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d Visualizations reveal cross-modal relationships of neurons

d Supports asynchronous learning and background job running

for large-scale data analyses
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In brief

Multimodal single-cell datasets, such as

those from Patch-seq, can be used to

identify neuronal cell types with similar

characteristics, offering insight into

cellular functions. Integration of multiple

modalities of single-cell data is aided by

machine learning methods, but they are

often difficult to use. The authors present

MANGEM, a web app including

visualization tools that provides an easy-

to-use interface for researchers to upload

their multimodal data of neuronal cells,

select machine learning methods for

multimodal alignment, identify

multimodal cell clusters, and reveal

cross-modal relationships.
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THE BIGGER PICTURE Recently, it has become possible to obtain multiple types of data (modalities) from
individual neurons, like how genes are used (gene expression), how a neuron responds to electrical signals
(electrophysiology), and what it looks like (morphology). These datasets can be used to group similar neu-
rons together and learn their functions, but the complexity of the data can make this process difficult for
researchers without sufficient computational skills. Various methods have been developed specifically
for combining these modalities, and open-source software tools can alleviate the computational burden
on biologists performing analyses of new data. Open-source tools performing modality combination (inte-
gration), clustering, and visualization have the potential to streamline the research process. It is our hope
that intuitive and freely available softwarewill advance neuroscience research bymaking advanced compu-
tational methods and visualizations more accessible.

Production: Data science output is validated, understood,
and regularly used for multiple domains/platforms
SUMMARY
Single-cell techniques like Patch-seq have enabled the acquisition of multimodal data from individual
neuronal cells, offering systematic insights into neuronal functions. However, these data can be heteroge-
neous and noisy. To address this, machine learning methods have been used to align cells from different
modalities onto a low-dimensional latent space, revealingmultimodal cell clusters. The use of thosemethods
can be challenging without computational expertise or suitable computing infrastructure for computationally
expensive methods. To address this, we developed a cloud-based web application, MANGEM (multimodal
analysis of neuronal gene expression, electrophysiology, and morphology). MANGEM provides a step-by-
step accessible and user-friendly interface to machine learning alignment methods of neuronal multimodal
data. It can run asynchronously for large-scale data alignment, provide users with various downstream
analyses of aligned cells, and visualize the analytic results. We demonstrated the usage of MANGEM by
aligning multimodal data of neuronal cells in the mouse visual cortex.
INTRODUCTION

The human brain has approximately 86 billion neurons encom-

passing a vast range of different functions. Understanding the

roles of individual neurons is a daunting challenge that is begin-

ning to become possible with new techniques and technologies.

The development of single-cell technologies such as Patch-seq
This is an open access article under the CC BY-N
has resulted in the ability to characterize neurons with new spec-

ificity and detail. Patch-seq enables a researcher to simulta-

neously obtain measures of gene expression, electrophysiology,

and morphology of individual neurons. Gene expression is a

measure of the extent to which different genes in a cell’s DNA

are transcribed to RNA and then translated to produce proteins.

Electrophysiology describes the electrical behavior of a cell.
Patterns 4, 100847, November 10, 2023 ª 2023 The Authors. 1
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A microscopic pipette containing an electrolyte contacts the cell

membrane to establish an electrical connection. Then the cell’s

electrical response to an applied voltage or current is measured.

Morphology refers to the physical structure of a neuron,

including the size and shape of the cell’s axon and dendrites.

Patch-seq has a wide variety of applications across different

cell and tissue types1; additionally, the modalities included

are quite diverse and mesh with MANGEM’s (multimodal anal-

ysis of neuronal gene expression, electrophysiology, and

morphology) goal of generality. By combining microscopy,

RNA sequencing, and electrophysiological recording for individ-

ual neurons, multimodal datasets can be developed with the

potential to reveal relationships between neuronal function,

structure, and gene expression.2 Multimodal single-cell datasets

are increasingly available to researchers, in part due to efforts by

the Brain Research through Advancing Innovative Neurotechnol-

ogies (BRAIN) Initiative to support the development and storage

of such datasets in freely accessible repositories such as the

Neuroscience Multi-Omic Archive (https://nemoarchive.org/)

for genomic data and Distributed Archives for Neurophysiology

Data Integration3 (https://dandiarchive.org/) for neurophysiology

data, including electrophysiology.

