
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14101  | https://doi.org/10.1038/s41598-022-18178-9

www.nature.com/scientificreports

Evidence of a genetically driven 
metabolomic signature in actively 
inflamed Crohn’s disease
Enrico Mossotto1,2,3,6, Joanna Boberska4,6, James J. Ashton1,5, Imogen S. Stafford1,2,3, 
Guo Cheng1,3, Jonathan Baker5, Florina Borca3, Hang T. T. Phan3, Tracy F. Coelho5, 
R. Mark Beattie5, Sandrine P. Claus4,7 & Sarah Ennis1,2,3,7*

Crohn’s disease (CD) is characterised by chronic inflammation. We aimed to identify a relationship 
between plasma inflammatory metabolomic signature and genomic data in CD using blood plasma 
metabolic profiles. Proton NMR spectroscopy were achieved for 228 paediatric CD patients. 
Regression (OPLS) modelling and machine learning (ML) approaches were independently applied 
to establish the metabolic inflammatory signature, which was correlated against gene-level 
pathogenicity scores generated for all patients and functional enrichment was analysed. OPLS 
modelling of metabolomic spectra from unfasted patients revealed distinctive shifts in plasma 
metabolites corresponding to regions of the spectrum assigned to N-acetyl glycoprotein, glycerol 
and phenylalanine that were highly correlated (R2 = 0.62) with C-reactive protein levels. The same 
metabolomic signature was independently identified using ML to predict patient inflammation 
status. Correlation of the individual peaks comprising this metabolomic signature of inflammation 
with pathogenic burden across 15,854 unselected genes identified significant enrichment for genes 
functioning within ‘intrinsic component of membrane’ (p = 0.003) and ‘inflammatory bowel disease 
(IBD)’ (p = 0.003). The seven genes contributing IBD enrichment are critical regulators of pro-
inflammatory signaling. Overall, a metabolomic signature of inflammation can be detected from 
blood plasma in CD. This signal is correlated with pathogenic mutation in pro-inflammatory immune 
response genes.

Crohn’s disease (CD), one of the major subtypes of inflammatory bowel disease (IBD), is a heterogenous, relaps-
ing, remitting condition characterised by transmural inflammation across the gastrointestinal tract. Disease 
aetiology centres on complex interaction between genetic predispostion and intestinal microbial exposure. Over 
240 genes associated with IBD are enriched for proteins linked with bacterial recognition and response pathways, 
epithelial barrier integrity and downstream inflammatory signalling1,2. Whilst effective therapies exist, there is 
a clear need to stratify patients into risk groups for disease severity, complications and medication response. 
Reliable genetic and plasma biomarkers provide an attractive mechanism to stratify patients at diagnosis and 
during follow-up, whilst promoting novel drug discovery3.

Nuclear magnetic resonance (NMR) spectroscopy identifies precise constituents of biological samples, 
whereby molecules present distinct characteristic spectra. NMR has demonstrated the ability to discriminate 
IBD patients from controls through identification of dysregulated urine and plasma metabolites4; and distin-
guished IBD patients with active disease from those in remission5. Identification of genomic variation associated 
with disease severity markers, or biomarker profiles, can lead to targeted therapeutics and repurposing of known 
medications for new conditions6. Combining urine NMR spectra analysis with common variants identified 
through genome-wide association studies has previously been used to discover genetically determined metabo-
lites in unselected samples7.
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This study aimed to establish the discrete regions of the plasma metabolomic spectrum that specifically asso-
ciate with inflammation measured using C-reactive protein (CRP) in paediatric CD patients. Following identi-
fication of a robust metabolomic signature of inflammation, we further aimed to compress the data underlying 
these discrete metabolomic peaks for correlation against exome sequencing data in order to identify genes and 
molecular pathways harbouring genetic variation that may explain altered the plasma metabolites. Ultimately, 
we wished to see how integrating metabolomic and genomic data could be used to stratify patients and inform 
therapeutic targeting.

Materials and methods
Patient samples.  Patients aged < 18 years diagnosed with Crohn’s disease using the modified Porto crite-
ria were recruited as part of the Genetics of IBD research study. Research blood samples were acquired during 
routine clinics.

Metabonomic and whole exome sequencing data were generated for a total of 228 patients diagnosed with 
CD. Where routine blood tests were clinically-requested on the same day as the plasma sample used for metabo-
lomic analysis was acquired, these data were digitally retrieved from hospital records as previously described8. 
C-reactive protein (CRP) level was applied as our outcome measure to identify patients with actively inflamed 
disease. Patient medications at the time of plasma sampling were retrieved from electronic health records.

