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Abstract

In the field of neuroimaging reverse inferences can lead us to suppose the involve-

ment of cognitive processes from certain patterns of brain activity. However, the

same reasoning holds if we substitute “brain activity” with “brain alteration” and “cog-

nitive process” with “brain disorder.” The fact that different brain disorders exhibit a

high degree of overlap in their patterns of structural alterations makes forward

inference-based analyses less suitable for identifying brain areas whose alteration is

specific to a certain pathology. In the forward inference-based analyses, in fact, it is

impossible to distinguish between areas that are altered by the majority of brain dis-

orders and areas that are specifically affected by certain diseases. To address this

issue and allow the identification of highly pathology-specific altered areas we used

the Bayes' factor technique, which was employed, as a proof of concept, on voxel-

based morphometry data of schizophrenia and Alzheimer's disease. This technique

allows to calculate the ratio between the likelihoods of two alternative hypotheses

(in our case, that the alteration of the voxel is specific for the brain disorder under

scrutiny or that the alteration is not specific). We then performed temporal simula-

tions of the alterations' spread associated with different pathologies. The Bayes' fac-

tor values calculated on these simulated data were able to reveal that the areas,

which are more specific to a certain disease, are also the ones to be early altered. This

study puts forward a new analytical instrument capable of innovating the methodo-

logical approach to the investigation of brain pathology.
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1 | INTRODUCTION

Studying the distribution of co-altered areas in the pathological brain

is fundamental to better understand how neuropathologies spread

and develop, as well as to improve categorizations and diagnoses

(Hyman, 2010). The psychopathological models in the Diagnostic and

Statistical Manual of Mental Disorders (DSM, American Psychiatric

Association, 2013) and the International Statistical Classification of
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Diseases (ICD, World Health Organization, 2007) consider both psy-

chiatric and neurological conditions as distinct clinical constructs with

different etiologies. However, growing evidence is challenging this

view (Buckholtz & Meyer-Lindenberg, 2012; Nolen-Hoeksema &

Watkins, 2011). For example, large-scale phenotypic studies and

etiological investigations suggest that brain disorders are frequently

characterized by polygenic inheritance with multiple small-effect risk

alleles causing a constant diffusion of genetic liability, thus ruling

out any rigid classification of mental illnesses (Buckholtz & Meyer-

Lindenberg, 2012; Gejman, Sanders, & Kendler, 2011; Krueger, 1999).

Comorbidity, too, defies rigid categorization. Co-occurrences of psy-

chiatric diseases are rather frequent than exceptional (Cauda et al.,

2017; Cauda et al., 2018; Goodkind et al., 2015; van den Heuvel &

Sporns, 2019); this large diversity in symptomatology, dimensionality

and comorbidity (Kessler et al., 2005; Krueger & Markon, 2011;

Markon, 2010) points to a profound revision of models of classification

(Krueger & Markon, 2006).

A transdiagnostic approach can meet this new need, as it is able to

highlight important differences and similarities in brain disorders. Sev-

eral studies already show that a variety of psychiatric and neurological

conditions preferentially target certain brain regions (Buckholtz &

Meyer-Lindenberg, 2012; Cauda et al., 2017; Cauda et al., 2019;

Cauda, Nani, Costa, et al., 2018; Cole, Repovs, & Anticevic, 2014;

Goodkind et al., 2015; Liloia et al., 2018; McTeague, Goodkind, &

Etkin, 2016). More specifically, Cauda et al. (2019) showed that most

of brain disorders are likely to produce anatomical alterations that

largely overlap with each other, thus demonstrating that there is a

common set of regions (such as the insula, the anterior cingulate cortex

(ACC), some of the prefrontal and anterior temporal areas) which is

altered by the majority of brain disorders (in these areas more than

90% of pathologies have at least one focus of alteration). In contrast,

there are very few brain areas specifically altered by one or a limited

number of diseases (Liloia et al., 2018). This large overlap of altered

regions makes them scarcely informative about the development of

neuropathological processes, because in these regions the alteration

pattern is rather nonspecific. Furthermore, analyses based on forward

inferences (Poldrack, 2006) cannot help us, as they tend to treat in the

same way both the areas having high or low specificity. Instead, an

approach based on Bayesian reverse inferences can extract relevant

information from patterns of altered regions. There are, however,

important issues that need to be addressed, which this study aims to

tackle. Let us see three points in more details.

First, using the anatomical likelihood estimation (ALE) values as

source data, it is possible to create, through a Bayesian reverse infer-

ence approach, a map of alterations caused by brain disorders, and

identify the areas, if any, that are more specific for these diseases.

Researchers generally apply forward inferences by asking what

are the areas affected by certain pathology; in our case, we are inter-

ested in reverse inferences by asking what are the pathological condi-

tions that might have produced a specific alteration pattern. The

probability that a specific pattern of gray matter (GM) alterations may

be related to a specific brain disorder is not equivalent to the probabil-

ity that a specific brain disorder may be related to a specific pattern of

GM alterations: P(GM alteration|brain disease) 6¼ P(brain disease|GM

alteration). The reason of the not equality of the relation between the

two probabilities could be due to various factors, such as noise,

incomplete knowledge of the anatomical and/or functional relation-

ship. To our best knowledge, this kind of calculus has never been tried

before on meta-analytical data of morphological alterations but only

on healthy subjects' task-based fMRI data (Poldrack, 2006, 2011;

Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). A study

(Sprooten et al., 2017), which tried a type of reverse inference over

functional data of psychiatric patients, was not based on a Bayesian

reverse inference, as authors applied a Chi squared test with the

Yates' correction on a cross tables diagnosis-by-region and tested

whether studies about different psychiatric conditions report similar

results. The authors, in sum, calculated a form of correlation between

the number of studies of the pathology-by-region and those of

another pathology.

Second assuming the equiprobability of the priors, the calculus of

the Bayes' factor (BF) index can measure the involvement of an

altered area in a brain disorder as well as avoid the potential bias of

the inhomogeneous representativeness of diseases within a database.

