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Associations between locus coeruleus
integrity and nocturnal awakenings in the
context of Alzheimer’s disease plasma
biomarkers: a 7T MRI study
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Abstract

Background: The brainstem locus coeruleus (LC) constitutes the intersection of the initial pathophysiological
processes of Alzheimer’s disease (AD) and sleep-wake dysregulation in the preclinical stages of the disease.
However, the interplay between in vivo assessment of LC degeneration and AD-related sleep alterations remains
unknown. Here, we sought to investigate whether MRI-assessed LC structural integrity relates to subjective sleep-
wake measures in the context of AD plasma biomarkers, in cognitively unimpaired older individuals.

Methods: Seventy-two cognitively unimpaired older individuals aged 50–85 years (mean age = 65.2 ± 8.2 years, 37
women, 21 APOE ε4 carriers) underwent high-resolution imaging of the LC at 7 Tesla, and LC structural integrity
was quantified using a data-driven approach. Reports on habitual sleep quality and nocturnal awakenings were
collected using sleep questionnaires. Plasma levels of total tau, p-tau181, Aβ40, and Aβ42 were measured using
single-molecule array technology.

Results: Intensity-based cluster analyses indicated two distinct LC segments, with one covering the middle-to-
caudal LC and displaying lower intensity compared to the middle-to-rostral cluster (t70 = −5.12, p < 0.0001). After
correction for age, sex, depression, and APOE status, lower MRI signal intensity within the middle-to-caudal LC was
associated with a higher number of self-reported nocturnal awakenings (F1,63 = 6.73, pFDR = 0.03). Furthermore, this
association was mostly evident in individuals with elevated levels of total tau in the plasma (F1,61 = 4.26, p = 0.04).

Conclusion: Our findings provide in vivo evidence that worse LC structural integrity is associated with more
frequent nocturnal awakenings in the context of neurodegeneration, in cognitively unimpaired older individuals.
These results support the critical role of the LC for sleep-wake regulation in the preclinical stages of AD and hold
promises for the identification of at-risk populations for preventive interventions.
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Background
In the worldwide effort to identify leverage points to delay
the onset of Alzheimer’s disease (AD), sleep has emerged
as a potent modifiable factor to slow down the character-
istic pathophysiological processes of the disease, i.e., the
accumulation of amyloid-beta (Aβ) and tau proteins, to-
gether with neurodegeneration [1]. Two recent meta-
analyses of, respectively, 27 observational and 18 longitu-
dinal studies reported that individuals with sleep-related
issues are at a ~1.5 times increased risk of developing AD
and that an estimated 15% of AD in the population may
be linked to treatable sleep problems [2, 3].
One of the critical brain regions involved in both ini-

tial AD pathogenesis and sleep-wake regulation is a
small nucleus located in the brainstem: the locus coeru-
leus (LC). Landmark post-mortem studies have demon-
strated that the LC is among the first sites of tau
pathology [4], starting as early as age thirty [5]. As part
of the complex ascending arousal system, the LC regu-
lates wakefulness periods, arousal, and various cognitive
processes, by supplying norepinephrine to the entire cor-
tex [6]. During a typical sleep cycle, LC neurons become
progressively silent, which ensures overall consolidation
of the sleep period and normal transitions across sleep
stages [7], while its activity underlies sleep-to-wake tran-
sitions [8, 9].
In animal studies, chronic sleep disruption of 3 days a

week during 1 month was enough to induce long-lasting
alterations in LC neurons morphology (i.e., reductions in
neuronal count and axonal projections) [10, 11] and to
promote tau accumulation in the LC [12]. In humans,
significant degeneration of wake-promoting LC neurons
concomitant with increased tau protein burden was re-
ported at histological investigation of AD brains, which
was suggested to contribute to the disrupted sleep-wake
pattern commonly experienced by those patients [13,
14]. However, no direct assessments of sleep-wake mea-
sures were available in these post-mortem studies, leav-
ing important questions on the interplay between LC
alterations, sleep-wake patterns, and AD-related patho-
physiological processes unanswered. As both sleep-wake
disruption and LC pathologic processes can be detected
as early as in the 5th or 6th decade of life [15, 16], ad-
dressing these gaps in cognitively unimpaired older indi-
viduals may provide new insights into the pathological
processes in the earliest stages of AD.
To our knowledge, no studies have directly related