The study has ethics approval from Southampton & South West Hampshire Research Ethics Committee (09/
H0504/125) and the study was conducted in accordance with relevant guidelines and regulations. All patients, 
or their parents/guardians, gave informed consent for participation in this study.

DNA and plasma extraction.  Genomic DNA was extracted from peripheral venous blood samples col-
lected in Ethylenediaminetetraacetic acid (EDTA) using the salting out method. Deoxyribonucleic acid (DNA) 
concentration was estimated using the Qubit® 2.0 Fluorometer and 260:280 ratio calculated using a nanodrop 
spectrophotometer. The average DNA yield obtained was 150 µg/ml and approximately 20ug of each patient 
DNA was extracted for next generation sequencing.

Plasma was isolated from peripheral venous blood by centrifuging samples for 10 min at 2000 RPM and 
4 °C. After centrifugation, the plasma laying above the buffy coat was extracted and immediately frozen and 
stored at − 80 °C.

Genomic data processing.  Whole exome sequencing data were generated using Agilent SureSelect exon 
capture kits and Illumina HiSeq sequencing platforms. Processing and targeted analyses of the whole exome 
sequencing data applied herein have been presented elsewhere9,10. Genomic data were transformed into per-
patient gene pathogenicity scores using the GenePy algorithm11. GenePy integrates the effect of multiple vari-
ants in each gene incorporating information on variant zygosity, frequency and deleteriousness (inferred using 
CADD v1.5 scores12). GenePy scores were initially generated for all patients for all 19,229 RefSeq genes. Genes 
with a Gene Damage Index (GDI) above the recommended threshold (GDI_Phred > 13.84) were excluded 
as genes with values above this level are considered highly mutable but unlikely to be disease causing13. This 
resulted in a final matrix of 15,854 GenePy scores for all patients.

Metabolomics analysis of plasma.  Plasma samples (200 µL) were mixed with deuterium water (D2O) 
(400 µL). The homogenized samples were centrifuged (10 min; 4 °C; 12,000 × g) and transferred to 5 mm NMR 
tubes for analysis by NMR spectroscopy. Plasma samples were processed into a single batch of 228 CD samples. 
NMR experiments applied a Bruker AV700 NMR instrument equipped with a 5 mm inverse CryoProbe™. A 
standard 1-dimensional NOESY-PR-1D experiment was performed on each sample, using a standard preset 
pulse sequence (noesypr1d90°). A Carr-Purcell-Meiboom-Gill (CPMG) experiment was applied (preset pulse 
sequence cpmgpr1d90°), where simple presaturation of the water signal was used. This experiment reduces 
the signal contribution from albumin and lipoproteins present in plasma and highlight signals from otherwise 
overshadowed smaller molecules. All samples were analysed at 297° K, 65 k data point spectrum (spectral width 
19,607 Hz) was obtained by recording 256 scans (8 dummy scans). Phase and baseline of the spectra were cor-
rected using MestreNova software v10.0m. NMR spectra were referenced to the glucose peak at δ 5.223 ppm.

Metabolomics statistical analysis.  Full resolution spectra were processed using Matlab vR2017a. The 
residual water signal was removed. Relative spectra were mean-centred and scaled to unit variance. Principal 
component analysis (PCA) was used to compare samples and identify outliers. Orthogonal Projection to Latent 
Structure (OPLS) analysis was performed for the supervised stage of the analysis, where NMR spectra were used 
as a matrix of variables. Regression of continuous patient CRP measurements against their metabolome data 
matrix, assessed plasma metabolic profile alteration with active inflammation. Model prediction was evaluated 
using goodness-of-fit correlation coefficient R2, showing what percentage of variation is explained by the model, 
and goodness-of-prediction (Q2), constituting the percentage of that variance which can be predicted by seven-
fold cross-validation (hence splitting the input data in 7 subsets and recursively fit the model on 6 subsets and 
test its performance on 1 the left-out subset until all subset are used as test-set). Loadings were presented as a 
pseudo-NMR spectrum, plotting the model back-scaled coefficients and the weight of the variables. Metabolites 
with an R2 weight > 0.4 were considered highly discriminatory14.

