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ABSTRACT
Identification of extracellular vesicle (EV) subpopulations remains an open challenge. To date, the
common strategy is based on searching and probing set of molecular components and physical
properties intended to be univocally characteristics of the target subpopulation. Pitfalls include
the risk to opt for an unsuitable marker set – which may either not represent the subpopulation
or also cover other unintended subpopulations – and the need to use different characterization
techniques and equipment. This approach focused on specific markers may result inadequate to
routinely deal with EV subpopulations that have an intrinsic high level of heterogeneity. In this
paper, we show that Fourier-transform Infrared (FT-IR) spectroscopy can provide a collective
fingerprint of EV subpopulations in one single experiment. FT-IR measurements were performed
on large (LEVs, ~600 nm), medium (MEVs, ~200 nm) and small (SEVs ~60 nm) EVs enriched from
two different cell lines medium: murine prostate cancer (TRAMP-C2) and skin melanoma (B16).
Spectral regions between 3100–2800 cm−1 and 1880–900 cm−1, corresponding to functional
groups mainly ascribed to lipid and protein contributions, were acquired and processed by
Principal Component Analysis (PCA). LEVs, MEVs and SEVs were separately grouped for both
the considered cell lines. Moreover, subpopulations of the same size but from different sources
were assigned (with different degrees of accuracy) to two different groups. These findings
demonstrate that FT-IR has the potential to quickly fingerprint EV subpopulations as a whole,
suggesting an appealing complement/alternative for their characterization and grading, extend-
able to healthy and pathological EVs and fully artificial nanovesicles.
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Introduction

The terms “exosomes”, “microvesicles” and “apoptotic
bodies” have been traditionally applied for classification
of the three main extracellular vesicle (EV) subpopulations
[1]. According to the most recent papers and guidelines
[2–4], these traditional definitions are too rigid, and do not
take into account the overlapping size range, similar mor-
phology and variable composition of EV subpopulations.
Hence, current attempts to devise a more precise nomen-
clature for EVs are now emerging in literature, together
with a huge effort to classify EVs in different subpopula-
tions according to multiple parameters, such as size, den-
sity, protein composition, lipid content, RNA and DNA
cargo, morphology, description of conditions and cell ori-
gin [3–5]. EV classification parameters are based on a set of
molecular components and physical properties intended to

be univocally characteristics of the target subpopulation.
However, focusing on specific markers cannot give
a comprehensive view of samples, defined by a high level
of heterogeneity. In addition to the biological variability,
pre-analytical and analytical variables in EV subtypes
separation (starting source, starting volumes, lab routine)
may increase the complexity of EV subpopulation
classification.

In this scenario, EV collective characterization of
a subpopulation is highly desirable. Fourier-transform
Infrared (FT-IR) spectroscopy is a comprehensive tech-
nique that can be alternatively exploited to address this
unsolved challenge. FT-IR spectroscopy is a non-
destructive method that can investigate solid tissues,
fluids and cells [6]. It is a vibrational spectroscopic
method physically based on the change in the dipole
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moment in a molecule. It acts on the principle of
vibrating molecular bonds and the resulting absorption
wavelengths, which depend on the involved atoms and
strength of intermolecular interactions, determine the
chemical profile of a specific material [6]. IR active
molecules exhibit a variation in the molecular bonds
by atomic displacements owing natural vibrations that
provide a rapid and label-free tool to interrogate mole-
cular composition of biological materials [7–10].

FT-IR spectroscopy is amenable to an accurate col-
lective fingerprint of EV subpopulations in one single
experiment, grading the intrinsic high level of hetero-
geneity of different EV subtypes. Only an attempt to
exploit FT-IR spectroscopy to distinguish EV subtypes
from one cell line has been reported [11].