While multimodal single-cell data offers great potential for

improving understanding of brain organization and function,

new methods are required for integration and analysis of the

data.4 Because cells with similar characteristics in one modality

are not necessarily similar when measured by another, identifi-

cation of cell clusters must incorporate disparate data types

simultaneously. Machine learning methods such as manifold

learning are highly applicable to the problems posed by hetero-

geneity of multimodal single-cell data,5–7 but these methods are

commonly difficult to use, especially for biologists and neurolo-

gists who may not have computational expertise. Documenta-

tion and tutorials, if present, are limited in scope. The methods

are often supplied as source code only, requiring coding exper-

tise to use, which further limits their accessibility. Installation and

configuration of the software adds another layer of difficulty to

overcome before thesemethods can be applied. As an example,

consider the software for UnionCom.8 While the UnionCom soft-

ware is available in the Python package index and easily instal-

lable, its dependencies are not automatically installed. The pro-

spective user will quickly discover that the versions of those

dependencies suggested in the limited documentation are not

easily installable in recent versions of Python. Given time and

effort, a motivated researcher will manage to find the right

combination of package versions and Python version that will

be compatible, but this level of difficulty is both a significant bar-

rier to use and common in open-source scientific software

generally.9

An increasingly common way to address the challenges of

running open-source scientific software is by implementing

the methods of the software in a web application.10,11 Here,

we present a web application named MANGEM, developed

to address the challenges researchers may experience in using

existing methods of aligning and analyzing multimodal single-

cell data. In particular, MANGEM (1) provides an easy-to-use

interface to a variety of machine learning alignment methods,

(2) requires no coding to use, and (3) does not require installa-

tion of software or management of computing infrastructure.
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Preloaded datasets and an interface that walks the user

through each operational step provide for an accessible intro-

duction to the use of machine learning methods to align multi-

modal datasets. As a cloud-based web application, MANGEM

enables users to begin exploring multimodal single-cell data-

sets without first undertaking the challenges of software instal-

lation or management of the underlying infrastructure. While the

application was designed for real-time data processing and

exploration, it also supports running certain long-running

methods asynchronously, providing a customized URL for

users to retrieve results after computation is complete. Interac-

tive graphical display of output facilitates exploration of the

data at each step of the analysis process: raw data as up-

loaded, preprocessed data (e.g., standardized), aligned data-

sets, and cross-modal clusters. Integrated downstream anal-

ysis methods support identification of important cellular

features within cross-modal cell clusters and aid interpretation

of the revealed relationships within cell clusters.

RESULTS

The MANGEM web application offers a range of methods for

aligning multimodal data of neuronal cells, identifying cross-

modal cell clusters using the aligned data, and generating visu-

alizations to facilitate the characterization of these cross-modal

clusters, including their differentially expressed genes and corre-

lated multimodal features (Figure 1).

The application is implemented using Plotly Dash Open

Source, a Python-based framework for developing data science

applications.12 Dash is based on Plotly.js (https://plot.ly), React

(https://react.dev/), and Flask,13 and it functions by tying user

interface elements to stateless callback functions. In the case

of MANGEM, some callback functions are quasi-stateless, in

that uploaded and aligned datasets are stored in a file system

cache to avoid repeating lengthy calculations.