Machine learning classification.  A random forest classifier (RF) of metabolic profiles was employed to 
predict patients with active inflammation as measured by CRP levels. While the metabolomic analysis utilised 
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continuous CRP values to identify highly correlating peaks, the objective of the RF was to discriminate patients 
with negligible active inflammation from those with moderate/severe inflammation. Therefore, continuous 
CRP levels were binarised following the current WHO and FDA guidelines to classify patient bloods as either 
inflamed (CRP ≥ 5 mg/L) or non-inflamed (CRP < 5 mg/L)15,16.

The machine learning (ML) approach consisted of three phases (Fig. 1). The first phase involved the use of 
an RF classifier and a fivefold cross-validated recursive feature elimination approach (RFE-CV) to identify the 
regions of the NMR spectrum contributing to the non/inflamed patient classification (feature selection). This 
step recursively excludes 1% of the 38,470 datapoints comprising the metabolic profiles, until all the features 
are removed, and identifies datapoints consistently important for classification. The resultant selected regions 
were then employed to generate the final fivefold cross-validated RF model. Averaged metrics collected to assess 
performance include the F-1 statistic, precision, recall and balanced accuracy. From this final cross-validated 
model, features ranked within the top 5th percentile of importance were retained for further analysis.

The selected points of the spectra were subsequently binned by their location on the NMR spectrum. Groups 
of ≥ 10 points observed in close proximity were defined as ‘peaks’ and their constituent variance summarised 
using PCA. The discriminatory power of each component in separating inflamed/non-inflamed patients was 
assessed using Wilcoxon rank sum test and p values adjusted using false discovery rate (FDR). Components 
with a corrected p value < 0.05 were combined by their sum, generating a single eigenvector for each peak. This 
process transformed the multiple points within each of the n peaks into a matrix of eigenvector scores for each 
patient (Fig. 1, phase II). Summing those components significantly discriminating the inflamed and non-inflamed 
classes after FDR correction allowed for integration into downstream analyses.

In phase III, the resulting eigenvector matrix was integrated with the GenePy-transformed genomic data. 
These steps resulted in two matrices for all patients summarising: (1) eigenvector scores representing the metabo-
lomic data most discriminatory of inflammation status and; (2) genetic data summarising the pathogenic burden 
of mutation for each gene. Spearman’s rank was used to correlate each of the metabolomic eigenvectors against 
GenePy scores for 15,854 genes. Genes with a nominally significant correlation were tested for enrichment in 
human databases (Gene Ontology, KEGG pathways, REACTOME, Complexes (CORUM), Human Phenotypes 
(HPA), WikiPathway (WP) using gProfiler217. Enrichment scores (p values) were corrected using the SCS method 
embedded in the gProfiler2 model.

ML methods were applied using the Scikit-learn Python v3.7 library and R v4.0.3 packages.

Results
Patients were recruited during routine clinics and untargeted with respect to diseases state, duration or treatment. 
As expected for paediatric Crohn’s disease, our cohort is characterised by an excess of male patients. The cohort 
reflected heterogeneity expected within clinical service with respect to time since diagnosis, disease state and 
treatment. Retrospective interrogation of clinical records identified 30 children who had undergone (24-h liquid 
diet and 4-h) fasting in preparation for colonoscopy and 154 patients for whom same-day blood tests had been 
clinically requested (Table 1). Medication data were available for all patients, supplementary data 1. Twenty-seven 
of the 154 patients were on no medications, or only nutritional therapy, at the time of plasma sampling, Table 2.

Metabonomics.  NMR-based blood-plasma metabolomic profiles were acquired for all 228 CD patients. 
Multivariate analysis of these samples identified a subset of patients whose metabolome was markedly character-
ised by elevated concentrations of ketone bodies (3-hydroxybutyrate, acetone and acetoacetate, Supplementary 
Fig. 1A). Cross referencing with clinical records revealed these patients had undergone bowel preparation for 
endoscopy procedure prior to the blood sampling used for NMR analyses. This metabolic perturbation was 
reflected in the OPLS model, which highlighted ketone bodies as strong discriminants, and overshadowed the 
importance of other discriminative peaks of the spectrum (Supplementary Fig. 1A, B and C). All 30 patients with 
documented evidence of bowel preparation for endoscopy prior to plasma collection were therefore excluded 
from subsequent analyses.

Metabolome was regressed against blood CRP readings for the 154 CD patients (R2Y = 0.63, Q2Y = 0.41; 
Fig. 2A). The corresponding loadings plot (Fig. 2B) highlights the peaks contributing most to that classification 
(weight > 0.4). Distinct signals (Table 3) associated with N-acetyl glycoprotein (δ 2.01–2.04 ppm), glycerol (δ 3.56, 
3.64 ppm), phenylalanine (δ 7.33, 7.38, 7.43 ppm), and an unidentified lipid signal (δ 2.66 ppm) were identified at 
significantly higher concentration in plasma samples obtained from patients with higher systemic inflammation.

