success in many areas of application [50–54], the main objective

of this study is dedicated to the development of a novel hybrid ML algorithm using DLNN and

GA to predict the axial load capacity of driven piles. For this aim, a dataset consisting of 472

pile load test reports from the construction sites of Ha Nam—Vietnam was gathered. The data-

base was then divided into the training, validation, and testing subsets, relating to the learning,

validation and phases of the ML models. Next, a novel ML algorithm using GA-DLNN hybrid

model was developed. ML model using GA is used to select the most important input variables

to create a new smaller dataset due to the reason that many unimportant input variables could

reduce the accuracy of output forecasting. Next, a GA-DLNN hybrid model was used to opti-

mize the parameters of the DLNN model. The optimal architecture of DLNN is used to test

with the new dataset and compare with the full-size case of input variables. Besides, DLNN

model can be optimized to better estimate axial load capacity of pile, including number of hid-

den layers, number of neurons in each hidden layer, activation function for hidden layers and

training algorithm. Various error criteria, especially, the mean absolute error (MAE), root

mean squared error (RMSE), the coefficient of determination (R2) and Index of Agreement

(IA)—were applied to evaluate the prediction capability of the algorithms. In addition, 1000

simulations relating to the random shuffling of dataset were conducted for each model in

order to evaluate the accuracy of final DLNN model precisely.

2. Significance of the research study

The numerical or experimental methods in the existing literature still have some limitations,

such as lack of data set samples (Marto et al.[55] with 40 samples; Momeni et al. [45] with 36

samples; Momeni et al.[56] with 150 samples; Bagińska and Srokosz [57] with 50 samples; Teh

et al. [58] with 37 samples), refinement of ML approaches or failure to fully consider key

parameters which affects the predicting results of the model.

For this, the contribution of the present work can be marked through the following ideas:

(i) large data set, including 472 experimental tests; (ii) reduce the input variables from 10 to 4

which help the model achieve more accurate results with faster training time, (iii) automati-

cally design the optimal architecture for the DLNN model, all key parameters are considered,

include: the number of hidden layers, the number of neurons in each hidden layer, the activa-

tion function and the training algorithm. In which, the number of hidden layers is not fixed

but can be selected through cross-mating between the parent with different chromosome

length. Besides, the randomness in the order of the training data set is also considered to assess

the stability of predicting result of models with the training, validate and testing set.

3. Data collection and preparation

3.1. Experimental measurement of bearing capacity

The experimental database used in this study was derived from pile load test results conducted

on 472 reinforced concrete piles at the test site in Ha Nam province–Vietnam (Fig 1A). In

order to obtain the measurements, pre-cast square-section piles with closed tips were driven to

the ground by hydraulic pile presses machine with a constant rate of penetration. The tests
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Fig 1. (a) Experimental location(�); (b) experimental layout. (�): Source: CIA Maps.

https://doi.org/10.1371/journal.pone.0243030.g001
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started at least 7 days after the piles had been driven, and the experimental layout is depicted

in Fig 1B. It can be seen that the load increased gradually in each pile test. Depending on the

design requirements, the load could be varied up to 200% of the pile load design. The time

required to reach 100%, 150%, and 200% of the load could last for about 6 h to 12 h or 24 h,

respectively. The bearing capacity of piles was determined following these two principles: (i)

when the settlement of pile top at the current load level was 5 times or higher than the settle-

ment of pile top at the previous load level, the pile bearing capacity was taken as the given fail-

ure load; (ii) when the load—settlement curve was nearly linear at the last load level, condition

(i) could not be used. In this case, the pile bearing capacity was approximated as the load level

when the settlement of the pile top exceeded 10% of the pile diameter.

3.2. Data preparation

The primary goal of the development of ML algorithms is to estimate the axial bearing capacity

of the pile accurately. Therefore, as a first attempt, all the known factors affecting the pile bear-

ing capacity were considered. Besides, it was found that most traditional approaches have used

three groups of parameters: the pile geometry, pile constituent material properties, and soil

properties [7–14]. It is worth noticing that the depth of the water table was not considered

since it is shown that this effect have already been accounted in SPT blow counts [59]. The

bearing capacity of piles was predicted based on the soil properties, determined through SPT

blow counts (N) along the embedded length of the pile. In this study, the average number of

SPT blows along the pile shaft (Nsh), and tip (Nt) was used. In addition, according to Meyer-

hof’s recommendation (1976) [7], the average SPT (Nt) value for 8D above and 3D below the

pile tip was also utilized, where D represented the pile diameter.