in vivo LC measures to sleep-wake variables, most likely
because it is challenging to image this brain nucleus, due
to its deep location in the brainstem and its small size
(~15 mm long and 2 × 2 mm thick). However, the devel-
opment of novel MRI methods has enabled in-depth as-
sessment of its properties in vivo [17]. Here, we used
state-of-the-art methods in ultra-high field neuroimaging

to investigate LC structural integrity in vivo in a cohort
of cognitively unimpaired older individuals and to relate
it to participants’ subjective evaluations of sleep quality
and nocturnal awakenings. In addition, we sought to
examine interactive effects with early AD-related patho-
physiological processes, as measured with recently devel-
oped blood-based biomarkers, in order to evaluate LC
integrity as a potential early marker for individuals with
AD-related sleep disturbances.

Material and methods
Participants
Seventy-two cognitively unimpaired older individuals
aged 50–85 years (mean age = 65.2 ± 8.2 years, 37
women) were recruited to participate in this study
(Table 1). The main exclusion criteria were contraindi-
cations for ultra-high field neuroimaging, performance
on key cognitive tests 2 standard deviations below the
mean (according to normative data corrected for age,
sex, and education), past or present psychiatric or neuro-
logical disorders, major vascular disorders, left-
handedness, use of drugs or psychoactive medication,
and excessive alcohol consumption (> 15 units/week).

7T MRI acquisition and pre-processing
All participants underwent high-resolution imaging of
the brainstem on a 7T Magnetom Siemens scanner (Sie-
mens Healthineers, Erlangen, Germany) using a
magnetization transfer-weighted turbo flash (MT-TFL)
sequence particularly sensitive to LC-related contrast
[18, 19], with a field-of-view placed perpendicular to the
pons and covering the area between the inferior collicu-
lus and the inferior border of the pons. Importantly, the
LC-related MRI signal obtained with this sequence has

Table 1 Sample characteristics (mean ± SD)

N = 72

Age (years) 65.2 ± 8.2

Sex (N) 37F/35M

Ethnicity Caucasian

Right-handed (N, %) 72 (100)

Body mass index (kg/m2) 25.5 ± 4.0

MMSE (score) 28.9 ± 1.2

APOE ε4 carriers (N, %) 21 (29)

Total tau (pg/ml) 2.5 ± 0.7

P-tau181 (pg/ml) 1.7 ± 0.5

Aβ40 (pg/ml) 228.9 ± 33.6

Aβ42 (pg/ml) 12.1 ± 2.3

Subjective sleep quality (total GSQS score) 3.3 ± 3.6

Nocturnal awakenings (self-reports) 1.8 ± 1.2
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been established to reflect LC neuronal and fiber projec-
tion density [20].
Our 7T LC MRI pre-processing pipeline is summa-

rized in Supplementary Figure 1, and details are available
in the Supplementary Methods. In brief, intensity-
normalized images were obtained by dividing individual
MT-TFL images by the subject-specific mean intensity
of a 10 × 10 voxel region-of-interest located in the pon-
tine tegmentum (PT). Next, a study-specific template
was built based on all individual intensity-normalized
MT-TFL images. The LC was manually delineated on
the resulting template in the common space, based on
voxel intensities and the known LC anatomy. This LC
mask was then applied on each intensity- and spatially
normalized individual image on a per hemisphere basis
as previously described [18, 21], to extract MRI signal
values for subsequent cluster analyses. As in previous
work [22], intensity in the PT region served as control in
post hoc analyses.