Complementary spectroscopic approaches, such as
Raman spectroscopy, have already been reported to distin-
guish EVs [12–14]. However, Raman Spectroscopy suffers
from very low sensitivity. This drawback is often circum-
vented by coupling the analytes with plasmonic nanopar-
ticles (SERS) [15,16], by labelling them with organic dyes
(Raman reporters), or immune-labelling with nanoprobes
[17]. These strategies allowed to distinguish EVs from
various sources, disease contexts [18,19] and single-
vesicle analysis [20–22]. SERS-active nanostructures can
enhance the Raman signals of target molecules by several
orders of magnitude, but can have problems in stability,
poor reproducibility, and sample damaging according to
their material composition and architecture [23,24]. Those
approaches might introduce pitfalls in data analysis, which
might strongly affect the classification of EV subpopula-
tions. Moreover, commercially available instrumentation
for Raman spectroscopy is typically more complex and
expensive than the corresponding FT-IR spectrometers.
For these reasons, we decided to focus our study on FT-IR.

In the present work, we challenged FT-IR spectroscopy
to fingerprint EV subpopulations separated using differ-
ential centrifugation steps, a widely adopted technique
[4,20,25,26]. We enriched for large (LEVs), medium
(MEVs) and small (SEVs) EVs from murine prostate can-
cer (TRAMP-C2) and murine skin melanoma (B16) cell
culture media according to their different sedimentation
properties. We combined FT-IR spectroscopy and spectral
exploration by means of chemometric tools (Principal
Component Analysis, PCA) and we were able to finger-
print the EV subpopulations both vertically (deriving from
the same cell line) and horizontally (among different cell
lines) with different degrees of accuracy.

Materials and methods

All data were acquired and described following the
MIRABEL [27] and MISEV 2018 [3] international

guidelines. We have submitted all relevant data of EV
samples to the EV-TRACK knowledge base (EV-
TRACK ID: EV180079) [28].

Chemicals and reagents

All reagents were purchased from Sigma-Aldrich
(St. Louis, MO, USA) unless otherwise specified.

Cell lines

Murine cell line TRAMP-C2 (ATCCCRL-2731,Musmus-
culus, mouse, tissue: prostate cancer) were grow in supple-
mented DMEM as described in Busatto et al. [29]. Murine
cell line B16 (B16-F10, ATCC CRL-647; Mus musculus,
mouse; tissue: melanoma skin) were grown in DMEM as
described in Montis et al. [30]. Cells weremyco-free tested
and used at passage 2–20. Cells (1.700.000 each dish) were
seeded on at least five 150 Petri dish and maintained at 37°
C at 5% CO2 until 80% of confluency in their medium
supplemented with 10% Foetal Bovine Serum (FBS)
(Lonza) depleted fromSEVs. FBS complement inactivation
was performed at 56°C for 30 min prior usage. SEVs
depleted FBS was obtained diluting FBS 1:4 and centrifu-
ging it at 100,000 g (Type 45i rotor, ultracentrifuge XP80,
Beckman) for 18 h. Supernatant was filtered with 0.22 µm
filter (Filtropur V50, 500 mL, Sarstedt), aliquoted and kept
at −20°C until use [31]. Fresh prepared complete medium
was filtered again with 0.22 µm filter. Before EV recovery,
cells werewashed twicewith PBS 1X and incubated for 24 h
with 17 mL of serum-free DMEM each dish.

Different EV subpopulations enrichment from cell
culture medium

Medium was collected from Petri dishes in 50 mL tubes
and processed with serial centrifugation steps as previously
described [32,33]. Briefly, 85 mL of medium were centri-
fuged at 800 g for 30 min (5804R Eppendorf centrifuge,
A-4-44 rotor, 50 mL 174 × 22 mm polypropylene tube
Sarstedt, 42.5 mL each tube). Supernatant of 42.5 mL was
centrifuged at 16,000 g for 45 min (Avanti J25, rotor ja20,
polycarbonate tubes 357003 Beckman, 21.25 mL each
tube). Finally, 42.5 mL were centrifuged at 100,000 g
for 4 h (Optima XP80, TY45i rotor, polycarbonate
tubes 355622 Beckmann). The 800 g centrifugation step
allows sedimentation of cell debris and LEVs, the
16,000 g step allows us to pellet MEVs, while the final
100,000 g ultracentrifugation enriches SEVs. Pellets were
washed with 1 mL sterile H2O (Milli-Q, Merck Millipore)
and re-pelleted at the same g force and time in a 5417C
Eppendorf centrifuge (45-30-11 rotor,) except SEVs, pel-
leted at 100,000 g 2 h (TLA-55 rotor, Optima MAX,
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Beckman). All stepswere performed at 4°C, centrifugations
speed decreased with max brake on.