Consequently, the input variables in this work were: (1) pile diameter (D); (2) thickness of

first soil layer that pile embedded (Z1); (3) thickness of second soil layer that pile embedded

(Z2); (4) thickness of third soil layer that pile embedded (Z3); (5) elevation of the natural

ground (Zg); (6) elevation of pile top (Zp); (7) elevation of extra segment pile top (Zt); (8) deep-

ness of pile tip (Zm); (9) the average SPT blow count along the pile shaft (Nsh) and (10) the

average SPT blow count at the pile tip (Nt). The axial pile bearing capacity was considered as

the single output (Pu). For illustration purposes, a diagram for soil stratigraphy and input, out-

put parameters are depicted in Fig 2.

The dataset containing 472 samples is statistically introduced and summarized in Table 1,

including several pile tests, min, max, average and standard deviation of the input and output

variables. As showed in Table 1, the pile diameter (D) ranged from 300 to 400 mm. The thick-

ness of the first soil layer that pile embedded (Z1) ranged from 3.4 m to 5.7 m. The thickness of

the second soil layer that pile embedded (Z2) varied from 1.5 m to 8 m. The thickness of the

third soil layer that pile embedded (Z3) ranged from 0 m to 1.7 m, where a value of 0 means that

the pile was not embedded in this layer. Besides, the elevation of pile top (Zp) varied from 0.7 m

to 3.4 m. The elevation of natural ground (Zg) ranged from 3.0 m to 4.1 m. The elevation of

extra segment pile top (Zt) varied from 1.0 m to 7.1 m. The deepness of pile tip (Zm) ranged

from 8.3 m to 16.1 m. The average SPT blow count along the pile shaft (Nsh) ranged from 5.6 to

15.4. The average SPT blow count at the pile tip (Nt) ranged from 4.4 to 7.8. The axial bearing

capacity load of pile (Pu), ranged from 407.2 kN to 1551 kN with a mean value of 955.3 kN, and

a standard deviation of 355.4 kN. Besides, the histograms of all the input and output variables

are shown in Fig 3. An example of 100 data samples is given in the appendix (S1 Appendix).

In this study, the collected dataset was divided into the training, validation, and testing

datasets. The training part (60% of the total data) was used to train the ML models. The valida-

tion part (20% of the total data) was used to give an estimate of model skill and tuning model’s
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Fig 2. Diagram for stratigraphy and pile parameters.

https://doi.org/10.1371/journal.pone.0243030.g002

Table 1. Inputs and output of the present study.

N˚ D Z1 Z2 Z3 Zp Zg Zt Zm Nsh Nt Pu

Unit mm m m m m m m m - - kN

1 400 4.35 8 0.95 2.05 3.41 2.06 15.35 13.3 7.6 1110.6

2 300 3.4 5.25 0 3.4 3.47 3.42 12.05 8.65 6.75 610.7

3 400 4.35 8 1.06 2.05 3.56 2.1 15.46 13.41 7.66 1224.8

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

470 300 3.4 5.2 0 3.4 3.43 3.43 12 8.6 6.73 585.35

471 400 3.45 8 0.19 2.95 3.56 2.97 14.59 11.64 7.52 1318

472 400 3.45 8 0.27 2.95 3.63 2.96 14.67 11.72 7.57 1152

Min 300.0 3.4 1.5 0.0 0.7 3.0 1.0 8.3 5.6 4.4 407.2

Average 359.4 3.8 6.5 0.3 2.9 3.5 3.0 13.4 10.5 7.0 955.3

Max 400.0 5.7 8.0 1.7 3.4 4.1 7.1 16.1 15.4 7.8 1551.0

SD 49.2 0.5 1.6 0.4 0.6 0.1 0.6 1.8 2.2 0.6 355.4

SD = Standard deviation.

https://doi.org/10.1371/journal.pone.0243030.t001
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hyperparameters whereas testing data (20% of the remaining data), which was unknown dur-

ing the training and validation phases, was used to validate the performance of the ML models.