The possibility of the reverse inference from neuroimaging

data has been extensively explored (Hutzler, 2014; Machery, 2014;

Montagna, Wager, Barrett, Johnson, & Nichols, 2018; Poldrack,

2006, 2011, 2012; Poldrack & Yarkoni, 2016; Wager et al., 2015;

Woolrich et al., 2009). On the legitimacy of the method per se see

Lieberman and Eisenberger (2015), Poldrack (2013), Lieberman (2015),

Yarkoni (2015a), Yarkoni (2015b), ShackmanLab (2015), Wager

et al. (2016), Gelman (2017), Machery (2014) and Hutzler (2014). With

a pioneering study, Poldrack (2006) highlighted the difficulties in the

field of functional neuroimaging because the usual kind of inference

that can be applied to neuroimaging data is of the form: if a process

X is involved then the Y brain is activated, and also because it

has been highlighted that very specific patterns of activations associ-

ated with pathological conditions are extremely infrequent (Fox &

Friston, 2012; Poldrack, 2011). Difficulties in making a reverse infer-

ence correctly have been discussed in the debate raised after the

publication of Lieberman and Eisenberger (2015) (Gelman, 2017;

Lieberman, 2015; Poldrack, 2013; ShackmanLab, 2015; Wager

et al., 2016; Yarkoni, 2015a, 2015b), who claimed that activity of the

anterior dorsal cingulate is selective for pain. These findings, however,

have been criticized (Gelman, 2017; Lieberman, 2015; Poldrack, 2013;

ShackmanLab, 2015; Wager et al., 2016; Yarkoni, 2015a, 2015b).

To better assess the involvement of a certain brain activation in a

cognitive process we propose to use the BF index (Jeffreys, 1961),

which is the ratio between the likelihoods of two alternative hypothe-

ses. The choice of prior probabilities is the most complex issue in the

Bayesian approach to meta-analytical data. Priors are generally set to

0.5, so that neither hypothesis P(H1) nor hypothesis P(H2) is privileged,

where H1is the hypothesis of specificity and H2 the hypothesis of

nonspecificity, respectively. It should be noted that with a sufficient

amount of data, as it is our case, the BF should converge to the value

“true,” even though the priors are supposed to be equiprobable. It is

plausible that, even though you and I can have different prior beliefs,
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more often we will agree over the form of the likelihood, so that, if we

gather enough data, the posterior will become very close (Lee, 2012).

In any case, to avoid the introduction of prior densities regarding

the parameters, and to assess whether or not the use of inhomoge-

neous data may produce incorrect BF values, we propose to apply the

Schwarz criterion (Kass & Raftery, 1995; Schwarz, 1978), which, for

large samples, can be considered as an approximation of the logarithm

of BF. As postulated by the Schwarz criterion, our hypothesis is that

the BF values, calculated with equiprobable priors, converge to the

Bayesian information criterion (BIC) if they do not suffer from the bias

due to the inhomogeneity of the sample.

Third, considering neuropathology in its temporal progression,

the BF index can detect which cerebral areas are likely to be altered

early.

As alterations develop from few to many (Cauda et al., 2018),

reverse inferences may identify as more specific to a certain brain dis-

order the areas that are affected early. Theoretically, the maximum

level of overlap between altered regions reaches its limit when all the

brain is affected. In this hypothetical case, each brain pathology would

alter most of the cerebral areas. So, when abnormalities gradually

spread (Fornito, Zalesky, & Breakspear, 2015; Goedert, Masuda-

Suzukake, & Falcon, 2017; Iturria-Medina & Evans, 2015; Yates, 2012;

Zhou, Gennatas, Kramer, Miller, & Seeley, 2012), the overlap of alter-

ations caused by different pathologies will be greater and greater, thus

reducing the degree of specificity of the areas that are progressively

more altered (for an infographic see Figure S4). The capacity of the BF

index to highlight more informative altered regions was tested by

applying the calculus on simulations of diseases with different stages

of alteration spread.

2 | MATERIALS AND METHODS

As a proof of concept, we put forward a map based on Bayesian

reverse inference of the two most represented brain diseases in the

BrainMap database (http://brainmap.org/), namely schizophrenia

(SCZ) and Alzheimer's disease (AD).

BrainMap is an online open access database of published func-

tional and voxel-based morphometry (VBM) experiments that reports

both the coordinate-based results (x,y,z) in standard brain space

(Talairach or MNI) and a hierarchical coding scheme of meta-data con-

cerning the experimental methods and conditions (Fox et al., 2005;

Fox & Lancaster, 2002; Laird, Lancaster, & Fox, 2005; Vanasse

et al., 2018). At the time of the selection phase (April 2018), BrainMap

included meta-data associated with more than 4,000 publications,

containing over 19,000 experiments, 148,000 subjects and 149,000

coordinate-based results.

2.1 | Selection of studies

First, we queried the VBM BrainMap database sector (Vanasse

et al., 2018). By means of the software application Sleuth (v.2.4), we

employed a double systematic search to retrieve the eligible voxel-

based results for each of the two brain disorders of interest. The sea-

rch algorithms were constructed as follows:

For the meta-analysis of SCZ:

SCZ QUERY A) [Experiments Context IS Disease] AND [Experiment

Contrast IS Gray Matter] AND [Experiments Observed Changes IS

Controls>Patients] AND [Experiments Observed Changes IS Con-

trols<Patients] AND [Subjects Diagnosis IS Schizophrenia];

SCZ QUERY B) [Experiments Context IS Disease] AND [Experiment

Contrast IS Gray Matter] AND [Experiments Observed Changes

IS Controls>Patients] AND [Experiments Observed Changes IS

Controls<Patients] AND [Subjects Diagnosis IS NOT Schizophrenia].

For the meta-analysis of AD:

AD QUERY A) [Experiments Context IS Disease] AND [Experiment

Contrast IS Gray Matter] AND [Experiments Observed Changes IS

Controls>Patients] AND [Experiments Observed Changes IS Con-

trols<Patients] AND [Subjects Diagnosis IS Alzheimer's Disease];

AD QUERY B) [Experiments Context IS Disease] AND [Experiment

Contrast IS Gray Matter] AND [Experiments Observed Changes

IS Controls>Patients] AND [Experiments Observed Changes IS

Controls<Patients] AND [Subjects Diagnosis IS NOT Alzheimer's

Disease].

Therefore, two researchers screened all the identified articles in

order to ascertain that: (a) a specific whole-brain VBM analysis was

performed, (b) a comparison between pathological sample and healthy

control participants was included, (c) GM decrease/increase changes

in pathological sample were included, (d) locations of GM changes

were reported in a definite stereotactic brain space (i.e., Talairach

or MNI).

On the basis of the aforementioned criteria, we included in our

analyses: 114 articles, for a total of 147 experiments, 1754 GM

changes and 4,944 subjects (SCZ QUERY A); 693 articles, for a total

of 1,211 experiments, 9,353 GM changes and 41,746 subjects (SCZ

QUERY B); 55 articles, for a total of 83 experiments, 961 GM

changes and 1,297 subjects (AD QUERY A); 760 articles, for a total

of 1,277 experiments, 10,151 GM changes, and 49,194 subjects

(AD QUERY B). Descriptive information of interest and meta-data of

GM changes were extracted from each selected article (see Table S1

for detailed information about the description and distribution of

the VBM data set included in the meta-analysis). In order to facili-

tate subsequent analyses, coordinate-based results from MNI ste-

reotactic space were converted into Talairach space by using

Lancaster's icbm2tal transformation (Laird et al., 2010; Lancaster

et al., 2007).