Atomic Force Microscopy (AFM) imaging and size
distribution

Atomic ForceMicroscopy (AFM) imaging and image ana-
lysis were performed adapting the protocols we developed
in previous works [34,35]. Briefly, pellets were resuspended
in 100 μL sterile H2O (Milli-Q, Merck Millipore) and
diluted 1:10 in H2O. Five microliters of sample were then
spotted onto freshly cleavedmica sheets (Grade V-1, thick-
ness 0.15 mm, size 15 × 15 mm2). The samples were then
allowed to dry at room temperature. They were finally
imaged with a NaioAFM (Nanosurf AG) equipped with
Multi75-AI-G tip (Budget Sensors). Images were acquired
in tappingmode,with a scan size ranging from1.5 to 25 µm
and a scan speed of 1 s per scanning line. EV size distribu-
tions were obtained by image analysis of at least five repre-
sentative AFM images with a scan size of 8.7 μm× 8.7 μm.
Image analysis was performed using WSxM version 5.0
[36] and Image J.

EV subpopulations purity assessment

EV subpopulations were checked for purity from protein
contaminants applying the COlorimetric NANoplasmonic
(CONAN) assay, which exploits the nanoplasmonic prop-
erties of colloidal gold nanoparticles (AuNPs) and their
peculiar interactionwith proteins and lipid bilayers [37,38].

SDS−PAGE and Western blot

SDS−PAGE andWestern blot were performed by standard
procedures [39] on the total cell homogenate [40] (30 µg,
protein content determined by Bradford assay), LEVs,
MEVs and SEVs population separated as described above.
Samples were electrophoresed and analysed by Western
Blot with the following antibodies (at dilution 1:500)[25]:
mouse anti-Flotillin 1 (Santa Cruz, clone C-2, sc-74566)
mouse anti-Annexin V (Santa-Cruz, clone H-3, sc-74438),
rabbit anti-ADAM10 (Origene, AP05830PU-N), mouse
anti-CD81 (SantaCruz, clone B11, sc-166029).Mouse anti-
GM130 Cis-Golgi protein was diluted 1:250 (BD
Transduction, clone 35/130, 610822) (see Supplemental
Material for more details).

FT-IR measurements

FT-IR measurements were performed with an Equinox 55
spectrometer (Bruker) operating in transmission mode.
The broadband infrared source is modulated by an

interferometer and all the wavelengths are simultaneously
analysed. LEVs,MEVs and SEVs pellets were re-suspended
in 30 µL of milliQ water. From each sample a drop of 2 μL
was deposited onto a diamond window and gently dried
under a stream of nitrogen. Spectra were acquired from
multiple dried EVs simultaneously. The thickness of the
sample did not cause obvious saturation, and in order to
avoid artefacts due to thicker regions all spectra were
recorded in three technical replicates from five different
biological replicates (parallel measurements of biologically
distinct samples that capture random biological variation)
[41] and averaged. Measurements were performed in the
range of 4000–400 cm−1 at nominal 4 cm−1 resolution and,
to increase the signal-to-noise ratio, 128 scans per samples
were co-added without change the position of the sample
between each scan (time per scan 0.9 seconds, included
dead time). Serum-free DMEM was also measured in tri-
plicate as control experiment (see Supplemental Material).
For all spectra manipulations OPUS software 5.0 was used.