4. Machine learning methods

4.1. Deep learning neural network (DLNN) with multi-layer perceptron

The multi-layer perceptron (MLP) is a kind of feedforward artificial neural network [60]. In

general, the MLP includes at least three units, called the layers: the input layer, the hidden

layer, and the output layer. When the hidden layer consists of more than two layers, the multi-

Fig 3. Histograms of the variables used in this study.

https://doi.org/10.1371/journal.pone.0243030.g003

Fig 4. Illustration of the DLNN used in this study, including 10 inputs, three hidden layers, and one output variable.

https://doi.org/10.1371/journal.pone.0243030.g004
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layer perceptron could be called Deep learning neural network (DLNN) [61,62]. In DLNN,

each node in a layer is associated with a certain weight, denoted as wij, with every node in the

other layers creating a fully linked neural system [63]. Except for the input layer, each node is a

neuron that uses a non-linear activation function [64]. Besides, MLP uses a supervised learning

technique called backpropagation for the training process [64]. Thanks to its multi-layer, non-

linear activation functions, DLNN could distinguish non-linear separable data. Fig 4 shows the

DLNN architecture used in this investigation consisting of 10 inputs, three hidden layer and

one output variable

A multi-layer perceptron having a linear activation function associated with all neurons

represents a linear function network that links the weighted inputs to the output. Using linear

algebra, it has been proved that such a network, with any number of layers, can be reduced to a

two-layer input-output model. Therefore, the development of the DLNN network using non-

linear activation functions is crucial to enhance the accuracy of the model, and better mimic

the working mechanism of biological neurons. The use of sigmoid functions is commonly

adopted in DLNN network, with two conventional activation functions as below:

yðviÞ ¼ tanhðviÞ and yðviÞ ¼ ð1þ e� viÞ� 1
ð1Þ

The first one represents a hyperbolic tangent, ranges from -1 to 1, whereas the second one is a

logistic function with similar shape but ranges from 0 to 1. In these functions, y(vi) represents

the output of the ith node, and vi is the total weight of the input connection. Besides, alternative

activation functions, such as the rectifier, or more specialized function, namely radial basis

functions, are also proposed.

In function of the errors of the output compared with the target, the connection weights

and biases are adjusted, making the learning process occurs. This could be considered as an

example of the supervised learning process using the least-squares average algorithm, which is

generalized as a backpropagation algorithm. Precisely, an error in the output node j in the nth

data point is given by:

ejðnÞ ¼ djðnÞ � yjðnÞ ð2Þ

where d refers to the target value, y denotes the value generated by the perceptron system. The

following expression relies on error correction to minimize errors of the predicted output to

determine the node weights:

εðnÞ ¼
1

2

X

j

e2

j ðnÞ ð3Þ

Furthermore, the following expression uses the gradient descent algorithm to calculate the

change, or the correction, for each weight:

DojiðnÞ ¼ � Z
@εðnÞ
@vjðnÞ

yiðnÞ ð4Þ

where yi denotes the output of the previous neuron, refers to the learning rate. These parame-

ters are chosen to ensure that the error quickly converges without oscillation. Besides, the

derivative is calculated based on the local field induced vj, which can be expressed as:

�
@εðnÞ
@vjðnÞ

¼ ejðnÞ�
0
ðvjðnÞÞ ð5Þ

where ϕ0 is the derivative of the activation function. With the change in weight associated with
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a hidden node, the relevant derivative can be shown as:

�
@εðnÞ
@vjðnÞ

¼ �
0
ðvjðnÞÞ

X

k

�
@εðnÞ
@vkðnÞ

okjðnÞ ð6Þ

This function depends on the weight changes of nodes representing the kth output layer. This

algorithm reflects the inverse backpropagation process, as the output weights change according

to the activation function derivative, then the weights of the hidden layer change accordingly.

4.2. Genetic Algorithm (GA)

Holland was the first researcher who proposed a genetic algorithm (GA), a stochastic search algo-

rithm, and optimization technique [65]. Later, GA has been investigated by other scientists, espe-

cially Deb et al. [66], Houck et al. [67]. Generally, GA is considered a simple solution for complex

non-linear problems [68]. The basis of the method lies in the process of mating, breeding in an

initial population, along with several activities such as selection, cross-exchange, and mutation,

which help to create new, more optimal individuals [69]. In GA algorithm, the population size is

an important factor reflecting the total number of solutions and significantly affects the results of

the problem [70], whereas the so-called “generations” refers to the iterations of the optimization

process. This process could be conditioned by several selected stopping criteria [71].

Practically, GA method has shown many benefits in finding an optimal resource set to opti-

mize both cost and production [69]. In the field of construction, especially when evaluating

the load capacity of piles, many studies have successfully and efficiently used GA method. As

an example, Ardalan et al. [72] have used GA algorithm combined with neural network to pre-

dict driven piles unit shaft resistance from pile loading tests. In another study, 50 PDA (Pile

Driving Analyzer) restriction tests were conducted on pre-cast concrete piles to predict the

pile bearing capacity. The proposed hybrid method has provided excellent results with R2 of

0.99 [71]. Moreover, other studies on the behavior of piles in soil using the GA method whose

effectiveness has been clearly proven [68,70,72–74].