Machine learning classification.  An RF model was employed to discriminate patient classes of actively 
inflamed (n = 58 patients with CRP ≥ 5 mg/L) versus uninflamed (n = 96 patients CRP < 5 mg/L) cases.

The first phase of modelling identified 23.1% percent (8934 datapoints) of the NMR spectrum as informative 
(Supplementary Fig. 2). On average, the model trained and tested on this fraction of the spectrum was effec-
tive in distinguishing the non/inflamed classes (mean F-1 statistic = 0.78 ± 0.05; balanced accuracy = 0.82 ± 0.04; 
precision = 0.84 ± 0.08 and; recall = 0.74 ± 0.05).

Figure 3A shows the regions of the spectrum identified by the RF model as most informative in discriminat-
ing patients with and without active inflammation.

PCA modelling of the subset of 258 points evaluated as having a relative importance measure within the top 
5th percentile (Fig. 3A; Supplementary Fig. 3) shows reasonable separation between patients according to their 
inflammation status (Fig. 3B). The distribution of 199 of these points was concentrated within 6 discrete peaks 
containing ≥ 10 supporting datapoints (Fig. 3C). These six NMR spectrum peaks identified as highly informa-
tive in the classification of CD patients with/out active inflammation (Table 4) were compared with the peaks 
independently identified through OPLS modelling using continuous CRP levels. Reassuringly, peaks 2 and 3 
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Figure 1.   NMR and genomic data integration. Phase (I) NMR spectra and patient CRP data were input to 
the RF model using (a) RFECV and (b) cross-validated methods to select spectral regions discriminating non/
inflamed patients. Phase (II) Informative data-points were clustered and peaks reduced to a single eigenvector. 
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Created with BioRender.com.
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defined by RF modelling recapitulate the OPLS findings of those peaks labelled as GlycA (δ 2.03–2.07 ppm); peak 
4 defined by ML corresponds to one (δ 3.56–3.57 ppm) of the two spectral signatures that are noted in the OPLS 
modelling to depict glycerol; and peaks 5 and 6 in the RF model correspond to the two phenylalanine peaks (δ 
7.20–7.26 ppm) as seen in Fig. 2B. Furthermore, the individual data points underlying ML derived peaks 3 and 
4 are recognised as having the highest average discriminatory value for classification of inflamed status (average 
importance of 0.29 and 0.35 respectively) with peak 4 exhibiting the highest mean importance and also contain-
ing the single data point with the highest discriminative importance (Fig. 3C, Table 4).

Metabolomics‑genomics integration.  Single eigenvectors summarising the six RF peaks significantly 
discriminating the inflamed and non-inflamed classes after FDR correction (Table 4, Supplementary Fig. 4, Sup-
plementary Fig. 5).

Table 1.   Demographic and blood result data. Mean value is shown with (minimum–maximum) Ancestry was 
inferred from genomic data.

Clinical data Inflamed Non-inflamed

Number of samples 228 58 96

% Caucasian 93.0 97.6% 91.2%

% Male 71.2 75.9% 66.7%

Age in years at plasma extraction 14.0 (2.6–17.9) 14.0 (5.4–17.2) 14.1 (10.3–16.1)

Age in years at diagnosis 12.2 (1.3–16.9) 12.6 (4.1–16.1) 11.9 (2.4–16.6)

Time in years since diagnosis to point of sampling 1.8 (0.0–16.1) 1.4 (0.0–6.5) 2.2 (0.0–9.4)

Fasted (% of samples) 30 (13%) 0 0

CRP (mg/L) 8.75 (0–155) 20.1 (5–155) 1.1 (0–4)

ALB (g/L) 38.4 (23–51) 35.4 (25–45) 40.5 (26–51)

ESR (mm/h) 14 (1–68) 21.6 (5–68) 9 (1–41)

HB (g/L) 123.3 (73–166) 118.6 (89–144) 126.5 (80–166)

PCV (%/L) 0.4 (0.2–0.5) 0.35 (0.3–0.4) 0.4 (0.3–0.5)

PLT (109/L) 343.5 (138–1018) 382 (148–1018) 316.3 (138–568)

WBC (109/L) 7.6 (3.1–20.3) 8.4 (3.5–16.7) 7.1 (3.1–17.1)

Table 2.   Medication usage between inflamed and uninflamed patient groups. Significant values are in 
[bold]. Patient were frequently on multiple therapies. Twenty-seven patients were on no medications, or only 
nutritional therapy, at the time of plasma sampling. *Calculated using a χ2 test.