Statistical analysis

For statistical analysis the spectral regions between
3100–2800 cm−1 and 1880–900 cm−1 were considered,
covering the principal spectral features common for all
EV subpopulations, as lipids and proteins contributions.
PCA was performed by the R-based software CAT,
Chemometric Agile Tool (http://gruppochemiometria.it,
2018).

Before PCA analysis, all spectra were centred (mean
subtraction) and scaled to a unit vector, with values
ranging between 0 and 1, in order to prevent artefacts
due to the variation in the spectral intensity.

Results and discussion

Large, medium, small EV subpopulations
separation and characterization

We separated different subpopulations of EVs from
TRAMP-C2 (TRAMP) and B16 culture medium via
a differential centrifugation protocol (800 g for 30 min,
16,000 g for 45 min and 100,000 g for 4 h). This protocol
allowed the EV separation on the basis of their different
density and diameter. Dry AFM analysis of EV subpopula-
tions was applied to check morphological properties and
differences in size among all samples. All the preparations
analysed were composed of round-shaped objects and the
size distribution for each population was estimated
(Figures 1(a) and S7). AFM analysis confirmed that, both
from TRAMP and B16 cell line, three different-sized EV
subpopulations were obtained. We could observe a LEV
population pelleted at 800 g that presented a diameter
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distribution from 450 to 1000 nm with a peak at 570 nm
from TRAMP and 690 nm from B16; a MEVs population
pelleted at 16,000 g with a diameter distribution from 100
to 450 nm and a peak at 190 nm (TRAMP) and 230 nm
(B16); and a SEVs population pelleted at 100,000 g with
a diameter distribution from 30 to 150 nm and a peak at
70 nm (TRAMP) and 50 nm (B16) (Figure 1(b)). The black
background in all AFM images indicates the absence of
residual protein contaminants from the separation proce-
dure (with reference to the colour code bar). Purity from
protein contaminants was also checked with the nanoplas-
monic colorimetric (CONAN) assay (Figure 2(a)) [42].
The assay consists of an aqueous solution of bare gold
nanoparticles (AuNPs) at 6 nM concentration. When
mixed with pure EV formulations, the AuNPs cluster on

the EV membrane, whereas in EV formulations which
contain exogenous protein contaminants (EPCs) the
AuNPs are preferentially cloaked by such EPCs (anAuNP-
EPC corona forms), which prevents AuNPs from cluster-
ing to the EV membrane. When AuNPs cluster (are in
tight proximity), their localized surface plasmon resonance
(LSPR) red shifts and broadens, resulting in a colour
change of the AuNP solution from red to blue, which
can be accurately monitored through UV−Vis spectro-
scopy. The assay red shift is therefore directly related to
the purity grade of the added EV formulation and can be
conveniently quantified by describing the AuNP UV-Vis
absorption spectra with the nanoparticle Aggregation
Index (AI), defined as the ratio between the absorbance
intensity at the LSPR peak and the intensity at 650 nm [29].

Figure 1. Imaging of different EV subpopulations. (a) Atomic Force Microscopy (AFM) topography image of the large EV (LEVs),
medium EV (MEVs) and small EV (SEVs) preparations adsorbed onto mica (scale bars as indicated; colorimetric scale indicates the
maximum height detected in each image). (b) Size distribution obtained from analysis of AFM images such as in (a). A total of 513
(TRAMP), 433 (B16) objects were analysed for LEVs, more than 2000 objects for MEVs and SEVs. Numbers on graphs indicate the
diameter, in nm, of each peak indicated for LEVs, MEVs and SEVs from TRAMP and B16, respectively.
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For all the analysed formulations, the mean AI values
resulted equal or lower than 0.2 of the reference AI (i.e.
the dispersed AuNPs solution, AI normalized at 1). This
proves the EV formulations contained negligible amounts
of EPCs. In order to biochemically characterize the LEV,
MEV and SEV subpopulations, we performed a Western
Blot analysis for EV markers, compared to the cellular
homogenate (H) (Figure 2(b)). Since there are no universal
markers of one EV subtype, markers choice was made
according to MISEV 2018 guidelines [3] and recent papers
that compared the protein composition of different EV
subtypes from other cell sources [25,43]. In our experi-
mental conditions and using our cell models, we found an
enrichment of Flotillin1, a protein involved in the vesicular
trafficking [3,44], in LEVs from B16 and TRAMP, in SEVs