In this work, taking advantage of the GA algorithm, such an optimization technique was

used to optimize DLNN to predict the bearing capacity of driven pile. The pseudo algorithm is

summarized below (Table 2):

4.3. Features selection with GA

It is well-known that the training process with DLNN is a time-consuming and costly method

due to the use of computer resource procession [75,76]. In addition, some features in the

Table 2. Pseudo algorithm of the GA algorithm used in this study.

FOR each chromosome i in Population
For each gene j
Initialize Gij randomly within a permissible range

End FOR
End FOR
Generation k = 1
DO
FOR each chromosome i in Population
Calculate the fitness value of Gi

End FOR
Mating the best chromosomes to produce more children
Mutates some children randomly to attempt to find even better candidates
Remove the weakest chromosomes, based on fitness value, from the Population

k = k + 1
WHILE maximum generation

https://doi.org/10.1371/journal.pone.0243030.t002

PLOS ONE Estimation of pile bearing capacity

PLOS ONE | https://doi.org/10.1371/journal.pone.0243030 December 17, 2020 9 / 25

https://doi.org/10.1371/journal.pone.0243030.t002
https://doi.org/10.1371/journal.pone.0243030


dataset might affect the regression results, as well as unnecessary features might generate

noises and reduce prediction accuracy [77]. The selection of appropriate features requires con-

siderable effort, for instance, sum of combinations C(10,i) for i from 1 to 10 could be generated

with a dataset containing 10. In order to facilitate the feature selection process, the GA algo-

rithm was used to choose the appropriate features within the dataset, expecting that fewer

input variables could enhance the prediction accuracy of GA-DLNN. The detailed process of

the selection mechanism is summarized in the following parts.

Firstly, genes inside the chromosome should be selected. In this study, each feature affecting

the pile bearing capacity is considered as a gene. As a result, the length of the chromosome is

10, corresponding to 10 features, or 10 genes (Fig 5).

Considering the chromosome, each gene is associated with a unique value, i.e., 1 when it is

selected or 0 in the other case [78]. Next, to create the population, original chromosomes are

randomly selected [78]. After that, several parents were chosen for mating to create offspring

chromosomes based on their fitness value associated with each solution (i.e., chromosome).

The fitness value is calculated using a fitness function. The support vector regression (SVR) is

chosen as the fitness function for this investigation. In the next step, the regression model is

trained with the training dataset, and evaluated on the validation (or testing) dataset. In this

study, the mean absolute error (MAE) cost function was used to evaluate the accuracy of the

fitness function. The lower the fitness value shows a better solution. Based on the fitness func-

tion, the “parents” are filtered from the current population. The nature of GA lies in the

Fig 5. Representation chromosome of features selection.

https://doi.org/10.1371/journal.pone.0243030.g005
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hypothesis that mating two good solutions could produce the best solution [79]. Children

born to parents can randomly choose their parents’ genes. Mutations are then applied to make

new genes in the next generation.

4.4. Evolution of DLNN parameters using GA and parameters tuning

process

It is universally challenging to find out an optimal neural network architecture. A broad and

continuous discussion of this problematic work has been the subject of intense researches. To

date, no universal rules are given to define the proper number of hidden layers, neurons in

each hidden layer, or functions that connecting the neurons. Considering that in the DLNN

algorithm, various possibilities could be assembled to build the final network structure, the

selection process becomes unachievable. To overcome this problem, the GA could be used to

find the best DLNN architecture in an automatic manner. The mechanism of GA could be

summarized as the following.

Firstly, the genes inside the chromosome are determined. Four parameters to be investi-

gated are selected, including (i) the network optimizer algorithm, (ii) the activation function of

the hidden layers, (iii) the number of hidden layers, and (iv) the number neurons in each hid-

den layer. As the number of neurons in each hidden layer is different, more genes are required.

Each gene contains data representing the number of neurons in each hidden layer. Consider-

ing the maximum number of hidden layers is P2, then the maximum length of the chromo-

some is L = (3 + P2). In particular, the first three genes refer to the first three parameters of the

model, previously presented. It is worth noticing that in this case, each chromosome has a dif-

ferent length, depending on the corresponding number of hidden layers. Hence, the parame-

ters used for the DLNN architecture could be depicted in Fig 6, such as network optimizer

algorithm (P0), the activation function of hidden layers (P1), the number of hidden layers (P2),

and the number neurons in each hidden layer (P3. . .PL).