Our public deployment of MANGEM is on Amazon Web Ser-

vices infrastructure (Figure 2). The Elastic Beanstalk service is

used to deploy the application to an Elastic Compute Cloud

(EC2) instance with associated storage in Amazon Simple Stor-

age Service (S3). In order to be accessed by a user with a web

browser, MANGEM requires additional software. A reverse

proxy server directs the requests from the web browser to an

application server that can translate the requests to the Web

Server Gateway Interface (WSGI) protocol used for communica-

tion with MANGEM. By default, the Elastic Beanstalk Python

platform provides nginx14 as the reverse proxy server and Guni-

corn (https://docs.gunicorn.org/en/stable/) as the WSGI appli-

cation server; however, MANGEM does not depend on those

specific programs. For example, in our development environ-

ment, we use the Apache HTTP server with mod_proxy

(https://httpd.apache.org/docs/2.4/en/mod/mod_proxy.html)

as the reverse proxy server and uWSGI (https://uwsgi-docs.

readthedocs.io/en/latest/) as the WSGI application server.

Most data processing occurs within themainMANGEMprocess,

but additional software is required to enable long-running align-

ment jobs to run asynchronously. In this case, Celery (https://

docs.celeryq.dev/en/stable) is used to run those background

jobs, and Redis (https://redis.io/) is used as a message broker

to communicate between MANGEM and Celery. Whether

https://nemoarchive.org/
https://dandiarchive.org/
https://plot.ly
https://react.dev/
https://docs.gunicorn.org/en/stable/
https://httpd.apache.org/docs/2.4/en/mod/mod_proxy.html
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Figure 1. Overview of MANGEM (multimodal analysis of neuronal gene expression, electrophysiology, and morphology)

User input to MANGEM includes multimodal single-cell data together with cell metadata. Within MANGEM, the multimodal data are aligned using machine

learning methods, projecting disparate modalities into a low-dimensional common latent space. Clustering algorithms are applied within the latent space to

identify cell clusters, and then analysismethods are provided inMANGEM to characterize the clusters by differential feature expression and correlation of features

with the latent space. In addition to interactive plots generated at each step of the workflow, downloadable output includes tabular data files (cell coordinates in

latent space, cluster annotations, top features for each cluster) and images depicting alignment, cross-modal cell clusters, and cluster analyses.
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aligned synchronously or asynchronously, aligned multimodal

datasets are stored in a file system cache on AWS S3.

A major contribution of this work is the development of an

easily usable and accessible interface to a fully integrated work-

flow running on third-party infrastructure. An alternative

approach would be to develop and distribute a containerized

workflow, but we have prioritized a web-based approach that re-

lieves the user of infrastructure management concerns, maxi-

mizing accessibility to all users.

MANGEM’s layout is organized as a set of tabs on the left that

contain user interface controls, while the right side contains plots

or other information related to the active tab. The tabs corre-

spond to the sequence of steps users will typically take when

running the application: upload data, align data, identify cross-

modal cell clusters, and perform downstream analysis of

cross-modal cell clusters. Each tab contains controls that allow

the user to adjust parameters relevant to the current step of the

workflow and that influence the downstream results (Table 1).

At each step of the workflow (Figure 3), interactive figures are

automatically generated to support understanding, and compu-

tation products are available for download as tabular data files. A

video demonstration of theworkflow is provided in Video S1, and

the user interface is depicted in Figure S1.

In this study, we showcased the usage of MANGEM through

two case studies that utilized emerging Patch-seq multimodal

data of inhibitory neuronal cells in the mouse visual cortex

(such as gene expression, electrophysiology, and morphology).

It is worth noting that MANGEM is a general-purpose tool that

can be used for any user multimodal data of neurons.

Case study 1: Neuronal gene expression and
electrophysiology
We first tested MANGEM to align these neuronal cells based on

gene expression and electrophysiological features. We up-
loaded two datasets, one containing the 1,302 most variable

expressed genes and one containing 41 electrophysiological

features for 3,654 neuronal cells, on the Upload Data tab of

MANGEM. We then preprocessed the data using log transfor-

mation for gene expression and standardization for electro-

physiology features.