LC MRI signal cluster analysis
Cluster analyses were performed to identify sub-portions
within the LC structure in a data-driven manner. We
first determined the optimal number of clusters using
‘evalcluster’ function implemented in MATLAB2017b
(The Mathworks Inc., Natick, MA, USA) based on the
Calinski-Harabasz criterion. The optimal solution was
then used as a prior to run a K-means algorithm
(‘kmeans’ function in MATLAB, Euclidean distance, 100
iterations) on median MRI signal intensity within each
slice of the LC mask, separately for left and right hemi-
sphere. Median MRI signal intensity values in each iden-
tified cluster constituted our primary measures of
interest and were computed for left and right LC and
also averaged over both hemispheres. Consistent with
previous work [16, 21], we also computed additional LC
metrics to conduct post hoc sensitivity analyses, includ-
ing the mean and peak intensity in each cluster, and
mean MRI signal intensity in three manually defined
equidistant sections of the LC.

Subjective sleep quality assessment
Sleep quality was investigated through participants’ self-
reports on the quality of their sleep during a representa-
tive night, using the Groningen Sleep Quality Scale
(GSQS) [23]. The GSQS is a sleep quality questionnaire
widely used in the Netherlands, which comprises 15 di-
chotomous (yes/no) items related to different dimen-
sions of sleep throughout a habitual night (i.e., sleep
latency, sleep duration, feeling of restlessness, etc.). The
GSQS scores strongly correlate with the Pittsburgh Sleep
Quality Index, another subjective sleep quality scale
traditionally used by sleep researchers (unpublished data,
n = 61 cognitively unimpaired older individuals, r =

0.79). Subjective sleep quality was computed as the sum
of the scores to each GSQS item, with a higher score
reflecting an overall worse sleep quality. An additional
item was used to measure the habitual number of self-
reported nocturnal awakenings (‘I wake up on average _
times during the night’).

Alzheimer’s disease blood-based biomarker assessment
EDTA plasma samples were obtained through
venipuncture (fasted). Samples were centrifuged at 2000
× g, aliquoted in polypropylene tubes, and stored at
−80°C in our biobank within 60 min of collection.
Plasma was analyzed using ultra-sensitive single-
molecule array technology of the automated Simoa HD-
1 analyzer with the Simoa Human Neurology 3-Plex A
assay kit (Quanterix, Lexington, KY, USA) that simultan-
eously measures plasma concentrations of Aβ40, Aβ42,
and total tau. Analyses were performed in duplicates
(mean % coefficient of variation [%CV]: Aβ40 3.8%CV,
Aβ42 4.1%CV, total tau 6.7%CV) using a 1:4 automated
dilution protocol. The levels of tau phosphorylated at
threonine 181 (p-tau181) were measured using the Simoa
Human tau immunoassay kits on the Simoa HD-1
Analyzer (7.1%CV). APOE genotyping was further per-
formed using polymerase chain reaction based on blood
sample DNA extraction. Participants’ APOE status was
defined as ‘ε4 carrier’ if they carry at least one ε4 allele.

Statistical analysis
Statistical analyses were conducted in SAS 9.4 (SAS In-
stitute, NC, USA) using generalized linear mixed model
(GLMM). Prior to model fitting, the distribution of the
dependent variable in each GLMM was determined in
MATLAB2017b, and models were adjusted accordingly.
All statistical models included age, sex, and APOE status
as covariates. Models with sleep metrics as the
dependent variable were further adjusted for depression
scores, as measured by the Hamilton Depression Rating
Scale [24]. Subject (intercept) was set as a random fac-
tor. p-values derived from these main analyses linking
sleep-wake metrics to LC intensity were corrected for
multiple comparisons using the false discovery rate
(FDR) approach. LC intensity variables showing signifi-
cant associations with sleep metrics were further tested
in models including the interaction term with blood-
based AD biomarkers. Post hoc control analyses were
conducted using subject-specific median intensity in a
PT region-of-interest. Post hoc sensitivity analyses were
performed using additional LC metrics of peak cluster
intensity, mean cluster values, and mean values in three
equidistant LC sections. Degrees of freedom were esti-
mated using Kenward-Roger’s correction. In all GLMMs,
effect sizes for significant effects were estimated with
semi-partial R2 (R2

β*) values [25].
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Results
Association between demographics, subjective sleep
measures, and blood-based biomarkers
After adjusting for age, women reported worse sleep
quality (F1,69 = 5.54, p = 0.02, R2