The considered fitness function is DLNN model, along with four cost functions to evaluate

the performance, namely R2, IA, MAE, and RMSE. Detailed descriptions of these criteria are

given in the next section. Given that the length of the chromosome might be different, the mat-

ing progress occurs under the following principles:

(i). If the length of the parents’ chromosomes is similar, the child will randomly select the

number of hidden layers and the number of neurons from father or mother.

Fig 6. Chromosome representation of the parameters selection process.

https://doi.org/10.1371/journal.pone.0243030.g006
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(ii). If the length of the parents’ chromosomes is different, two cases could be considered in

this case. In the first case, supposing the child chooses the number of hidden layers from a

person with fewer genes, the selection will be random from the parents. In the second

case, a child chooses to take the number of hidden layers from a parent that has more

genes. The only option is to select the missing gene from a person with a higher chromo-

some length, and other genes are taken randomly from their parents. The mating process

is highlighted in Fig 7.

During the mutation process, few children are selected. Besides, a random gene is

selected and replaced with another random value within a given range. Particularly, since

the DLNN model has many parameters, the mutation rate is set at 50% of the number of

children born in order to maximize the chance to find the best genes. Finally, the parame-

ters of DLNN were finely tuned by GA through population generations to find out the best

prediction performance. Table 3 summarizes the tuned parameters and their tuning ranges

and options.

4.5. Performance evaluation

In order to verify the effectiveness and performance of the ML algorithms, four different

criteria were selected in this study, namely, root mean square error (RMSE), mean absolute

error (MAE), the coefficient of determination (R2), and Willmott’s index of agreement (IA).

The criterion RMSE is the mean squared difference between the predicted outputs and tar-

gets, whereas MAE is the mean magnitude of the errors. The similarity between the two

error criteria RMSE and MAE is that the closer these errors’ criterion values to 0, the better

performance of the model. The criterion R2 is the correlation between targets and outputs

[80]. The accuracy of the model is superior in the cases of small values of RMSE and MAE.

The values of R2 are in the range of [−1�1], where higher accuracy is obtained when the

values are close to 1. The Index of Agreement (IA) was presented by Willmott [81,82]. The

IA points out the ratio of the mean square error and the potential error. Similar to R2, the

values of IA vary between −1 and 1, in which 1 indicates a perfect correlation, and negative

value indicates no agreement. These coefficients can be calculated using the following

Fig 7. The mating process with different chromosomes length.

https://doi.org/10.1371/journal.pone.0243030.g007
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formulas [83,84]:

MAE ¼
1

k

Xk

i¼1

ðvi � �viÞ ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k

Xk

i¼1

ðvi � �viÞ

v
u
u
t ð8Þ

R2 ¼ 1 �

Xk

i¼1

ðvi � �viÞ
2

Xk

i¼1

ðvi � �vÞ2
ð9Þ

IA ¼ 1 �

XN

i¼1

ðv � �viÞ
2

XN

i¼1

ðjv � �vj þ jvi � �vjÞ2
ð10Þ

Where k inferred the number of the samples, vi and �vi were the actual and predicted out-

puts, respectively, and �v was the average value of the vi.

5. Results and discussion

5.1. Feature selection

The results of the feature selection process using the GA model is presented in this section.

The initialization parameters of GA used in this study are given in Table 4. Fig 8 illustrates the

evolution of MAE values using GA after 200 generations. It can be seen that the MAE value

was progressively decreased with the generation of GA. The lowest MAE was 116.91 (kN) at

the first generation and decreased to 95.54 (kN) at the 87th generation. This value was

unchanged from the 87th to the 200th generation. The optimum representation chromosome

of feature selection were [0, 1, 1, 0, 0, 1, 0, 0, 0, 1]. This result suggested a new dataset, more

compact, corresponded to [Z1, Z2, Zg, Nt]. Therefore, the number of input variables for a

Table 3. Parameters of DLNN and their tuning ranges/options to be optimized by GA.

N˚ Parameter Explanation Range/Option

1 P0 Network optimizer algorithm Quasi-Newton, Stochastic gradient descent, Adam

2 P1 Activation function of hidden layers Identity, Logistic, Tanh, Relu

3 P2 Number of hidden layers 2–10

4 P3 Number neurons in hidden layer 1 2–80

5 P4 Number neurons in hidden layer 2 2–80

. . . .

. . . .