On the Alignment tab, we set the alignment method to

nonlinear manifold alignment (NLMA), the number of latent

space dimensions to 5, and the number of nearest neighbors

(used in construction of the similarity matrix for NLMA) to 2.

Clicking the ‘‘Align Datasets’’ button generated two measures

of alignment along with a 3D plot of the aligned cells (Figure 4A).

The aligned multimodal cells were represented in the common

latent space, ~X and ~Y, are 3,654 cells (rows) by 5 latent dimen-

sions (columns). We also tested other alignment methods and

found that NLMA, in addition to being one of the fastest

methods to run, resulted in the smallest alignment error (Fig-

ure S2; Table S1).

Afterward, we chose to use the Gaussian Mixture Model

clustering algorithm on the Clustering tab, specifying 5 clus-

ters. Upon clicking the ‘‘Identify Cross-Modal Cell Clusters’’

button, the algorithm identified cross-modal cell clusters

and generated side-by-side plots of the aligned cells for

each modality in the latent space. These plots showed cells

colored according to their respective cross-modal clusters

(Figure 4B).

The Analysis tab of MANGEM offers various visualization

methods for exploring cross-modal relationships between

gene expression and electrophysiological features. We set the

number of top features to 5 and selected the ‘‘Features of

Cross-modal Clusters (Heatmap)’’ (Figure 4C). The resulting

heatmap showed that tau and ri were the top two electrophysio-

logical features in Cluster 4, while the top differentially expressed

genes in the cluster were Sst, Grin3a, Grik3, Trhde, and Stxbp6.
Patterns 4, 100847, November 10, 2023 3
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Figure 2. Cloud implementation of MANGEM

using AWS infrastructure

The application runs on Amazon Cloud Services

using Elastic Beanstalk to provision an EC2

instance. The web server nginx serves as a reverse

proxy to the Gunicorn wsgi server. MANGEM is

written in Python using the Plotly Dash framework.

Long-running tasks are run in the background by

Celery workers, with Redis acting as the message

broker between MANGEM and Celery. Uploaded

and processed data files are stored in a file system

cache in AWS S3.
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These shared multimodal features suggest potential functional

linkages among the cells in the cluster.

To further investigate these linkages, we switched the plot

type to ‘‘Top Feature Correlation with Latent Space (Bibiplot)’’

(Figure 4D) and set the number of top correlated features to

15. The bibiplots graphically represented the most highly

correlated features from cross-modal cell clusters and al-

lowed for interactive zooming into the Cluster 4 area on the

latent space. The highly correlated features included tau

and, to a lesser extent, ri among the electrophysiological fea-

tures, while Sst and Grik3 were among the genes associated

with Cluster 4.
Case study 2: Neuronal gene expression and
morphology
MANGEMwas used to process gene expression of the top 1,000

variable genes and morphological features in the mouse motor
Table 1. Key parameters of data processing and analysis in

MANGEM

Tab Parameter

Step 1. Upload

Data

d Preprocessing method for

each modality (log/standardize)

Step 2. Alignment d Alignment algorithm

d Dimension of machine learning

latent space (3–10)

d Number of nearest neighbors

(1–10) used in constructing

similarity matrices (LMA, NLMA).

d Number of iterations (MMD-MA)

Step 3. Clustering d Clustering algorithm

d Number of cell clusters (1–10)

Step 4. Analysis d Component selection

d Number of top features per cell

cluster in ‘‘Features of cross-

modal clusters’’

d Number of top correlated features

in ‘‘Top feature correlation

with latent space’’

The listed parameters all influence downstream output of MANGEM. For

example, selecting a preprocessing method on the Upload Data tab will

result in that method being applied to the uploaded dataset before the

selected multimodal alignment method is applied.

4 Patterns 4, 100847, November 10, 2023
cortex.15 The data consists of 646 single cells with 42,466 genes

and 63morphological features. Eachmodality is formatted into a

separate csv, with an additional file indicating metadata such as

age, gender, etc. The data were then uploaded onto the webapp

using the upload tab.