β* = 0.07) and more
nocturnal awakenings (F1,69 = 4.75, p = 0.03, R2

β* = 0.06)
compared to men. In addition, higher depression scores,
although in the subclinical range for all individuals, were
associated with worse sleep quality (F1,68 = 27.22, p <
0.0001, R2β* = 0.29) and higher number of nocturnal
awakenings (F1,68 = 7.91, p = 0.006, R2

β* = 0.10), after
adjusting for age and sex. With regard to plasma mea-
sures, the range of values was consistent with previous
Simoa-based studies in cognitively unimpaired older indi-
viduals [26, 27]. Older age was associated with higher
plasma levels of p-tau181 (F1,66 = 8.36, p = 0.005, R2β* =
0.11) and Aβ40 (F1,66 = 12.35, p < 0.001, R2β* = 0.16). APOE
ε4 carriers (29%) displayed lower levels of Aβ42 (F1,66 =
10.48, p = 0.002, R2β* = 0.14) and at-trend level higher
plasma levels of p-tau181 (F1,66 = 3.44, p = 0.07) compared
to non-carriers (Supplementary Figure 2). No significant re-
lationships were observed between plasma biomarkers and
subjective measures of sleep quality or nocturnal awaken-
ings (Supplementary Figure 3 and Supplementary Table 1).

Identification of clusters in LC MRI signal intensity
Cluster analyses on LC MRI signal intensity revealed
two clusters, one covering the middle-to-caudal portion
(bottom 7 slices for left LC and bottom 5 slices for right
LC) and the other cluster covering the middle-to-rostral
part (top 12 slices for left LC, top 14 slices for right LC,
Fig. 1A). Paired t test analyses showed that median

intensity within the middle-to-caudal cluster was signifi-
cantly lower than in the middle-to-rostral cluster when
considered bilaterally (t(70) = −5.12, p < 0.0001), but
also when tested separately for both hemispheres (left:
t(70) = −2.23, p = 0.03; right: t(68) = −6.46, p < 0.0001,
Fig. 1B).

Association between LC intensity and subjective sleep
measures
After adjusting for age, sex, APOE status, and depression
scores, subjective sleep quality was not associated with
MRI signal intensity values for either of the two LC clus-
ters (Supplementary Table 2). However, we found a sig-
nificant negative relationship between intensity within
the middle-to-caudal LC cluster and participants’ reports
of nocturnal awakenings (F1,63 = 5.85, pFDR = 0.03, R2

β*

= 0.09, Fig. 2, Table 2), which was strongest in the left
hemisphere (F1,63 = 6.73, pFDR = 0.03, R2

β* = 0.10). These
associations were not observed when investigating the
middle-to-rostral cluster (Table 2).
We then performed several sensitivity analyses using

different quantifications of LC MRI signal intensity
(cluster mean intensity, cluster peak intensity, and mean
intensity within three equidistant LC sections), and we
found similar associations using mean values within the
middle-to-caudal cluster for both bilateral (F1,63 = 4.43,
p = 0.04, R2

β* = 0.07) and left LC (F1,63 = 5.04, p = 0.03,
R2

β* = 0.07). Peak intensity in the middle-to-caudal clus-
ter also yielded comparable results for bilateral (F1,63 =
5.17, p = 0.03, R2

β* = 0.08) and left LC (F1,63 = 6.31, p =
0.01, R2

β* = 0.09). Finally, delineation of the LC in three
equivalent segments further supports the specific

Fig. 1 Intensity-based cluster analyses of the LC structure. A Cluster analyses on MRI signal intensity within the LC mask revealed two distinct
clusters along the LC structure, one covering the middle-to-caudal LC (orange, cluster 1) and the other covering the middle-to-rostral LC (green,
cluster 2). B Box plots of MRI signal intensity within clusters 1 and 2, represented by hemisphere. Paired t test analyses showed that MRI signal
intensity in cluster 1 is significantly lower than that in cluster 2. *p < .05, **p < .001
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associations between the caudal part of the LC and noc-
turnal awakenings for both the bilateral (F1,62 = 4.15, p =
0.05, R2

β* = 0.06) and left LC (F1,63 = 5.26, p = 0.03, R2
β*

= 0.08).
In our control analysis, we found no significant associ-

ation between nocturnal awakenings and median PT
values (F1,63 = 0.91, p = 0.34), supporting specificity in
the relationships observed above with LC intensity
metrics.