The selection of studies was performed according to the pre-

ferred reporting items for systematic reviews and meta-analyses

(PRISMA) Statement international guidelines (Liberati et al., 2009;

Moher, Liberati, Tetzlaff, & Altman, 2009). The overview of the selec-

tion strategy is illustrated in Figure S1 (PRISMA flow chart).
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2.2 | ALE and creation of the modeled
activation maps

We performed an ALE using the random effects algorithm of

GingerAle (v.2.3.6, http://brainmap.org/ale) (Eickhoff et al., 2009;

Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012; Turkeltaub et al., 2012).

The ALE is a quantitative voxel-based meta-analysis technique capa-

ble of providing information about the anatomical reliability of results

through a statistical comparison on the basis of a sample of reference

studies from the existing literature (Laird et al., 2005).

To describe the theory behind the ALE method we follow the

description and nomenclature used in Samartsidis, Montagna, Nichols,

and Johnson (2017). The idea of ALE is to model, for each voxel, the

probability that it is a true location of a focus reported as Gaussian

distribution centered on it. Given a study i, the map based on a single

location xik is given by:

Lik vð Þ= cϕ3 vjxik ,σ2I
� �

with ϕ3(x; μ, Σ) is a three-dimensional Gaussian distribution with mean

and covariance μ, Σ evaluated at x�3, I is the identity matrix and c is

a normalization constant ensuring that the sum of ϕ3 over voxels

equals to one. In this way Lik(v) is the probability that the voxel v is the

true location of xik.

The only free parameter is σi, which is determined in an empirical

study by Eickhoff et al. (2009) associating the number of subjects ni in

each study with the SD σi.

The next step of the ALE procedure is to merge the maps Lik in a

single study map Li. This map quantifies the probability of how the

focus near v is really located in v. The final ALE statistic is computed

as follows:

l vð Þ=1−
Y

i

1−Li vð Þð Þ ð1Þ

This formula represents the probability that one of the closest

activations is located in voxel v.

The significance test of ALE is obtained using a Monte Carlo pro-

cedure. For each location, multiple statistics are created by sampling

activation maps from random location. The null ALE statistic is

obtained as follows:

l� vð Þ=1−
Y

i

1−Li v
�ð Þð Þ

in which v* is drawn uniformly from all possible brain locations. The

null distribution can be used to calculate p-values uncorrected or not,

see Eickhoff et al. (2012) for a more detailed description.

2.3 | Reverse inference and Bayes' factor

The framework of the reverse inference is the Bayes' theorem. In gen-

eral, reverse inference in neuroimaging provides information about

the involvement of brain areas in cognitive processes. Through a

reverse inference we can infer the posterior probability of a certain

cognitive process M starting from a pattern of brain activation A. This

inference is based on the conditional probability or likelihood P(A|M)

and a prior probability P(M), that is, the probability we have before

acquiring any clues on brain activations. Neuroimaging data can pro-

vide information on the likelihood of M given A.

The same reasoning still holds if we substitute “brain activity A"

with “brain alteration A” and “cognitive process M" with “brain disor-

der M". In this case, the reverse inference leads us to infer the poste-

rior probability of a pathology P(M|A) from a certain pattern of brain

alterations P(A|M) using the Bayes' theorem:

P MjAð Þ= P AjMð ÞP Mð Þ
P AjMð ÞP Mð Þ+ P Aj¬Mð ÞP ¬Mð Þ ,

where the ¬ symbol is the logical NOT.

Therefore, given the brain alteration A and the prior probability

that the disease M occurs, it is possible to assess the posterior proba-

bility that M occurs on the basis of A. This choice depends on the

information that we know before calculating the likelihood. In the lit-

erature, there is no general consensus as to how this choice should be

made—for a review of the several proposals put forward to address

this point see Carlin and Louis (2008).

The Bayesian approach to testing hypotheses has been developed

by Jeffreys (1961) as part of his scientific program to study inference.

Within this approach, given two competing hypotheses, the statistical

models represent the probability that data are in accord with one

or the other hypothesis and the Bayes' theorem is used to determine

the posterior probability of the two hypotheses. By calculating the

ratio between the two hypotheses we obtain a relation that can be

expressed in words as “Posterior odds = Bayes' Factor × prior odds”.

The BF is the ratio between the posterior and prior odds and rep-

resents a summary of evidence in favor of one of the two hypotheses.

The BF is similar to a likelihood ratio. However, differently from the

likelihood ratio, in the Bayesian framework there is no necessity of

sampling the distribution to assess the sample, because all the infer-

ences are conditional on the sample at hand. The BF therefore is a

summary measure of the information contained in the data about the

plausibility of the model.

We will adopt an objective Bayesian reasoning in which we try to

introduce little prior knowledge into the problem. This perspective

leads to consider the priors ratio P(H1)/P(H2) to be 1, meaning that the

prior probability is equal. This position is reasonable because the

resulting BF can be corrected with other ratios if the priors change.

With this choice, we have that the likelihood ratio is equal to the pos-

terior ratio, which is an important step because in the case of specific-

ity the two hypotheses are each the complementary of the other, so

that we obtain:

BF =
P H1jDð Þ

1−P H1jDð Þ ð2Þ

according to which the BF is equal to the odd ratio of the posterior.
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The framework within which the BF can be calculated on the basis

of meta-analytic data are the following. The likelihood of the data are

calculated as usual: the parameters of the Gaussian distribution are

obtained as a function of the number of subjects used in the experi-

ments under examination. That means that we do not use Bayes to

determine the posterior of the parameters: rather, in this context the

parameters are given and processed as usual in the ALE meta-analysis.

The Bayesian hypothesis test is applied to the successive steps of the

analysis. Therefore, the data used for the calculation of the BF are the

final ALE map obtained as usual with GingerALE software (Eickhoff

et al., 2009; Eickhoff et al., 2012; Turkeltaub et al., 2012).

For the analysis of VBM data the competing hypotheses were:

(a) the alteration of the voxel was specific for the brain disorder under

scrutiny; (b) or the alteration was not (¬) specific. We needed there-

fore to calculate the ALE maps derived from all the experiments in

which the detected alterations were associated with a specific brain

disorder and the ALE maps derived from all the experiments in

which the detected alterations were not associated with that specific

brain disorder. The final result of this process was the BF, a number

between [0, ∞] representing how much the data could support the

model Disease or ¬Disease.

Following Kass and Raftery (1995), the BF value can be inter-

preted as follows (Table 1).