Thiopurine
Anti-TNF (infliximab or 
adalimumab) Steroids

Exclusive enteral 
nutrition Ustekinumab Vedolizumab

CRP ≥ 5 (n = 58) 27 patients 6 patients 5 patients 7 patients 0 patients 0 patients

CRP < 5 (n = 96) 53 patients 26 patients 14 patients 3 patients 0 patients 0 patients

p value* 0.30 0.01 0.28 0.03 n/a n/a
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Table 3.   List of selected signals from the OPLS model. Reported peaks showed an OPLS weight > 0.4. The 
OPLS weight value represent the R^2 for each metabolites.

Peak δ (ppm) Multiplicity OPLS weight variation Assigned metabolite

2.01 Singlet 0.49 ↑ Composite glycoprotein

2.04 Singlet 0.48 ↑ Composite glycoprotein

2.66 Multiplet 0.69 ↑ Unassigned

3.56 Doublet of doublets 0.64 ↑ Glycerol

3.64 Doublet of doublets 0.52 ↑ Glycerol

7.33 Multiplet 0.46 ↑ Phenylalanine

7.38 Multiplet 0.45 ↑ Phenylalanine

7.43 Multiplet 0.49 ↑ Phenylalanine
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Figure 3.   Machine learning classification of patients using NMR data. (A) Most informative regions selected by 
RF model to discriminate patient inflammation status. (B) PCA of patient’s spectra using 258 most informative 
NMR datapoints. (C) Distribution of the selected most informative datapoints by their shift δ (ppm) and 
importance. Green and red dashed lines indicate the start and end of a peak.
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Correlation of each patient’s eigenvector scores for each of the six ML-defined metabolomic peaks against 
their GenePy gene scores was used to determine any relationship between metabolomic signatures of active 
inflammation and gene pathogenicity scores. This resulted in sets of nominally significant genes that were either 
positively or negatively correlated. In order to retain potentially informative biological insight, these genes were 
then grouped and assessed by direction of correlation (positive, negative, all). These gene sets were then inter-
rogated for enrichment of specific functional pathways that might be useful in interpreting NMR peak signatures 
(Table 5).

Peak 1 is most significantly enriched for ‘g-protein coupled receptors (GPCRs)’ (WP:WP24; p = 0.004) when 
considering all correlated genes, although the signal remains significant when considering only genes that are 
negatively correlated with inflammation status. Specifically, patients designated as having non-inflamed status 
exhibit a higher burden of pathogenic variation in genes involved in GPCR signalling. Peak 2 is positively cor-
related with genes enriched to function within receptor complexes (p = 0.02) and regulate actin cytoskeleton 
(p = 0.03).

Metabolomic peak 4, identified by both OPLS and ML modelling to be most strongly associated with inflam-
mation, contains the most significantly enriched functional gene-sets. One hundred and ten genes whose patho-
genicity scores are significantly correlated with peak 4 are enriched to function within the ‘intrinsic component of 
membrane’ (p < 0.003; GO:0031224) and its subset-term ‘integral component of membrane’ (105 genes, p < 0.003; 
GO:0016021) (Supplementary Table 1). Interestingly, this is the same functional group identified as correlated 
with peak 3 suggesting a common biological mechanism might drive both metabolic signatures.

Of particular interest given our clinical cohort, is the set of seven genes correlated with peak 4 identified as 
enriching for molecular function in ‘inflammatory bowel disease’ (p < 0.003; KEGG:05321). This enrichment is 
specific to negatively correlating genes, indicating that CD patients with active inflammation are more likely to 
have a low burden of pathogenic variation within these genes. The seven nominally correlated genes that combine 
to define this IBD enrichment term are GATA3, IL12B, IL12RB2, IL6, MAF, NFKB1, RORC.

Peak 5 shows a distinct enrichment for the ESR (estrogen signalling receptor) signalling pathway (p < 0.005), 
an important molecular cascade involved in acute and chronic inflammation. Finally, peak 6 shows weaker 
enrichment for various enrichment terms many of which reflect of plasma membrane function echoed in peaks 
3 and 4.