Interactive effect with blood-based AD biomarkers
Finally, we investigated whether the relationships be-
tween LC intensity and nocturnal awakenings are modi-
fied by plasma AD biomarkers, and found that the
negative relationship between middle-to-caudal LC in-
tensity and nocturnal awakenings was particularly evi-
dent in individuals with higher levels of total tau (F1,61 =
4.23, p = 0.04, R2

β* = 0.06, Fig. 3, Table 3). This

interaction was predominantly present in the left hemi-
sphere (F1,61 = 4.26, p = 0.04, R2

β* = 0.07). No significant
interaction was observed with any of the other plasma
biomarkers (Supplementary Table 3).

Discussion
Sleep-wake disruption constitutes a hallmark of the
aging process [28] and contributes to the unfolding of
AD, as early as during the preclinical stages of the dis-
ease [29, 30]. Given the particular involvement of the LC
in both sleep-wake mechanisms and initial AD patho-
genesis, it may constitute a strong candidate as a neuro-
biological correlate of the sleep-wake dysregulation
observed in the earliest stages of the disease. Here, we
provide in vivo evidence that worse integrity of the
middle-to-caudal LC structure is associated with in-
creased number of self-reported nocturnal awakenings
in cognitively unimpaired older individuals and that this

Fig. 2 Associations between subjective reports of nocturnal awakenings and middle-to-caudal LC structural integrity, considered bilaterally (top
left), in the left hemisphere (top right), and in the right hemisphere (bottom left). Simple regression lines are used for a visual display and do not
substitute the GLMM outputs. Dotted lines represent 95% confidence intervals of these simple regressions

Van Egroo et al. Alzheimer's Research & Therapy          (2021) 13:159 Page 5 of 10



relationship may be exacerbated in individuals with ele-
vated levels of total tau in the plasma. These results ex-
pand on the important contribution of the LC to sleep-
wake regulation and have implications for the early de-
tection of sleep disturbances in older individuals at
higher risk for dementia.

Our findings that LC structural integrity specifically
relates to nocturnal awakenings, but not to a broader
metric of sleep quality, corresponds to the role of the
wake-promoting LC neurons as a critical component of
the ascending arousal system to regulate arousal and
wakefulness periods during sleep [9, 31]. While it may
seem counterintuitive that worse LC integrity—possibly
reflecting volumetric changes including shrinking of
wake-promoting neurons—would be associated with an
increased number of awakenings, we speculate that com-
pensatory mechanisms are triggered within intact neu-
rons leading to hyperactivity of the LC among the sleep-
wake circuitry. Indeed, increased firing frequency and ir-
regular firing patterns have been observed in the
remaining neurons following neurotoxin-induced LC re-
duction in mice [32]. Accordingly, elevated levels of 3-
methoxy-4-hydroxyphenylethyleneglycol (MHPG), the
principal metabolite of norepinephrine, have been re-
ported after experimental lesions of the LC in rats [33].
Moreover, several studies in humans have suggested that
elevated MHPG constitutes a detrimental process con-
tributing to AD-related pathological changes in the early
stages of the disease [34–37]. In that context, we
propose that dysregulated norepinephrine release due to
aberrant LC activity during sleep, and especially when
the LC neurons are supposed to be almost completely
quiescent—such as during rapid eye movement sleep
[38]—would lead to an imbalance in the interplay be-
tween wake- and sleep-promoting neurons [39, 40],
resulting in more frequent and inappropriate
awakenings.
Through a series of sensitivity analyses, we provided

additional evidence that the associations between LC in-
tegrity and nocturnal awakenings arise specifically from
the cluster-based middle-to-caudal part. Interestingly, a
recent study reported similar regional associations