MANGEM can be used to easily test multiple integration

methods. For this application, we chose NLMA. After alignment,

pairwise accuracy statistics are reported (Figure 5A).

MANGEM is then used to separate the data into 5 clusters us-

ing aGaussianmixturemodel. The clusters closely align with true

cell types (Figure 5B). Then, differentially expressed features for

each cluster may be downloaded and used for downstream

analysis. The expressed genes can then be analyzed for impor-

tance in brain function.

MANGEM identifies Pvalb, Vip, Lamp5, and Sst among the top

2 most differentially expressed genes over the 5 cell clusters

(Figure 5C). These genes are commonly used to identify cell

type.16 So, MANGEM can be used to automatically perform

cell-type clustering on multimodal datasets. In addition,

MANGEM identifies Adarb2 as a differentially expressed gene.

Adarb2 has been found to distinguish between two major

branches of inhibitory neurons.17

MANGEMalso allows users to create Bibiplots to visualize fea-

tures important to the latent space (Figure 5D). These features

that are highly correlated with the latent space (e.g., SOX6 and

sp_width) may then be the focus of future data exploration.

DISCUSSION

MANGEM is a user-friendly web application designed primarily

for biologists and neuroscientists. The app comes with pre-

selected general-purpose hyperparameters that can be fine-

tuned by users to suit their needs. With the rapid advancements

in multimodal machine learning,18 MANGEM is constantly

evolving to offer more advanced alignment options.

Although the name and pre-packaged data of MANGEM are

specific to gene expression, electrophysiology, and morphology

of brain cells, the methods currently implemented impose no re-

strictions on the modalities used nor the source (e.g., brain, kid-

ney) of the data. Generality is a key component of the usefulness

of MANGEM. In the future, we plan to implement a wide variety

of integration methods including joint variational autoencoders

for multimodal imputation and embedding19 and cross-modal
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Input data passes into an alignment process, which will either run in the main process or in the background, depending on the method. In the case of background

(asynchronous) alignment, a URL will be supplied to the user, which will allow them to check on the job’s status and access the results upon completion. Aligned

data feed into a clustering algorithm, and then data analysis methods can be applied to the cell clusters. Data visualization output can be produced at each stage

of the process, and tabular data files of aligned data, cell clusters, and analysis results can be downloaded.
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optimal transport for multimodal inference.20 Additionally, future

versions may incorporate methods like deep neural networks to

work with raw data (e.g., electrophysiological time-series data)

or other types of data, such as genomics, epigenomics, or

images.

Clustering capability in MANGEM will be enhanced by the

addition of consensus clustering.21 This approach combines

any number of clustering methods using iterative voting

consensus. Such an approach even allows for merging multiple

cluster configurations with differing numbers of clusters.

MANGEM is currently designed to work solely in an interac-

tive mode, but in the future, it could be extended to support

API access. One approach would enable data upload and se-

lection of preprocessing and alignment methods through the

API, and MANGEM then would return a URL where results

could be viewed, just as in MANGEM’s existing asynchronous

mode.

MANGEM uses cloud-based computing, which in the future

will enable distributed training, making computation faster and

providing a smoother experience for users. To further improve

the efficiency of the app, MANGEM can be optimized for parallel

processing, allowing it to take advantage of multiple processors

and GPUs for faster computation. In addition to its alignment ca-

pabilities, MANGEM also enables collaborative work and data

sharing. The app provides a centralized repository for storing

and sharing aligned data, with built-in privacy and security mea-

sures to protect sensitive data.

Instructions for deployment on AWS are included with the

source code. MANGEM was developed by Waisman Center

core staff, who will remain available for ongoing support.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information may be requested from Daifeng Wang (daifeng.wang@

wisc.edu).
Materials availability

MANGEM is freely available for use at https://ctc.waisman.wisc.edu/mangem.