Discussion
This study combined untargeted metabolomics with whole gene pathogenicity burden scores derived from 
whole-exome sequencing data from paediatric patients diagnosed with Crohn’s disease. Assimilation of clinical 
and omic data for patient samples modelled NMR spectra into discrete peaks strongly associated with active 
inflammation detected in plasma. Individual patient differences in these metabolomic signatures of inflamma-
tion appear non-random with respect to functional capacity of genes that elicit the pro-inflammatory immune 
response for which targeted therapies exist18,19.

We used two approaches to determine the regions of patient metabolic spectra most associated with inflam-
mation. Results of both OPLS modelling of continuous CRP and RF modelling of binarised CRP levels, culmi-
nated to identify the same regions of the spectrum typically assigned to N-acetyl glycoproteins (GlycA), glycerol 
and phenylalanine. The metabololomic signature of inflammation identified in this study of paediatric CD 
patients is consistent with that identified in other studies of adult inflammation20. GlycA is a composite signal 
reflecting glycoprotein acetylation of heterogeneous origin21,22. Our data independently corroborate this signal 
as an NMR-derived spectrometric biomarker of systemic inflammation. The same signal was recently highlighted 
in the context of acute febrile illnesses, chronic inflammatory and autoimmune diseases and found to strongly 
correlate with CRP, interleukin-6, fibrinogen, serum amyloid A, lipoprotein-associated phospholipase A2 and 
tumour necrosis factor23,24. While the data here presented reflects a single snapshot of patient’s inflammation 

Table 4.   Machine learning selected NMR peaks. Significant values are in [bold]. Peaks identified by the 
RF classifier in the discrimination of CD patients by their CRP status. Reported importance is scaled by the 
maximum importance observed.

Peak Peak min ppm Peak max ppm Delta ppm
# of NMR data 
points

Max 
importance 
observed

Average 
importance 
observed

PC1 explained 
variance (%)

PC2 explained 
variance (%)

Components 
selected 
for gene 
correlation

Identified 
by OPLS 
modelling

1 1.45 1.50 0.058 18 0.25 0.14 79.5 14.9 PC1 No

2 2.03 2.07 0.047 21 0.28 0.15 92.4 5.1 PC1, PC4, PC5 Yes (N-acetyl 
glycoprotein)

3 2.65 2.66 0.011 40 0.54 0.25 98.6 0.8 PC1 Yes (unas-
signed peak)

4 3.56 3.57 0.017 47 1.00 0.39 82.1 15.2 PC1, PC2 Yes (glycerol)

5 7.20 7.22 0.018 58 0.57 0.22 84.7 2.7 PC1 Yes (phenylala-
nine)

6 7.25 7.26 0.016 15 0.27 0.16 84.9 4.9 PC1 Yes (phenylala-
nine)
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course, previous studies indicated how the GlycA signature might evolve over time25—yet with unknown dynamic 
with respect to CRP—but confirming its role in systemic inflammation20.

CRP, produced by hepatocytes in response to IL-6, is a non-specific clinical marker of acute and chronic 
systemic inflammation. However, its efficacy as a single marker is limited by high inter- and intra-individual 
variability26. Although correlated, it has been suggested that the protein glycan biomarker GlycA and CRP may 
play distinct roles27. CRP levels increase in response to bacteria and intracellular antigens of damaged cells, as 

Table 5.   Enrichment results of gene-peak correlations. Significant values are in [bold]. Enriched terms for 
genes that positively or negatively correlate with the identified peaks. a The term size indicates the number of 
genes belonging to a specific term in the relative dataset. b The intersection refers to the number of genes from 
the correlation analysis that overlaps with a specific term. c SCS correction method embedded in gProfiler2. 
d The complete list of genes enriching for the named term is reported in the Supplementary Table 1.

Peak Enrichment term (term_id) Term sizea Intersectionb Correlation set Adjusted p value (SCS)c Enriching genesd

1

Peptide GPCRs (WP:WP24) 75 11 All 0.004 CCR1, CCR2, CCR5, CCR9, CXCR5, FPR3, 
GALR1, MC3R, MC4R, OXTR, TRHR

Rectum; glandular cells[High] (HPA:0400053) 2641 66 Negative 0.026 Supplementary Table 1

Peptide GPCRs (WP:WP24) 75 7 Negative 0.033 CCR1, CCR2, CCR5, CXCR5, FPR3, MC4R, 
TRHR