2.4 | The Bayes' factor and temporal evolution of
brain diseases

Because the BF does not guarantee to highlight the earliest areas, but

it does so in virtue of statistical considerations, we run a simulation

to understand this aspect. As already showed (Cauda, Nani, Costa,

et al., 2018; Cauda, Nani, Manuello, et al., 2018; Crossley et al., 2014;

Iturria-Medina & Evans, 2015; Raj, Kuceyeski, & Weiner, 2012; Tatu

et al., 2018; Yates, 2012), neuropathological alterations are supposed

to be distributed across the brain following structural and functional

connectivity pathways. In order to simulate the alteration spread

related to a certain pathology we used the anatomical connectivity

matrix derived from Hagmann et al. (2008). Specifically, we used the

average fiber tract density between two brain areas, obtained from

healthy individuals with a parcellation of gray matter in 998 areas

(nodes). First, we simulated a target pathology, that is, AD; AD is the

ideal candidate because its areas of inception are well known. To do

so, we selected three nodes for each cerebral hemisphere on the basis

of the anatomopathological knowledge about AD (Braak & Del

Tredici, 2011). These six nodes were selected because of their prox-

imity to the transentorhinal cortex, which is known to be one of

the earliest sites of neurofibrillary deposition in AD (Braak, Alafuzoff,

Arzberger, Kretzschmar, & Del Tredici, 2006), and were used as

starting points for a simulated pathological spread. The model of simu-

lation was based on the diffusion equation already applied in Cauda,

Nani, Manuello, et al. (2018), which is the following:

dx tð Þ
dt

= −βLx tð Þ

where x is the concentration of the disease factor, β is the diffusivity

constant controlling propagation speed and the matrix L is the

Laplacian graph defined as:

L= I−Δ−1=2EΔ1=2

in which E is the matrix of the edges representing the connection

strength between nodes and Δ is the diagonal matrix with δi =
P

jeij as

the ith diagonal element. The solution of this equation is:

x tð Þ= exp −βLtð Þx0

This formula describes the evolution of an initial configuration

x0. The initial condition determines where the pathology begins to

spread, that is, which nodes are the earliest to be altered. Thus, by

considering different initial conditions, it is possible to simulate differ-

ent temporal evolutions of brain diseases. The entire temporal span of

the alterations' spread was subdivided in 1000 time points (arbitrary

units), from the initial condition (in which few nodes are altered) to

the state of equilibrium (in which all the nodes are altered). After

obtaining the diffusion data, we randomly selected for each simulation

100 time points so as to have a simulated picture of the uneven distri-

bution of pathological alterations. In each of these time points we

analyzed for every node the degree of its alteration; the nodes that

showed a degree of alteration over a predetermined threshold were

considered as being actually altered. Subsequently, every selected

time point with its surviving altered nodes was treated as an experi-

ment, thus generating different MA maps obtained from simulated

patients (from 6 to 20); all these MA maps were eventually united in

an ALE map.

To simulate other possible pathologies (up to 30), we selected for

each disease six bilateral nodes (three for each side) that were used to

study the temporal evolution of the alterations' spread. Overall, we

generated 1,000 time points for every simulated disease. As we did

for the target pathology, we randomly selected 100 time points, to

analyze the uneven distribution of alterations in different temporal

series. Simulating different number of patients (from 6 to 20), each

time point generated an MA map, which was united with the other

MA maps of the other time points in an ALE map. Finally, the MA

maps obtained from the target pathology (i.e., AD) and those obtained

from the other simulated diseases were used for the BF calculus.

TABLE 1 Bayes' factor points associated with different forces of
evidence

Bayes' factor (BF) Force of evidence

1 to 3 Not worth more than a mere mention

>3 to 20 Positive

>20 to 150 Strong

>150 Very strong

CAUDA ET AL. 4159



2.5 | Validation

To assess the efficacy of our algorithm we have performed an analysis of

reverse inference on fMRI data about pain tasks obtained from the

BrainMap database; this analysis has been already carried out by Yarkoni

et al. (2011), and its results are also available on the Neurosynth platform

(core tools) as well as in Yarkoni (2015b). We made the following two

queries in the functional BrainMap database sector (April 2018):

A - PAIN) [Experiments Context IS Normal Mapping] AND [Experiments

Activation IS Activation Only] AND [Subjects Diagnosis IS Normals]

AND [Experiments Imaging Modality IS fMRI] AND [Experiments Par-

adigm Class IS Pain Monitor/Discrimination];

B - NO PAIN) [Experiments Context IS Normal Mapping] AND [Experi-

ments Activation IS Activation Only] AND [Subjects Diagnosis IS Nor-

mals] AND [Experiments Imaging Modality IS fMRI] AND

[Experiments Paradigm Class IS NOT Pain Monitor/Discrimination].

We retrieved 81 articles, for a total of 261 experiments, 2,604

foci and 1,157 subjects (QUERY A); and 3,141 articles, for a total of

10,209 experiments, 87,409 foci, and 58,367 subjects (QUERY B) (see

Figure S2 PRISMA flow chart for the overview of the selection strat-

egy, Table S2 for the sample characteristics and Table S3 for more

information about the selected fMRI data set, respectively).

From the data retrieved with Sleuth 2.4, we calculated the ALE

for the condition “pain” and for the condition “no-pain.” On the basis

of the priors p(Hi) = 0.5, i = 1, 2, we determined the posterior probabil-

ity and then the BF was determined as in (2), where in our case D

means the voxel v, so that the posterior, was defined as:

P H1jvð Þ= P vjH1ð Þ
P vjH1ð Þ+ P vjH2ð Þð Þ

where P(v|H1) is the likelihood obtained by Equation (1) under the

“pain” condition and P(v|H2) is the likelihood obtained in the “no pain”

condition. The results of our analysis were compared visually with

those of Poldrack (2006) as they are illustrated in Figure 2 of his study

(Poldrack, 2006) as well as with the results of an association map pro-

duced by Neurosynth (Yarkoni et al., 2011). Indeed, the standard out-

put of Neurosynth is not actually a BF map, so comparisons are

necessarily to be made by analogy.

2.6 | Validation of the priors: Schwarz criterion
and Bayes' information criterion

To test and consolidate the results obtained for the specificity with

meta-analytic data we used a different method that do not use the

prior as in the BF obtained in the previous section. It is possible to

avoid the introduction in the model of the prior density with the help

of the following formula:

S= logP DjH1ð Þ− logP DjH2ð Þ− 1
2

d1−d2ð Þlog nð Þ ð3Þ

where θk are the estimations with regard to the different hypotheses

Hk, dk is the dimension of θk, and n is the numerosity of the sample.