Data and code availability

d The data included in this study are included with the source code, which

is deposited at Zenodo22 and is publicly available as of the date of

publication.

d MANGEM is a web app accessible at https://ctc.waisman.wisc.edu/

mangem and has open source code available at https://github.com/

daifengwanglab/mangem.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.

Multimodal single-cell data analysis using MANGEM

MANGEM is designed to guide users through a multimodal analysis pipeline,

step by step. These steps, described in detail in the paragraphs that follow, are

d Step 1 Upload data. Users have the option of selecting preloaded sets

of single-cell multimodal data or uploading their own data files,

formatted as comma-delimited text.

d Step 2 Multimodal alignment. One of several methods is selected that

will project the data from eachmodality to a common latent space. After

alignment, metrics of alignment quality are displayed alongside a 3D

plot of the aligned data.

d Step 3 Cross-modal cell clustering. A user-selected clustering method

identifies clusters of cells.

d Step 4 Analysis of cross-modal cell clusters. Integrated analysis

methods help users to characterize the cell clusters identified in

cross-modal cell clustering.

Preloaded datasets

Twomaindata sources are utilized forMANGEM’spre-packageddatasets. First,

Patch-seq data of 3,654 single-cells from themouse visual cortex23 was used to

generate electrophysiological and morphological features.5 MANGEM provides

a preset combining gene expression (1,302 genes) and electrophysiological fea-

tures (41 features)onthisdataset.Second,1,208single-cells fromthemousemo-

tor cortex15 were processed similarly (1,286 genes, 29 features). MANGEM pro-

vides two presets from this dataset, each containing gene expression and one of

electrophysiological or morphological features. The latter preset includes a sub-

set of 646 cells with 1,000 genes and 61 morphological features.

Step 1 Upload data

The first data processing step in MANGEM is selecting or uploading neuronal

data, accomplished on the Upload Data tab. The expected input to MANGEM
Patterns 4, 100847, November 10, 2023 5
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Figure 4. MANGEM analysis and visualization of neuronal gene expression and electrophysiological features in mouse visual cortex
(A) Measures of alignment error and 3D plot of superimposed aligned data in latent space are shown for the preloadedmouse visual cortex dataset after nonlinear

manifold alignment. Central boxes range from the first to third quartiles, containing a tick mark for the median. The whiskers range to the farthest datapoint that

falls within 1.5 times the interquartile range.

(B) Cross-modal clusters, obtained by Gaussian mixture model, are indicated by color in plots of aligned data for each modality.

(C) Feature levels across all cells for the top 5 features for each cross-modal cluster. Normalized feature magnitude was ranked using the Wilcox rank-sum test.

Cross-modal clusters are identified by the colored bar at the top of each plot.

(D) Biplots for Gene Expression and Electrophysiological features using dimensions 1 and 2 of the latent space. The top 15 features by correlation with the latent

space are shown plotted as radial lines where the length is the value of correlation (max value 1).
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consists of three data files in .csv format: one file for each of twomodalities and

a third file of cellular metadata. Three sample datasets are preloaded in

MANGEM, and links are provided within the application to download two of

these. The first column of each file should contain a cell identifier, and the files

are expected to have a consistent cell order.

Denote data for the first modality as X, data for the second modality, Y, and

metadata, M. Each of these has n rows corresponding to n neuronal cells. X

and Y have d1 and d2 features, respectively. Metadata matrix M has dm cell

characteristics.

X = ½x1; x2; :::; xn�T ˛ Rn3d1 ;Y = ½y1; y2; :::; yn�T ˛ Rn3d2 ;

M = ½m1;m2; :::;mn�T ˛Rn3dm

When user data are uploaded, a label may be supplied for each modality;

otherwise, the modalities will be identified using the default labels of ‘‘Modality

1’’ and ‘‘Modality 2’’ in plot legends.

A preprocessing operation may optionally be selected for each modality.