GPCRs, Class A Rhodopsin-like (WP:WP455) 256 20 All 0.037 Supplementary Table 1

hSIR2-p53 complex (CORUM:2821) 2 2 Positive 0.050 SIRT1, TP53

SEC23–SEC24 adaptor complex 
(CORUM:7139) 2 2 Positive 0.050 SEC23A, SEC24B

2

Receptor complex (GO:0043235) 379 18 Positive 0.019 Supplementary Table 1

Regulation of actin cytoskeleton 
(KEGG:04810) 217 12 Positive 0.028

BAIAP2, F2R, FGF17, FGFR1, FGFR3, 
ITGAD, ITGAX, ITGB5, PIK3R1, PIP5K1B, 
PPP1CC, PPP1R12B

RNA polymerase I transcription regula-
tory region sequence-specific DNA binding 
(GO:0001163)

8 3 Negative 0.043 BAZ2A, PIH1D1, RRN3

RNA polymerase I core promoter sequence-
specific DNA binding (GO:0001164) 8 3 Negative 0.043 BAZ2A, PIH1D1, RRN3

3

Intrinsic component of membrane 
(GO:0031224) 2464 111 All 0.027 Supplementary Table 1

DTNBP1(1A)-HDAC3 complex 
(CORUM:7487) 2 2 Negative 0.050 DTNBP1, HDAC3

BKCA-beta2AR complex (CORUM:672) 2 2 Positive 0.050 ADRB2, KCNMA1

4

Intrinsic component of membrane 
(GO:0031224) 2464 110 All 0.003 Supplementary Table 1

Inflammatory bowel disease (KEGG:05321) 63 7 Negative 0.003 GATA3, IL12B, IL12RB2, IL6, MAF, NFKB1, 
RORC

Chromatin silencing complex (GO:0005677) 6 4 All 0.004 BAHD1, BAZ2A, RRP8, SIRT2

Integral component of membrane 
(GO:0016021) 2355 105 All 0.005 Supplementary Table 1

Chromatin silencing complex (GO:0005677) 6 3 Positive 0.018 BAHD1, RRP8, SIRT2

Oxidoreductase activity, acting on the 
CH-NH2 group of donors (GO:0016638) 17 4 Negative 0.035 GLDC, GLUD1, LOXL4, PNPO

BKCA-beta2AR complex (CORUM:672) 2 2 Positive 0.050 ADRB2, KCNMA1

5

ESR-mediated signaling (REACTOME: 
R-HSA-8939211) 181 13 Negative 0.005

AGO2, AREG, CXCL12, FKBP5, GNB4, 
GNG12, GPAM, IGF1R, JUN, PIK3R2, TFF1, 
TNRC6C, USF2

Postsynaptic membrane (GO:0045211) 103 8 Positive 0.022 CACNG4, CDH2, CNTN2, DAGLA, DBN1, 
GRIK4, HIP1, KCNMA1

RFC complex (CORUM:277–279-2799) 5 3 All 0.050 RFC1, RFC2, RFC3

MSP58-RINT1 complex (CORUM:6314) 5 2 Negative 0.050 MCRS1, RINT1

6

Plasma membrane (GO:0005886) 5 105 Positive 0.050 Supplementary Table 1

Cell periphery (GO:0071944) 2 105 Positive 0.050 Supplementary Table 1

Intrinsic component of plasma membrane 
(GO:0031226) 4879 83 All 0.008 Supplementary Table 1

Protein-arginine deiminase activity 
(GO:0004668) 4971 3 Negative 0.018 PADI2, PADI3, PADI4

Integral component of membrane 
(GO:0016021) 1591 112 All 0.018 Supplementary Table 1

Intrinsic component of membrane 
(GO:0031224) 5 116 All 0.025 Supplementary Table 1

SPG3A–SPG33 complex (CORUM:6525) 2355 2 Positive 0.040 ATL1, ZFYVE27
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an early acute phase response, whereas haptoglobin, α1-acid glycoprotein, α1-antitrypsin and transferrin, that 
contribute the most to the GlycA signal, rise later stage of the inflammatory response28. GlycA measurement may 
represent an independent, more stable biomarker of acute response and systemic inflammation.