L—1 PL-1 Number neurons in hidden layer (L-3) 2–80

L PL Number neurons in hidden layer (L-2) 2–80

L = Length of the chromosome, L = (3 + P2).

https://doi.org/10.1371/journal.pone.0243030.t003
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compact dataset included 4 variables. As a result, the input space was reduced by 6 variables

compared to the original dataset.

5.2. Optimization of DLNN architecture

The evolutionary results in predicting the pile bearing capacity of GA-DLNN model are evalu-

ated in this section. The initialization parameters of GA-DLNN used in this study are given in

Table 5. Fig 9 illustrates the evolution of the GA-DLNN model through 200 generations with 4

and 10 input variables. A summary of the best predictability of the models is presented in

Table 6. For the sake of conparison and highlight the performance of the reduced input space,

three different scenarios were performed. The first one used the 4-input space and simulated

with GA-DLNN, denoted as 4-input GA-DLNN model. The second one contained the initial

input space and performed with GA-DLNN, denoted as the 10-input GA-DLNN model. The

last scenario referred to the case using 4 input variables but using DLNN as a predictor,

denoted as 4-input DLNN model.

Table 4. GA feature selection initialization parameters.

Parameters Value and Description

Number of population 25

Number of generation 200

Mating pool size 10

Mutation rate 0.5

Fitness function Support Vector Regression (SVR)

Cost function MAE

Data used Training/ Validation dataset

https://doi.org/10.1371/journal.pone.0243030.t004

Fig 8. Features selection using the GA model.

https://doi.org/10.1371/journal.pone.0243030.g008
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It can be seen that the 4-input GA-DLNN model performed better accuracy, the best gener-

ation yielded correlation of R2 = 0.923, MAE = 75.927, RMSE = 95.118 and IA = 0.981. Com-

pared to the first generation, the 4-input DLNN model produce accurate intermediate

precision (R2 = 0.858, MAE = 90.785, RMSE = 123.788 and IA = 0.967).

The results also show that the 4-input GA-DLNN model gives slightly better performance

than the 10-input GA-DLNN model. The GA-DLNN model with 10 variables predicts

Table 5. GA-DLNN initialization parameters.

Parameters Value and Description

Number of population 25

Number of generation 200

Mating pool size 24

Mutation rate 0.5

Fitness function DLNN

Cost function R2, MAE, RMSE, IA

Data used Training/ Validation dataset

https://doi.org/10.1371/journal.pone.0243030.t005

Fig 9. Parameters tuning using the model using the GA-DLNN model with 4 and 10 inputs.

https://doi.org/10.1371/journal.pone.0243030.g009
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correlation results at most efficient generation as follows: R2 = 0.918, MAE = 75.838,

RMSE = 97.092 and IA = 0.980. The analysis time cost through 200 generations of the 4-input

model is much lower than the 10-input model with the normalized time of the two models,

respectively: 0.7 and 1.0.

The optimum parameters of models are shown in Table 7. It shows that all three models

choose the same network optimization algorithm (Quasi-Newton), the number of hidden lay-

ers range from 2 to 4 and the number of neurons in each hidden layer is relatively complex,

ranging from 9 to 80. However, each model chooses a different type of activation function.

5.3. Predictive capability of the models

Fig 10 shows a visual comparison of test results and predictions based on Pu from a represen-

tative ML model. The performance of ML models has been tested on all three datasets: train-

ing, validation and testing. In this case, two representative DLNN models were selected based

on the best performance through the model evolution (Fig 9), corresponding to input variables

4 and 10. One 4-input DLNN model which has the best fitness value in the first generation,

was chosen to compare with the two optimal models to prove the effectiveness of model evolu-

tion. The predictive capability of the models is also summarized in Table 8.

From a statistical standpoint, the performance of ML algorithms should be fully evaluated.

As mentioned during the simulation, 60% of the test data was randomly selected to train ML

models. The performance of such a model can be affected by the selection order of the training

data set. Therefore, a total of 1000 simulations were performed next, taking into account the

random splitting effect in the dataset. The result is shown in Fig 11 and Tables 9–12. It can be

seen that the performance of the 4-input GA-DLNN model was improved after tuning the

parameters of the DLNN model and outperformed the best model in the first generation

(4-input DLNN). On training set, R2 value has increased from 0.919 to 0.932. The result can

be also observed on the validation set, in which the R2 value is increased (from 0.884 to 0.898).

The most difference can be seen in the testing set in which R2 increased from 0.777 to 0.882.

Compared to the 10-input GA-DLNN model, the R2 value is similar in training and validation,

the big difference only appears in the test data set, whereas R2 value of the 4-input GA-DLNN

model gives better results (R2 = 0.882) compared to 10-input GA-DLNN models (R2 = 0.8).