If n ! ∞, it is possible to show the validity of the following relation,

called Schwarz criterion (Schwarz, 1978):

S− logBF
logBF

!0

The Schwarz criterion, therefore, tends to the BF. If we consider

the BIC, which is defined as:

BIC = d log nð Þ−2log P Djθk ,ð Þð Þ

we can see that, from (3), minus twice the Schwarz criterion is the dif-

ference between the BIC of the two hypotheses—for an in-depth

description of this theme see Kass and Raftery (1995). Finally, if we

multiply the BIC for minus 0.5, we obtain the S value, which can be

compared with the BF. As pointed out in the introduction, we can

observe that the BIC depends on the number of samples (log(n)); it is

therefore a way of verifying whether or not the choice of 0.5 as prior

is correct for the BF calculus. If we obtain convergent results, we

would be relatively confident that the rationale for choosing equi-

probable priors is, at least with large samples, sound.

2.7 | Stability against sample unbalances: Sample
unbalance compensation

To minimize the potential bias of the inhomogeneous representative-

ness of brain disorders in the database, we generated a single sample

for every brain disease by determining an ALE map of all the experi-

ments about that specific disease. BF maps constructed with this

compensatory procedure were correlated to the original BF maps

obtained without compensation.

2.8 | The file drawer problem or robustness
against noise: Fail-safe

The “fail-safe” technique is frequently used in classical meta-analyses

of both medical and psychological studies. It was first introduced by

Rosenthal (1979) and a specific approach for assessing the robustness

of results against potential publication bias in ALE meta-analyses was

recently developed by Acar, Seurinck, Eickhoff, and Moerkerke (2018).

This method presumes that there are unpublished studies with

contra-evidence results, and consequently estimates the number of

these studies that can be added to the meta-analysis before results

get invalidated. In other words, the procedure requires to introduce

into the sample increasing amount of noise (i.e., unreported experi-

ments) in order to assess how statistically robust is the meta-analytic

result. Here the “fail-safe” technique has been used to address the

possibility that in BrainMap an amount of contra-evidence experi-

ments has not been stored.
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We used the code developed by Acar et al. (2018), which is

available on Github (https://github.com/NeuroStat/GenerateNull).

The procedure can be divided into two steps: noise generation and

robustness estimation. In the first step, the required amount of noise

experiments is obtained. It must be noted that in doing this, the algo-

rithm is constrained by the distributions of the number of foci and the

number of subjects of the real meta-analytic sample (i.e., experiments

retrieved from BrainMap). In other words, if the experiments in the

original meta-analysis had a sample-size between 10 and 20, and

reported between 10 and 20 foci (i.e., peak values) each, the simulated

experiments will also have a number of foci and subjects comprised

between 10 and 20. This lends the noise realistic features. The spatial

localization of peaks is then randomly sampled from the same gray

matter mask used in the ALE computation. In order to correctly esti-

mate the noise, the first step was repeated for each disorder sepa-

rately (i.e., AD, SCZ, and pain).

In the second step, the noise experiments and the original meta-

analytic sample are combined and fed into the ALE algorithm. Results

were tested for statistical significance with 1,000 permutations, as

implemented in GingerALE. In other words, the second step allows to

re-run the meta-analysis taking into account potential experiments

“remained in the drawer.” This procedure was iterated several times

(and for each of the three disorders considered) adding an increasing

amount of noise experiments (between k
2 and 3k, where k is the num-

ber of the original studies). The ALE maps obtained at each level

where then combined to show the robustness of the effect (i.e., the

amount of noise that can be added before the true effect detected by

ALE loses statistical significance). There are currently no normative

values to interpret the fail-safe results in the context of ALE meta-

analysis applied to VBM experiments. As pointed out by Acar et al.

(2018), the minimum amount of injected noise of 5k+10 proposed by

Rosenthal (1979) for behavioral studies seems to be excessively high

to be extended to fMRI field. For the scope of the present work, we

considered 3k a reasonable upper bound. Taking SCZ as an example,

this means that for each of the 114 experiments included in the origi-

nal meta-analysis, three more experiments remained unreported (for a

total of 342).

Finally, A BF map was computed for each level of noise, and cor-

related with the BF map originally obtained for the set of real experi-

ments (a threshold level of three BF points was used for each map).

This allowed us to test the degree to which BF is affected by potential

not included experiments.

3 | RESULTS

3.1 | Bayes' factor

3.1.1 | Comparison with previous results

To test our algorithm, we replicated the analysis performed in Yarkoni

et al. (2011). Figure 1 (middle and bottom rows, and Table S6) shows

the results of the reverse inference on pain tasks data queried from

BrainMap as well as the association map provided for “pain” by

F IGURE 1 Top: Base rates reports of how many pathologies of the VBM BrainMap database cause alterations in every area of the brain.
Areas highlighted in red are those in which more than the 90% of pathologies cause at least an alteration. Middle and bottom: Association test
(expressed in z points) over the term ‘Pain’ performed with Neurosynth and compared with a Bayes' factor (expressed in normalized BF values)
map calculated with equiprobable priors over BrainMap data (see Table S6 for the specific numeric visualization). Left panel: Radar map illustrating
the comparison between the network-based decomposition of previous results expressed in z mean points (Neurosynth) and Bayes' factor values
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F IGURE 2 Top right: Bayes' factor (BF) map of Alzheimer's disease calculated with equiprobable priors over BrainMap data. Top left: Bayes'
factor map of Alzheimer's disease calculated with equiprobable priors over BrainMap data, compensated for the different representativeness of
pathologies in the database. Bottom right: Bayes' factor (BF) map of schizophrenia calculated with equiprobable priors over BrainMap data.
Bottom left: Bayes' factor map of schizophrenia calculated with equiprobable priors over BrainMap data, compensated for the different
representativeness of pathologies in the database. Middle: Radar maps illustrating the comparison between the network-based decomposition of
previous results expressed in mean Bayes' factor values. Bayes' factor maps are expressed in normalized BF values. See Table S4 and S5 for the
specific numeric visualization

4162 CAUDA ET AL.



Neurosynth. Our results are very similar, albeit more conservative,

to those of Neurosynth as well as to those shown by Yarkoni

(Yarkoni, 2015b; Yarkoni et al., 2011). However, differences are to be

expected, given the variability of input data and the methods used

for constructing the maps (ALE vs. MKDA; see Wager, Lindquist, &

Kaplan, 2007). Moreover, Neurosynth does not provide a BF map but

an association map expressed in z scores (for a detailed discussion see

Yarkoni, 2015b; Yarkoni et al., 2011).

3.1.2 | Alzheimer's disease and schizophrenia

Overall, the maps of specificity reveal that the two most represented

pathologies in BrainMap are characterized by certain areas with posi-

tive BF values (see Table 1 and Supplementary Results in the Supple-

mentary Material). It should be noted that the right parahippocampus

is the only region in AD reporting a strong BF value (i.e., BF 21),

whereas middle positive BF values (i.e., BF between 10 and 20) are

exhibited by the left inferior parietal lobule and the right caudate tail.