Choices include ‘‘Log transform’’ and ‘‘Standardize,’’ which for the first modal-

ity would be

‘‘Log transform’’: fðXÞ/ bX where bxji = log2x
j
i , ci˛ ½1;n�, j˛ ½1;d1�

‘‘Standardize’’: fðXÞ/ bX where bxji = xj
i
�mj

sj
;mj =

Pn
k = 1

xj
k

n ;s
j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� Pn
k = 1

xjk � mj

�2

=n

s
If a preprocessing operation is selected, that operation will be applied to

the appropriate dataset prior to alignment. The default values of ‘‘Log trans-

form’’ for modality 1 and ‘‘Standardize’’ for modality 2 are suitable for the pre-

loaded datasets, where modality 1 is Gene Expression and modality 2 is

Electrophysiology.
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Data exploration

The ‘‘Explore Data’’ section of the Upload Data tab can generate plots to gain

insight into cell features in the uploaded or selected datasets. A series of box-

plots is generated for each value of a categorical metadata variable when a

single cell feature is selected (Figure S3A). A particular value of that metadata

variable may be selected to filter the data, in which case a violin plot is gener-

ated (Figure S3B). It is also possible to select two features to compare in a

scatterplot (Figure S3C). These features could be from the same or different

modalities. Similar to the single-feature case, selecting a specific value of a

metadata variable filters the data so that only the points corresponding to cells

having that metadata value are displayed in the scatterplot (Figure S3D). As

with all plots in MANGEM, a toolbar will pop up when the cursor is placed

over the plot. The toolbar has buttons to change the plot appearance (zoom

or pan, for example) and also has a button with a camera icon that causes

an image of the plot to be downloaded.

Step 2 Multimodal alignment

The approach used byMANGEM to find clusters of related cells is to first trans-

form the measured cellular features into a latent space where cells having

similar features are closer together. This transformation process is called

multimodal alignment, and several alignment methods are implemented in

MANGEM. Currently supported methods include linear manifold alignment

(LMA), NLMA,24 canonical correlation analysis, manifold alignment with

maximum mean discrepancy (MMD-MA),25 and unsupervised topological

alignment for single-cell multi-omics (UnionCom).8 LMA and NLMA utilize sim-

ilarity matrices to formulate a common latent space. MMD-MA minimizes

an objective function that measures distortion and preserved representation.

UnionCom infers cross-modal correspondence information before using

t-SNE26 to provide the final latent spaces.



A B

C D

Figure 5. MANGEM analysis and visualization of neuronal gene expression and morphological features in mouse visual cortex

(A) Measures of alignment error and 3D plot of superimposed aligned data in latent space are shown for the mouse morphology cortex dataset after nonlinear

manifold alignment. Central boxes range from the first to third quartiles, containing a tick mark for the median. The whiskers range to the farthest datapoint that

falls within 1.5 times the interquartile range.

(B) Cross-modal clusters, obtained by Gaussian mixture model, are indicated by color in plots of aligned data for each modality.

(C) Feature expression levels across all cells for the top 10 differentially expressed features for each cross-modal cluster. Normalized feature expression was

ranked using the Wilcox rank-sum test. Cross-modal clusters are identified by the colored bar at the top of each plot.

(D) Biplots for Gene Expression and Electrophysiological features using dimensions 1 and 2 of the latent space. The top 15 features by correlation with the latent

space are shown plotted as radial lines where the length is the value of correlation (max value 1).
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Several parameters of these alignment methods can be adjusted on

MANGEM’s Alignment tab. These include the dimension of the latent space,

the number of nearest neighbors to be used when computing the similarity

matrix (LMA, NLMA), and the number of iterations (MMD-MA). The alignment

methods take as input the preprocessed datasets bX and bY ; if no preprocess-

ing method has been selected, then data are used as uploaded: bX = X andbY = Y . If we think of the alignment as finding optimal projection functions

f and g that project cellular data from modality 1 and modality 2, respectively,

to a common latent space of dimension d, then after alignment, the ith cell can

be represented by ~xi = fðbxiÞ˛Rd and ~yi = gðbyiÞ˛Rd .