Regions of the metabolomic spectrum attributed to glycerol and phenylalanine were consistently associated 
with the inflammation in our CD patients. Phenylalanine is an aromatic amino acid previously linked to meta-
bolic disturbance29 and a marker of systemic low grade inflammation possibly arising from liver disfunction, 
compromised uptake at the blood brain barrier or altered microbiota composition30. Glycerol has recently been 
described as a single molecule systemic biomarker of infection whereby increased glycerol in plasma reflects a 
metabolic adaptation to intestinal infection, as a provision of sufficient energy for survival31. This study provides 
evidence for a correlation between the NMR glycerol signal and genes known to be involved in the pathogenesis 
of inflammatory bowel disease. Our data demonstrate increased levels of glycerol in patient’s plasma negatively 
correlating with individual burden of pathogenic mutations in genes driving pro-inflammatory signalling i.e. 
patients with wild-type sequence across these genes exhibited a higher metabolic signature of inflammation sug-
gesting a more intact and effective pro-inflammatory response. Despite our data modelling being blind to patient 
diagnosis, objective assessment of over fifteen thousand genes against the metabolomic signature of inflamma-
tion, ‘inflammatory bowel disease’ was amongst the most significantly enriched terms for correlated genes. The 
seven genes driving this result converge upon pro-inflammatory pathways and extensive data already support 
their role in IBD. The pathogenesis of Crohn’s disease is multi-factorial, but there appears to be a significant 
proportion of patients where the underlying genetic risk is related to a hypo-immune response (such as loss-of 
function variants in NOD2)30. This concept provides a framework for understanding why low burden of variation 
in pro-inflammatory ‘IBD’ genes correspond to high glycerol levels. We hypothesise that in these maintained 
pro-inflammatory pathways, chronic activation occurs due to alternative hypo-immune response to intestinal 
bacteria, resulting in chronic inflammation and the observed hyper-inflammatory response32,33.

Expression of GATA3, a mediator of Th2 cytokine response to inflammation is dependent on the p50 subu-
nit of NFKB encoded by NFKB134. NFKB is activated by pattern-recognition receptors (PRRs) including the 
NOD-receptors and a master regulator of immune inflammation with an established role in perturbed mucosal 
inflammation in CD35,36. NFKB recruits several pro-inflammatory cytokines in response to microbial stimulation, 
including IL-12 and IL-23. IL6, in addition to promoting CRP, drives Th17 lineage development—plasticity of 
which is also influenced by RORC37,38. IL12B is an IBD-associated gene encoding the p40 subunit that is targeted 
by ustekinumab monoclonal antibody and common to both IL12 and IL2339,40. Functional studies in both mice39 
and human patients41 proved how mutations in its coding sequence can alter the inflammatory response through 
the formation of the IL-12/IL-23 heterodimer. Although, IL12 and IL23 are both implicated in temporally distinct 
inflammatory responses to intestinal barrier impairment42, concurrent implication in our analysis of IL12RB that 
encodes the membrane receptor for the IL12 cytokine might suggest IL12 signalling is driving the inflammatory 
response in our paediatric cohort. Interestingly GlycA has been previously implicated as a tool for measuring 
inflammation, and specifically within IBD43,44. However this is a non-specific marker and the link to underlying 
genomic variation requires further investigation.

Future optimisation of the approach applied herein is possible. CRP levels are transient and fluctuate with 
disease state and treatment. Other than their attendance at routine tertiary clinics, our patients were unselected 
with respect to their disease state or clinical intervention. It is likely that standardising the patient cohort would 
further improve power to detect genetic signals. Superior power may be gained by focussing on treatment naïve 
individuals at point of diagnosis, although such samples can be difficult to attain and remain non-uniform with 
respect to underlying genetics, steroid and antibiotic use and duration of disease prior to first attendance.

In preparation for endoscopy, patients are restricted to a glucose-containing fluid-only diet from 24-h prior to 
the procedure and nil-by-mouth for the four hours immediately preceding endoscopy. Our data identified a meta-
bolic signature highly inflated for ketone bodies in these patients that may warrant further clinical consideration.

Our data indicate patients with an altered burden of pathogenic mutation within genes critical to mounting 
the pro-inflammatory immune response following bacterial exposure, harbour a distinctive metabolomic signa-
ture (δ 3.56–3.57 ppm) reflecting inflammatorily active disease. This metabolomic signature and its correlated 
genes warrant further investigation as biomarkers to stratify CD patients into groups that may respond differently 
to targeted monoclonal antibodies. While our study focussed on children with a diagnosis of Crohn’s disease, 
we suggest mutations in these genes are unlikely to represent the primary CD disease trigger in many of these 
patients, but instead contribute to an individual genomic profile that substantially modulates the inflammatory 
response and disease progression.

Data availability
The datasets generated and/or analysed during the current study are available through direct collaborative agree-
ments, in line with the informed consent gained from all participants.
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