Others positive values (i.e., BF between 4 and 9) in AD were found in

the bilateral hippocampus-amygdala complex, in the right posterior

cingulate cortex and supramarginal gyrus, as well as in the left supe-

rior temporal gyrus and superior parietal lobe (see Table S5 for a

numeric visualization and Figure 2 top right). The resulting specificity

map for the SCZ condition shows middle positive BF values in the

right postcentral and inferior frontal areas, in the left orbital gyrus,

superior frontal and temporal areas. Other positive BF values in SCZ

were found in the bilateral precunei, in the right uncus, inferior/middle

temporal gyri and in the left medial frontal areas (see also Table S4

and Figure 2 bottom right).

3.1.3 | The Bayes' factor and temporal evolution
of brain diseases

Figure 3 shows the temporal evolution of the simulated target pathol-

ogy (i.e., AD), the foci from which the pathology begins to spread (top

left panel), and the temporal evolution of all the other simulated pathol-

ogies used for statistical comparison (middle panel). The figure also illus-

trates the BF map calculated on the synthetic data (bottom panel), as

well as the comparison between the areas showing a BF > 10 and the

starting points (nodes) of the simulated target pathology (right panel).

3.2 | Validation

3.2.1 | Sample unbalance compensation

Original BF maps obtained without compensation (Figure 2 top right

and bottom right) and those obtained with the compensatory procedure

F IGURE 3 Bayes' factor (BF) and the temporal evolution of pathologies. Top left: Starting nodes of the target pathology (Alzheimer's disease,
AD). Middle: Temporal evolution (expressed in arbitrary time points) both of the target pathology and of all the other simulated pathologies.
Colors from green to violet show the areas that are altered from early to late phases of the simulated pathological spread. Bottom: BF values
calculated on synthetic data. Right panel: Comparison between the areas showing a BF > 10 and the starting points of the simulated target
pathology
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(Figure 2, top left and bottom left) show high correlation values: 0.82

for AD and 0.74 for SCZ, respectively (see Figure 2, middle panel).

3.2.2 | Bayes' information criterion

To test how much the choice of equiprobable priors can influence

the BF values, we compared the BIC with the BF map related to

pain and generated with equiprobable priors (Figure 4). Results

show that both the techniques produce maps that are extremely

similar to each other (r = 0.88). This high correlation leads us to

think that the choice of equiprobable priors does not bias the BF

calculus.

3.2.3 | Fail-safe

Compared to the results related to AD and SCZ, the ones related to

the pain condition are more vulnerable to the noise injections. In fact,

for the pain condition most of brain areas with significant BF values

do not survive after an amount of noise over 100% (Figure 5, left

panel). In this case, the most surviving areas are the sensorimotor and,

F IGURE 5 Left panel: Fail-safe results of the Bayes' factor calculated over pain data. Areas colored from blue to red show increasing
resistances to progressively greater injections of noise in the data set. Middle panel: Fail-safe results of the Bayes' factor calculated over
Alzheimer's disease data. Areas colored from blue to red show increasing resistances to progressively greater injections of noise in the data set.
Right panel: Fail-safe results of the Bayes' factor calculated over schizophrenia data. Areas colored from blue to red show increasing resistances to
progressively greater injections of noise in the data set

F IGURE 4 Right panel: Comparison between the results of the Bayes' information criterion (BIC), expressed in S value (see Methods section),
performed over the term 'Pain' and the Bayes' factor (BF) map calculated with equiprobable priors over BrainMap data. Left panel: Radar map
illustrating the comparison between the network-based decomposition of previous results expressed in mean BIC and BF values. Bayes' factor
maps are expressed in normalized BF values. See Table S6 for the specific numeric visualization
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to a lesser extent, the posterior insular. In contrast, AD and SCZ have

higher correlations even with great quantities of noise injection. In

particular, with regard to SCZ, the correlation is still at r = 0.67 after

an amount of noise of 300%, while with regard to AD, the correlation

is at r = 0.55 after an amount of noise over 150% (Figure 5, middle

and right panels). In the case of AD, the most surviving areas are those

associated with the posterior component of the default mode net-

work (DMN). In the case of SCZ, most of the areas with significant BF

values survive after huge noise injections, save for the most anterior

prefrontal areas. Figure 6 shows how the correlation between BF

maps, derived from AD, SCZ, and the pain condition and obtained

with and without noise, drops at r = 0.3 after an amount of noise

over 150%.

4 | DISCUSSION

In this study, we have applied a Bayesian reverse inference method to

map the pathological brain and identify its altered regions that are

specific to the two most represented disorders in BrainMap database

(i.e., AD and SCZ). This specificity is expressed in terms of BF, positive

values of which (>3, but rarely superior to 20) characterize the struc-

tural alteration profiles both of AD and of SCZ. In particular, the pos-

terior components of the DMN, the amygdalae, the hippocampus

and parahippocampus exhibit positive specificity in the BF map of

AD. Although the BF values of these areas are positive, they are not

strong and just the parahippocampus shows a BF that is slightly supe-

rior to 20 (see Figure S3 and Tables S4, S5, and S6).

With regard to AD, our findings are in accordance with well-

established research and have been also further supported recently by

our group (Manuello et al., 2018). Volumetric changes involving the hip-

pocampus/parahippocampus, and especially the entorhinal cortex, have

been repeatedly considered as relevant features in the development of

AD (Jack Jr. et al., 1997; Rabinovici et al., 2007; Whitwell et al., 2007).

In fact, the atrophy of the medial temporal lobe, generally involving the

amygdala (Poulin, Dautoff, Morris, Barrett, & Dickerson, 2011), is a sig-

nificant biomarker that helps predict the evolution from mild cognitive

impairment to AD (Devanand et al., 2007). Furthermore, resting-state

fMRI investigations provide evidence that AD is associated with a

decreased functional connectivity within the DMN (Zhu, Majumdar,

Korolev, Berger, & Bozoki, 2013). If we consider the progressive

tauopathy that characterizes AD, the typical involvement of both ento-

rhinal and parahippocampal districts may indicate that these are key

regions for the deposition of pathologic tau in this condition (Braak &

Braak, 1991; Braak & Del Tredici, 2011; Jack Jr. et al., 2018; Lowe

et al., 2018; Ossenkoppele et al., 2016; Price & Morris, 1999). The

deterioration of the mesial temporal (hippocampal/parahippocampal/

entorhinal) cortex, in association with the posterior portions of the

DMN, can be successfully identified by structural neuroimaging tech-

niques (both VBM and cortical thickness) with different outcomes for

F IGURE 6 Fail-safe results of the Bayes' factor (BF) of three data sets (i.e., pain, Alzheimer's disease, and schizophrenia) obtained from the
correlational values between the BF map calculated without injections of noise and BF maps calculated with progressively increasing injections of
noise. Colors from blue to red indicate increasing values of standard deviation between the r values calculated in the different runs of the fail-safe
procedure
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sensibility/specificity in comparison to normal isocortical atrophy (Diaz-

de-Grenu et al., 2014). The highest BF values in the parahippocampus

and the transentorhinal regions (Taylor & Probst, 2008) demonstrate

that high BF values are telltale signs of the cerebral areas that are the

earliest to be altered.