from TRAMP andMEVs from B16. We could observe the
presence of the cytosolic protein with membrane binding
ability Annexin V [3] in LEVs, SEVs from both cell lines
and inMEVs from B16. In this case, Annexin V represents
an example of an endogenous cellular protein, which is
unrelated to the use of exogenous Annexin V as a probe
detecting phosphatidylserine exposed on the plasmamem-
brane of cells and EVs. ADAM10, a membrane protein
belonging to the family of matrix metalloproteinases
(MMPs) involved in several biological events [45] and
the tetraspanin CD81 [25], was enriched in the SEVs
fractions from both cell lines. The cis-Golgi marker
GM130 [46] was visible only in the cellular homogenate
(H), indicating an undetectable presence of intracytoplas-
mic membranous components in all subpopulations. See

Figure 2. (a) EV populations purity assessment from protein contaminants with CONAN assay. Normalized Aggregation Index (AI) of
AuNPs (disperse gold nanoparticles), AuNPs + PBS (aggregated gold nanoparticles), Large EVs (LEVs), Medium EVs (MEVs), Small EVs
(SEVs) are showed in the graph. AI decreases along with the change of the solution colour from red to blue (as indicated by the
colour scale), and is inversely proportional to the preparation purity. (b) LEV, MEV and SEV biochemical characterization with
Western Blot (WB) analysis. Equal volume (20 µL) of LEVs, MEVs, SEVs, 30 µg of cell homogenate (H) both for TRAMP and B16 were
loaded. Samples were electrophoresed on SDS-PAGE gel and analysed for the antibodies described in the figures. Un-cropped WB is
available in the Supplemental Material.
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Supplemental Material (Figures S1–S3) for uncut Western
Blots.

Fourier-transform Infrared (FT-IR) spectra of LEV,
MEV, SEV subpopulations

Representative IR spectra of different EV subpopulations
derived from TRAMP and B16 cell lines are shown in
Figure 3. IR spectrum of serum-free DMEM as control
experiment is reported in Supplemental Material (Figure
S4) showing different IR features in comparison with those
ascribed to EVs. FT-IR spectroscopy of biological systems
provides simultaneously information on the main biomo-
lecules contained in a sample, such as lipids, proteins,
nucleic acids and carbohydrates [47]. In this work, we
limit the spectral regions of interest to the characteristic
absorption bands of lipids and proteins, as biological
features immediately associated to all EV subpopulations.
In particular, the amide I absorption band, around
1650 cm−1, is due to the carbonyl stretching vibration,
and the amide II absorption band, around 1540 cm−1, is
due primarily to N–H bending vibrations [48].
Moreover, in the range between 3050–2800 cm−1 and
1500–1350 cm−1 the absorption of the lipid acyl chains
occurs, while around 1740 cm−1 the spectrum is character-
ized by the absorption of the ester carbonyl groups [49].
These molecular vibrations are in agreement with those
previously reported for EV samples [6,11]. Detailed analy-
sis of the selected spectral regions reveals variations in the
shape and relative intensity of the absorption bands. Subtle
changes of the protein absorption region and of the CH2

and CH3 acyl chain stretching modes were observed, sug-
gesting that lipid and protein modifications occur in the
different EV subpopulations. Nevertheless, the spectra are
very complex and they result from the overlapping

absorption of the main biomolecules. For this reason, it is
necessary to implement an appropriate multivariate
approach, in order to reveal underlying spectral
information.

Principal Component Analysis (PCA)

PCA is amultivariate statistical analysis that allows to study
multiple parameters in one-step and it is applied to collec-
tive characterization, when the parameters to evaluate are
numerous and various [50]. PCA is widely used in pattern
recognition and spectroscopy, allowing a broader approach
compared to take into account only the position and
intensity of spectral features such as the conventional pro-
tein-to-lipid ratio that moreover requires a higher data
manipulation [11].