On testing set, SD value of 4-input GA-DLNN model is smallest (SD = 0.008) compare to

10-input GA-DLNN and 4-input DLNN model (SD = 0.0351, 0.0718, respectively), indicating

more stable 4-input GA-DLNN modelling.

Table 7. The optimum parameter of models.

Parameter 4-input GA-DLNN 10-input GA-DLNN 4-input DLNN

Network optimizer algorithm Quasi-Newton Quasi-Newton Quasi-Newton

Activation function of hidden layers logistic relu relu

Number of hidden layers 2 4 3

Number neurons in each hidden layer (33, 80) (74, 17, 24, 12) (9, 50, 29)

https://doi.org/10.1371/journal.pone.0243030.t007

Table 6. Summary of best prediction capability of models.

Model R2 MAE (kN) RMSE (kN) IA Normalized time

4-input GA-DLNN 0.923 75.927 95.118 0.981 0.7

10-input GA-DLNN 0.918 75.838 97.092 0.980 1.0

4-input DLNN 0.858 90.785 123.788 0.967 -

https://doi.org/10.1371/journal.pone.0243030.t006
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Table 13 presents some research results on ML applications in foundation engineer-

ing. The results of this study as well as previous studies show that the expected founda-

tion effectiveness of ML technique in foundation engineering with prediction results of

foundation load is mostly reaching R2 from 0.8 to 0.9 on test data set. However, due to

the use of different data sets, a comparison between these results is unwarranted. A proj-

ect that uses different data sets is needed to give a generalized model to foundation

engineering.

Fig 10. Measured and predicted values of axial bearing capacity of pile using the models: 4-input GA-DLNN model for training (a), validation (b), testing dataset (c);

10-input GA-DLNN model for training (d), validation (e), testing dataset (f); 4-input DLNN model for training (g), validation (h), testing dataset (i).

https://doi.org/10.1371/journal.pone.0243030.g010
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Table 8. Predictive capability of the models.

Dataset Cost function 4-input GA-DLNN 10-input GA-DLNN 4-input DLNN

Training R2 0.944 0.927 0.910

MAE 64.235 72.744 75.929

RMSE 83.593 94.873 105.884

IA 0.985 0.981 0.976

Validation R2 0.923 0.918 0.858

MAE 75.927 75.838 90.785

RMSE 95.118 97.092 123.788

IA 0.981 0.980 0.967

Testing R2 0.887 0.844 0.809

MAE 86.573 93.074 92.867

RMSE 110.176 132.490 142.896

IA 0.969 0.956 0.947

https://doi.org/10.1371/journal.pone.0243030.t008

Fig 11. Predictive capability of the models with 1000 simulations.

https://doi.org/10.1371/journal.pone.0243030.g011

PLOS ONE Estimation of pile bearing capacity

PLOS ONE | https://doi.org/10.1371/journal.pone.0243030 December 17, 2020 18 / 25

https://doi.org/10.1371/journal.pone.0243030.t008
https://doi.org/10.1371/journal.pone.0243030.g011
https://doi.org/10.1371/journal.pone.0243030


Table 9. Summary of the 1000 simulations using R2 criteria.

Model Dataset Average Min Max SD

4-input GA-DLNN Training 0.932 0.917 0.945 0.0073

Validation 0.899 0.868 0.934 0.0138

Testing 0.882 0.831 0.905 0.0082

4-input DLNN Training 0.919 0.905 0.928 0.0038

Validation 0.884 0.872 0.905 0.0040

Testing 0.777 0.514 0.902 0.0718

10-input GA-DLNN Training 0.924 0.907 0.932 0.0052

Validation 0.918 0.895 0.930 0.0054

Testing 0.800 0.671 0.890 0.0351

https://doi.org/10.1371/journal.pone.0243030.t009

Table 10. Summary of the 1000 simulations using IA criteria.

Model Dataset Average Min Max SD

4-input GA-DLNN Training 0.982 0.978 0.986 0.0020

Validation 0.973 0.964 0.982 0.0038

Testing 0.969 0.955 0.974 0.0021

4-input DLNN Training 0.978 0.975 0.981 0.0010

Validation 0.968 0.964 0.973 0.0012

Testing 0.941 0.676 0.975 0.0215

10-input GA-DLNN Training 0.983 0.979 0.986 0.0009

Validation 0.978 0.970 0.981 0.0017

Testing 0.949 0.919 0.970 0.0088

https://doi.org/10.1371/journal.pone.0243030.t010

Table 11. Summary of the 1000 simulations using RMSE criteria.