With regard to SCZ, we observe that the insula, the ACC, the ven-

tromedial prefrontal cortex, the dorsolateral prefrontal cortex, and

the medial thalamus show an increased specificity compared to other

altered areas. The BF values of these areas are positive but not strong

(ranging between 3 and 20 points). In morphometric studies of SCZ,

the involvement of the insular cortex is frequently reported (Bora

et al., 2011; Brandl et al., 2019; Wylie & Tregellas, 2010). Also,

decreases in gray or white matter volumes have been observed in

both ACC and various sites of the prefrontal cortex (Baiano et al.,

2007; Ellison-Wright, Glahn, Laird, Thelen, & Bullmore, 2008; Glahn

et al., 2008; Honea, Crow, Passingham, & Mackay, 2005; Kim, Kim, &

Jeong, 2017; Koo et al., 2008; Narr et al., 2005; Nesvag et al., 2008).

The thalamus, too, is supposed to play a role in SCZ, on the basis of

its many connections with several brain structures, especially with

the prefrontal cortex (Alelu-Paz & Gimenez-Amaya, 2008; Pergola,

Selvaggi, Trizio, Bertolino, & Blasi, 2015; van Erp et al., 2016). The

complex GM alterations reported by scientific literature in patients

with SCZ (in particular in insular and prefrontal regions) (Kelly

et al., 2018; van Erp et al., 2018) principally impact on areas whose dis-

ruption is directly associated with episodes of psychosis and their

long-term outcome (Palaniyappan et al., 2016; Zuliani et al., 2018),

as well as with cognitive ability and the development of cognitive dis-

turbances (Sasabayashi et al., 2017). The specific structural pattern,

characterized by altered cortical thickness/volume associated with

a perturbed cortical gyrification (both hyper- and hypogyria), reflects

the involvement of a strong genetic or very early developmental back-

ground (Docherty et al., 2015; Spalthoff, Gaser, & Nenadic, 2018).

For all these reasons, SCZ can be considered as a model of neu-

rodevelopmental disorder with high heritability (Andreasen, 2010;

Hilker et al., 2018).

The analysis of the alteration specificity put forward in this study is

complementary to the transdiagnostic alteration patterns observed in

previous investigations (Buckholtz & Meyer-Lindenberg, 2012; Cauda

et al., 2017; Cauda, Nani, Costa, et al., 2018; Cole et al., 2014; Goodkind

et al., 2015; McTeague et al., 2016; Poldrack, 2006, 2011; Yarkoni

et al., 2011). These two approaches provide an overarching picture of

the pathological brain, which is of great interest for a better understand-

ing of how neuropathological processes affect this organ. Interestingly,

although many cerebral areas are altered by the majority of brain dis-

eases, patterns of alterations that seem specific to certain conditions

can emerge. The study of these typical profiles of alterations promises

to give valuable insights for the improvement of our clinical tools.

4.1 | The temporal evolution of brain diseases

It should be noted that when a specific brain disease (especially

the neurodegenerative ones) is in its terminal stages, many areas of

the brain would be affected. Therefore, if neuropathologies were

studied during their advanced developments, they would show a

great overlap of alterations. Differently from the discipline of patho-

logical anatomy, which carries out postmortem studies of the human

brain, neuroimaging techniques usually examine mixed pathological

populations exhibiting different phases of brain degeneration. More-

over, many studies are conducted on patients after their first diagno-

sis. These samples of individuals, therefore, are not expected to have

areas showing great overlap of alterations (Cauda et al., 2019).

Clearly, the simulation shows that the BF calculus can capture,

albeit with some approximation, the earliest points of the simulated

spread. In other words, the BF calculus is able to identify the areas

that are more precociously altered and, therefore, to distinguish

between them and those regions that are affected later. This result

emphasizes the importance to use reverse inference techniques for

studying the anatomical alterations caused by brain diseases, as these

techniques can provide a window into the initial stages of neuropath-

ological development, thus making possible the identification of pat-

terns of alteration spread as specific biomarkers of the early phases of

brain disease in view of patients' selection for disease-modifying clini-

cal trials (Pratt & Hall, 2018; Rohrer et al., 2015; Weiner et al., 2017)

as well as for assessing the efficacy of therapies (Cummings, Ritter, &

Zhong, 2018; Lawrie, O'Donovan, Saks, Burns, & Lieberman, 2016;

Marizzoni et al., 2018).

Indeed, with regard to AD and SCZ, it has been possible to identify

with our Bayesian reverse inference method not only the areas that

appear to be early affected (Braak & Del Tredici, 2011; Nenadic

et al., 2015) but also the sites of the main pathological alterations of

these two conditions, which are characterized by tauopathy and com-

plex structural alterations related to a genetic/neurodevelopmental

background (Jack Jr. et al., 2018; Spalthoff et al., 2018). For instance,

analyses of real data about AD have revealed that the parahippocampus

is the area with the strongest BF values (superior to 20; see Table S5), a

result that is in line with well-established scientific evidence (Taylor &

Probst, 2008).

This result supports well the hypothesis that high values of BF

might be proportional to the degree of alteration earliness exhibited

by those areas. Furthermore, the conceptual implication suggested by

high BF values deserves attention: in fact, the more specific is a brain

area for a disease, the greater the likelihood for that area to be preco-

ciously involved in the progression of the disease. Therefore, although

the BF calculus cannot exactly pinpoint the very first starting site of a

neuropathological process, it can identify the areas that are probably

affected early and differentiate them from those that appear to be

affected later.

4.2 | Validation

The analyses carried out in this study to understand how a sample

that is not uniformly balanced could bias the BF results, along with

the choice for setting the priors, have led us to think that the entity

of the potential biases is not as serious as to invalidate the BF
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calculus. In fact, the strategies used to overcome those difficulties,

both in the case of the compensation of the inhomogeneity of the

sample and in the case of the choice of the priors, have produced

results very similar to those obtained without these procedures. Still,

further research is needed to finally solve these problems. Especially

with regard to the choice of the priors, we need further investigations

with the help of empirical as well as Bayesian empirical techniques

for their calculus.

The fail-safe analysis has showed that the BF results obtained

from the anatomical alteration data of AD and SCZ are rather solid, as

they survive after relevant injections of noise and they are not, there-

fore, strongly affected by publication bias (Acar et al., 2018). In partic-

ular, the results about SCZ are the best surviving, followed by the

results about AD and, at a certain distance, by the results about

the pain condition. Therefore, BF values obtained from VBM data

were more resistant to publication bias than those obtained from

functional data.