PCA extracts few variables from a high dimensional
data set and visualizes them in a dimensional space of
uncorrelated variables that are linear combinations of the
original variables, named Principal Components (PCs).
The values that IR spectra take in the PC-coordinate sys-
tems are represented in the scores plot, in which each dot
represents a spectrum with reduced dimension. The load-
ings plots of PCA analyses, which represent how each
variable influences a PC, are reported in Supplemental
Material, showing the variables (and in turn the wavenum-
bers) responsible for differentiation of the subpopulations,
being assigned to lipids and proteins spectral regions
(Figures S5 and S6). In all the analyses performed, the
first three PCs reveal the trends of the dataset and the
choice of the PC is made in order tomaximize the variance
that allows separation in the data. Figure 4 shows schemes
of the datasets analysed and PCA scores plots of IR spectra
(three technical averaged replicates from five different bio-
logical replicates) collected for TRAMP cell line (Figure 4

Figure 3. Representative FT-IR spectra of LEVs (red curve), MEVs (green curve), and SEVs (blue curve) derived from (a) TRAMP cell
line, and (b) B16 cell line. Characteristic absorption bands of lipids and proteins are highlighted in the plots. Peaks at 2940 cm−1 and
2860 cm−1 correspond to the absorption of the lipid acyl chains. The amide I absorption band, around 1650 cm−1, is due to the
carbonyl stretching vibration, and the amide II absorption band, around 1540 cm−1, is due primarily to N-H bending vibrations. Peak
at 1740 cm−1 is characterized by the absorption of the ester carbonyl groups.
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(a,b)) and B16 cell line (Figure 4(c,d)). In both cases, it is
possible to sort the different EV subpopulations of the
considered cell lines (LEVs represented by red, MEVs by
green and SEVs by blue circles). The distinction between
LEVs, MEVs and SEVs of TRAMP cell line (Figure 4(b)) is
made on the basis of the separation along the first compo-
nent axis (75.9% of variance) and the second component
axis (16.1% of variance). Figure 4(d) shows a clear separa-
tion of the B16 subpopulations on the basis of first compo-
nent axis that accounts for the 88.3% of variance. Taken
together these data show that our approach can fingerprint
the three EV subpopulations vertically (deriving from the
same cell line) with a high degree of accuracy. We then
tested if FT-IR can be applied to fingerprint a determined
EV subpopulation horizontally, that is EV subpopulations
of the same size from different cell sources, as schematized
in the left panels of Figure 5(a,c,e). In the right panels of
Figure 5, the related PCA scores plots of LEVs, MEVs and

SEVs are shown (Figure 5(b,d,e), respectively). The MEV
scores plot in Figure 5(d) shows a clear separation of the
two subpopulations. In this case, the first component axis
explains 93.5% of the total variance. Figure 5(b) shows the
scores plot comparing LEVs, reporting a lower separation,
with a PC1 variance of 70.7% of the total variance. Scores
plot of SEVs population (Figure 5(f)) shows that samples
from each cell line are close to each other with PC2 and
PC3 total variance of 22.5%.

LEVs and SEVs clustering of data points visualized in
thePCA scores plots resulted not clearly separated. In order
to better interpret these data we used a PCA followed by
a further chemometric tool: Discriminant Analysis
(DA) [51].