After alignment has been completed, the cellular coordinates in the latent

space can be downloaded by clicking on the ‘‘Download Aligned Data’’ button

on the Alignment tab of MANGEM.

MANGEM offers the ability to easily compare the efficacy of different align-

ment methods. While relative performance of alignment methods may vary

when applied to different datasets, our experience has been that NLMA com-

pares favorably to the other methods (Table S1).

Asynchronous computation of alignment

Though MANGEM primarily operates synchronously, some of the supported

alignment methods (notably, UnionCom and MMD-MA) require enough

computational resources to motivate running those tasks in the background,

asynchronously. Celery, an open-source asynchronous task queue, is used

to queue and run these long-running alignment tasks in the background.

When the user clicks the ‘‘Align Datasets’’ button after selecting the

UnionCom or MMD-MA alignment method, the alignment job is submitted to

the task queue, and a unique URL is provided to the user. Navigating to this

URL will give the user a message indicating the job status: waiting to start in

the task queue, running, or complete. If the job is complete, then the results

will be loaded and the Clustering tab ofMANGEMwill open, and the usual clus-
tering and analysis methods will be available. A video demonstration of back-

ground alignment is included in Video S1.

Step 3 Cross-modal cell clustering

Once the multimodal single-cell data have been aligned, cell clusters can be

identified based on proximity within the latent space. Three different clustering

methods are currently supported by MANGEM: Gaussian mixture model,

K-means, and hierarchical clustering, all using methods provided by the Sci-

kit-learn Python package.27 Gaussian mixture model clustering uses the

GaussianMixture class with a single covariance matrix shared by all compo-

nents and 50 iterations. K-means uses the KMeans class with the parameter

n_init set to 4 and random seed specified. Hierarchical clustering is imple-

mented using the AgglomerativeClustering class with Ward linkage, which

minimizes the sum of squared distances within clusters. In all cases, the num-

ber of clusters to be identified can be specified using the slider control on the

Clustering tab of MANGEM. After clusters have been identified, the assign-

ment of cells to clusters can be downloaded by clicking on the ‘‘Download

Clusters’’ button.

Step 4 Analysis of cross-modal cell clusters

The Analysis tab of MANGEM supports visualization of alignment and clus-

tering results as well as methods to reveal relationships between cell features

in the context of identified cell clusters. These methods are accessed via the

Plot type selection control.

Features of cross-modal clusters

The ‘‘Features of cross-modal clusters’’ method identifies the most important

features within each cross-modal cluster and generates a heatmap for each

modality where the rows correspond to identified features and the columns

correspond to cells, grouped into previously identified clusters. The number
Patterns 4, 100847, November 10, 2023 7
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of features identified for each cluster is specified using the ‘‘Number of Top

Features per cluster’’ control on the Analysis tab. A list of the most important

features can be downloaded using the ‘‘Download Top Features’’ button.

Top feature correlation with latent space

Top feature correlation with latent space creates a bibiplot (i.e., collection of

biplots)15 with one biplot for each modality. Each biplot displays a

2-dimensional projection of the aligned data for themodality in the latent space

while overlaying lines corresponding to the features that are most highly corre-

lated with the latent space representation. For eachmodality, the correlation is

computed between the original cellular data for each feature and the projection

of the cellular data into the latent space dimensions selected as components X

and Y on the Analysis tab. For a given feature, the correlations between that

feature and its X and Y latent space representation determine the coordinates

of the endpoint of that feature’s line.

The latent space dimensions in which aligned data are plotted can be

selected using the ‘‘Component Selection’’ controls on the Analysis tab. At

most, three dimensions can be plotted at one time within MANGEM, but these

controls allow the user to select which dimensions are plotted to gain different

perspectives on the data. Additional controls on the Analysis tab allow aligned

data points to be colored either by cluster or by metadata value (for example,

transcriptomic cell type).

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100847.
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