4.3 | Limitations

The analysis on meta-analytical data, which are characterized by a cer-

tain degree of deterioration as well as of spatial uncertainty, might

have increased the overlap between regions affected by different

pathologies and, as a consequence, reduced the capacity of revealing

small areas with high specificity. This aspect notwithstanding, the

necessity of using a huge repository, in which data of a large number

of brain disorders are stored, compels to adopt a meta-analytical

approach. Poldrack (2011) claimed that the BrainMap database might

be biased by the fact that the studies are introduced manually, as this

could lead to a partial sample of the literature. In contrast, the data-

base of Neurosynth, which uses an automated process for selecting

articles, should have a more comprehensive sample. We agree only in

part with this criticism. In fact, even if we could create an all-inclusive

database of task-based fMRI studies, the bias because the various

cognitive domains are not uniformly represented would not be defi-

nitely ruled out. This is because all the topics of research do not

have the same interest for the scientific community: for instance,

(i) some tasks or pathologies are more or less studied than others,

independently of their relative frequency; (ii) some other task or

pathologies are more difficult to study and, therefore, less investi-

gated; (iii) the automated selection process for introducing experi-

ments in a database can make classification mistakes, which are

sometimes more frequent than those occurring with a nonautomated

selection; (iv) Neurosynth does not differentiate between activation

and deactivation. In any case, the aim of the present study is not to

explore all the strengths and weaknesses of databases, such as

BrainMap or Neurosynth, but rather to propose solutions and try to

overcome the problems raised in the debate about the reverse

inference.

Although we have devised strategies to avoid the problem of the

inhomogeneity of the BrainMap samples, and though the inhomoge-

neous distribution of data concerns the priors regarding the

parameters of the likelihood model rather than the priors regarding

the hypotheses, the uneven representation of pathologies may none-

theless have biased some results of the reverse inference. However,

so far the use of BrainMap is the only way to create maps of GM

alterations capable of giving an overarching picture of the pathological

brain. As matter of fact, the frequency of distribution of pathologies in

a database cannot represent accurately the frequency of distribution

of pathologies in the real world. This is so because certain conditions

are more investigated than others, independently of their incidence in

the population, so that they are sampled with varying frequencies in

the literature. Moreover, BrainMap contains only a fraction of all the

neuroimaging literature about brain disorders and the addition of new

studies is not principally directed to reduce this inhomogeneity. So,

the amount of results that researchers report is inevitably related to

their expectations as well as to the fact that some research topics are

more prevalent than others; and the BrainMap database inevitably

reflects that bias. Furthermore, even though our model can exclude

possible two identical studies, it cannot control if more than one study

has been carried out on the big same data set, such as COBRE

(Calhoun et al., 2011) or ADNI (Wyman et al., 2013). As a conse-

quence, our estimates may be biased upwards. Nonetheless, the vali-

dation analysis through the BIC, the compensation of the base rates

of different pathologies, and the fail-safe technique have showed that

the potential biases of the sample are unlikely to invalidate our

results.

Since a choice about the prior must be made, on the basis of our

validation analyses and in absence of better strategies, we propose to

choose equal priors (i.e., 50%). Needless to say, even though our vali-

dation analyses are encouraging, equal priors have both strengths and

weaknesses; hopefully future procedures will provide better solutions.

In the meantime, however, we think that the choice of equal priors is

a valuable strategy and should be adopted. This would encourage the

use of reverse inference techniques for the study of alterations cau-

sed by brain diseases, a study that, in our opinion, is essential to better

understand the pathological brain, especially in light of the fact that

many brain areas are nonspecific to pathologies but, rather, exhibit a

great overlap of alterations. Indeed, in spite of the problems already

discussed, a study based on the reverse inference obtained from brain

alterations data are extremely interesting, as it allows the identifica-

tion of the areas that are more specific and/or precociously altered in

a certain pathology. This obviously does not allow sustaining that the

alteration of a certain area is strictly specific to just one pathology,

but certainly it allows to identify which areas, whose alteration is fre-

quently associated with more or less brain disorders, are more or less

specific and informative. In addition, we can compare results obtained

from different pathological processes with each other, as well as com-

pare different patterns of GM alteration associated with the same

pathology, so as to reach a pathological imprint that is more specific

to that pathology.

Finally, our simulations of alteration spreads related to different

pathologies are based on the premise that alterations move diffusively

along brain connectivity pathways. Although this underlying mecha-

nism has been confirmed by recent research (Cauda, Nani, Costa,
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et al., 2018; Cauda, Nani, Manuello, et al., 2018; Crossley et al., 2014;

Fornito et al., 2015; Iturria-Medina & Evans, 2015; Manuello

et al., 2018; Raj et al., 2012; Tatu et al., 2018; Zhou et al., 2012), it is

not the only one that might play a role in the alteration spread. More-

over, the contributions of different mechanisms can vary with regard

to the type of pathology affecting the brain, so that our simulations,

even though they offer in our view the best approximation to real

pathological spreads with the available data, do not pretend to grasp

all the complexities of the actual phenomenon.

Another criticism concerns the fact that over time patients

develop more diffuse structural abnormalities, so that the reliability of

an abnormality may become lower due to the nature of how the dis-

ease evolves. However, it seems plausible that a likelihood model

underlying the BF could explicitly represent the progression of the

disease by using the diffusion patterns employed here to simulate

data. Nonetheless, since this BF approach is able to make inferences

about the areas that are early altered, it should also be possible that

this phenomenon may be a feature of the data and not of this particu-

lar approach.

A further limitation is that the BF is calculated in a univariate man-

ner: each voxel or area is considered in isolation without taking into

account a possible influence of other areas or voxels. Currently we are

trying to develop an approach capable of considering a joint probability

in which more variables (voxels or areas) are taken into consideration;

this view, however, poses several methodological problems, which are

mostly related to the expansion of the parameters' space and, conse-

quently, to the difficulty in performing the calculation.

5 | CONCLUSION

Although transdiagnostic research provides evidence that many sites

of the brain are altered by several pathological processes, this study

shows that a Bayesian reverse inference is capable of identifying the

cerebral areas exhibiting a high alteration specificity to certain pathol-

ogies. This approach allows to distinguish between areas that are

altered by most of brain diseases and areas that are altered by a lim-

ited number of pathologies and, therefore, can be considered more

specific to a certain pathology. It is also capable of identifying the

areas that are likely to be affected early, thus opening a new window

into the in vivo study of the pathological brain. These findings offer

interesting prospects for better characterizing brain disorders, as well

as a new way to perform VBM meta-analyses, thus hopefully contrib-

uting to the intriguing quest for deciphering the complex landscape of

alteration patterns of the pathological brain.
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