We then tested the ability of this method to distinguish
between LEVs reaching 50% of total correct prediction in
cross-validation, confirming that the discrimination
between the two LEVs groups has no high accuracy. This

Figure 4. PCA analysis of the different EV subpopulations derived from TRAMP and B16 cell line visualized in Score plot. Left panels
display the schemes of the datasets used to derived the principal components (a, TRAMP EV subpopulations, orange arrow; c,
B16 EV subpopulations, light blue arrow). Score plots of the different EV subpopulations are showed in the right panels (b, TRAMP
EV subpopulations; d, B16 EV subpopulations). LEVs are depicted in red circles, MEVs in green circles and SEVs in blue circles. Each
colour-coded symbol indicates the average of three technical replicates of a biological replicate.
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value increased up to 90% in case of SEVs from B16 and
TRAMP cell lines showing a good ability of the model to
distinguish these two groups (refer to Supplemental mate-
rial section S4 and Table S1). These data indicate the cap-
ability of FT-IR combined with PCA to fingerprint EV
subpopulations horizontally at different degree of accuracy.
MEVs showed the highest degree and confirmed the

feasibility of our approach. SEVs resulted good discrimi-
nated, while LEVs presented the lower degree of accuracy.

Conclusions

EV subtype classification is an emerging topic in EV
field and it is usually performed on the basis of EV

Figure 5. PCA analysis of the LEVs, MEVs and SEVs derived from TRAMP and B16 cell line visualized in Score plot. Left panels display
the schemes of the datasets used to derived the principal components (a, LEVs from TRAMP and B16 cell lines; c, MEVs from TRAMP
and B16 cell lines; e, SEVs from TRAMP and B16 cell lines). Score plots of LEVs (b), MEVs (d), SEVs (f) from TRAMP and B16 cell line
are showed in the right panels. Each colour-coded symbol indicates the average of three technical replicates of a biological replicate
(B16 in light blue circles, and TRAMP in orange circles).
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physical characteristics and biological functions [52].
Different subpopulations can have different properties
and, despite a first focusing on SEV (“exosome”)
studies, the field is now evolving to systematically
compare the nature and the functions of all secreted
EVs [53].

Data acquired with collective approaches will make
possible to identify general features shared between several
EV subtypes or specific to one sub-type of EVs [53] to
better understand and exploit EV potential both as diag-
nostic and therapeutic tools [4].

In this work, we wanted to test the ability/possibility
of FT-IR spectroscopy combined with multivariate
tools (PCA) to collectively fingerprint EV subpopula-
tion. The proof-of-concept experiments were con-
ducted on LEVs, MEVs and SEVs originating from
two different murine (TRAMP and B16) cell lines and
differentiated in size by following a differential centri-
fugation protocol. Formulations showed a level of pur-
ity from EPCs that does not inhibit the aggregation of
AuNPs and we characterized the biochemical profile
and the morphological aspect of the subpopulations.

PCA analysis of the recorded FT-IR spectra distin-
guished among LEVs, MEVs and SEVs of the same cell
line. In addiction spectra of MEV subpopulation deriving
from the two different murine cell lines can be strongly
discriminated. LEVs and SEVs from different cell line can
be also separated, even if with different degree of accu-
racy, as confirmed from PCA followed by a DA analysis.
We can speculate that differences in scores plot results
among EV subpopulations mirror differences (or simila-
rities) in their lipid, protein composition (as seen by
Western Blot), cargo and biogenesis [54].

FT-IR combinedwith PCA analysis requires basic train-
ing of the operator and short time for data acquisition,
together with low cost of equipment. Nevertheless, EV
separation protocol using matrixes that can interfere with
infrared signal arising from EVs can be a limitation to data
interpretation.

Our work wants to reveal the versatility of this
approach that can be applied and turn useful to a wide
range of cases: to distinguish different EVs subpopula-
tions form healthy and pathological subjects [55]; support
“omics” profiling, like proteomics [4], lipidomics [56]
and genomics[57]; to characterize EVs obtained from
different biological fluids [58,59] or tissues [60].
Furthermore, it could be extended to other classes of
biological or artificial nanovesicles [18,61].

FT-IR candidates to be an alternative and/or
a complement (depending on the target subpopulation
and information needed) to other methods used for fin-
gerprinting EV subpopulations, including other spectro-
scopic methods, such as Raman spectroscopy [62] and

SERS [17], biosensors [63–65] and highly adopted techni-
ques like immunosorbent assays and flow cytometry [66].
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