Model Dataset Average Min Max SD

4-input GA-DLNN Training 91.537 82.268 101.353 4.9118

Validation 113.764 91.962 130.376 7.8739

Testing 109.965 98.902 131.414 3.7948

4-input DLNN Training 100.444 95.014 106.750 2.3025

Validation 122.405 112.008 128.483 2.0521

Testing 150.528 99.600 299.543 27.3845

10-input GA-DLNN Training 89.901 82.692 98.562 2.3062

Validation 102.720 95.497 118.908 3.4459

Testing 143.002 107.493 180.817 12.7996

https://doi.org/10.1371/journal.pone.0243030.t011

Table 12. Summary of the 1000 simulations using MAE criteria.

Model Dataset Average Min Max SD

4-input GA-DLNN Training 68.211 61.977 72.091 1.7106

Validation 85.937 72.163 95.921 3.3777

Testing 87.459 78.075 95.510 2.2845

4-input DLNN Training 73.960 66.832 78.319 2.2208

Validation 91.629 80.999 98.967 2.9166

Testing 96.997 79.877 127.320 5.6667

10-input GA-DLNN Training 69.458 64.106 76.256 1.6571

Validation 81.074 74.631 93.133 2.8590

Testing 93.507 83.376 105.197 3.1047

https://doi.org/10.1371/journal.pone.0243030.t012
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6. Conclusions

The main achievement of this study is to provide an efficient GA-DLNN hybrid model in pre-

dicting pile load capacity. The model has the ability to self-evolve to find the optimal model

structure, where the optimal number of hidden layers can be treated as a variable and discov-

ered during the model’s evolution, besides to the other important parameters. In addition, an

evolutionary model was developed to mitigate the number of input variables of the model,

while ensuring the accuracy of the regression results.

The results showed that, on the training data set, all three models: 4 -input GA-DLNN,

10-input GA-DLNN and 4-input DLNN have good predict results, in which, the leading is the

model GA-DLNN with 4 inputs. On the validation data set, the 4-input GA-DLNN model gave

similar results to the 10-input GA-DLNN model and outperformed the 4-input DLNN model

with satisfactory accuracy (R2 = 0.923, MAE = 75.927, RMSE = 95.118 kN, IA = 0.981 using

4-input GA-DLNN compared with R2 = 0.918, MAE = 75.838 kN, RMSE = 97.092 kN, IA = 0.98

using 10-input GA-DLNN and R2 = 0.858, MAE = 90.785, RMSE = 113.788 kN, IA = 0.967 kN

using 4-input DLNN). Meanwhile, the time cost for the 4-input GA-DLNN model is much

lower than the 10-input GA-DLNN hybrid model (the normalize time is respectively 0.7 and

1.0). On testing data, the predictability of the 4-input GA-DLNN model proved to be superior to

the other two models. The forecast result of 1000 simulations shows that the average value of R2

is 0.882, 0.8, 0.777 respectively for 4-input GA-DLNN models, 10-input GA-DLNN and 4-input

DLNN. In addition, the oscillation range (minimum, maximum) of R2 value of input model

GA-DLNN 4 is smaller than the other 2 models, indicating the model’s stability.

As research shows that the best results are obtained by GA-DLNN with the number of hid-

den layers from 2 to 4. The number of neurons in each hidden layer is completely different

and is distributed complexly in the hidden layers. It suggests that a DLNN model with 2, 3, 4

hidden layers might be optimal for the problem related to predicting the bearing capacity of

driven piles. However, it is recommended to select the number of neurons in each hidden

layer by evolutionary methods to bring out high performance for the DLNN model. The

results obtained from the evolution of the DLNN model by GA show that the activation func-

tion of hidden layers mainly choose one of two categories: relu or logistic and the Quasi-New-

ton optimal algorithm is most suitable for predicting bearing capacity of pile.
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Table 13. Comparison with other studies.

Author Model Foundation type Number of samples R2 RMSE

Momeni el al. [56] ANFIS Thin-walls 150 0.875 0.048

ANN 0.71 0.529

Momeni el al. [85] GPR Piles 296 0.84 -

Kulkarni el al. [86] GA-ANN Rock-socketed piles 132 0.86 0.0093

Jahed Armaghani el al. [87] ANN 0.808 0.135

PSO-ANN 0.918 0.063

The present study GA-DNN Piles 472 0.882 109.965

https://doi.org/10.1371/journal.pone.0243030.t013
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