Table 2 GLMM outputs of the associations between subjective
reports of nocturnal awakenings and middle-to-caudal (top) or
middle-to-rostral (bottom) LC structural integrity, considered
bilaterally (model 1), for left LC (model 2), and for right LC (model 3)

Model 1 Model 2 Model 3

Middle-to-caudal LC integrity F1,63 = 5.85
pFDR = 0.03
R2β* = 0.09

F1,63 = 6.73
pFDR = 0.03
R2β* = 0.10

F1,63 = 0.71
pFDR = 0.40

Age F1,63 = 3.27
p = 0.08

F1,63 = 4.08
p = 0.05

F1,63 = 2.20
p = 0.14

Sex F1,63 = 6.67
p = 0.01
R2β* = 0.10

F1,63 = 7.76
p = 0.007
R2β* = 0.11

F1,63 = 6.02
p = 0.02
R2β* = 0.09

Depression F1,63 = 8.07
p = 0.006
R2β* = 0.11

F1,63 = 7.26
p = 0.009
R2β* = 0.10

F1,63 = 8.42
p = 0.005
R2β* = 0.12

APOE status F1,63 = 2.16
p = 0.15

F1,63 = 2.29
p = 0.14

F1,63 = 2.46
p = 0.12

Middle-to-rostral LC integrity F1,63 = 1.37
pFDR = 0.37

F1,63 = 2.03
pFDR = 0.37

F1,62 = 0.36
pFDR = 0.55

Age F1,63 = 2.70
p = 0.11

F1,63 = 2.68
p = 0.11

F1,62 = 2.43
p = 0.12

Sex F1,63 = 6.09
p = 0.02
R2β* = 0.09

F1,63 = 6.60
p = 0.01
R2β* = 0.09

F1,62 = 5.53
p = 0.02
R2β* = 0.08

Depression F1,63 = 7.11
p = 0.01
R2β* = 0.10

F1,63 = 7.40
p = 0.008
R2β* = 0.11

F1,62 = 6.86
p = 0.01
R2β* = 0.10

APOE status F1,63 = 2.38
p = 0.13

F1,63 = 2.43
p = 0.12

F1,62 = 1.90
p = 0.17

Fig. 3 Interactive effect of middle-to-caudal LC structural integrity and plasma total tau levels. The association between subjective reports of
nocturnal awakenings and middle-to-caudal LC structural integrity is represented by tertiles of plasma total tau levels. Simple regression lines are
used for a visual display and do not substitute the GLMM outputs. Dotted lines represent 95% confidence intervals of these simple regressions
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between MRI-based assessments of LC structure and
subjective measures of daytime dysfunction in 481 older
men from the Vietnam Era Twin Study of Aging [22]. It
is important to note that the caudal portion of the LC is
known to be more difficult to accurately image due to
its diffuse anatomical organization [21, 41]. As such, pre-
vious work has suggested that caudal sections of the LC
on structural MR images likely correspond to the middle
part of the actual LC [16]. Consistent with our observa-
tion of a stronger negative LC integrity-awakening rela-
tionship at elevated total tau levels, autopsy work
reported that this middle portion of the LC structure ex-
hibits greater vulnerability to tau accumulation in early
Braak stages [42]. Future studies are warranted to repli-
cate this topographical specificity and uncover a poten-
tial wakefulness-specific modular architecture in the LC
[6]. Nevertheless, our control analysis revealed no sig-
nificant relationship with MRI signal measured in a PT
region-of-interest, located close to the LC. This supports
the regional specificity of the LC in the observed associa-
tions, thereby reducing the likelihood of having grasped
spurious correlations.
Our results suggest that the association between worse

LC integrity and higher number of self-reported noctur-
nal awakenings is more marked in individuals with ele-
vated levels of total tau in the plasma. However, we did
not observe similar interactive effects with the more spe-
cific blood-based AD biomarkers of p-tau181, Aβ40, and
Aβ42. Although plasma total tau values also encompass
phosphorylated forms of tau protein, a recent meta-
analysis of blood-based biomarkers suggested that total
tau is rather a marker of neurodegeneration, with better
ability to discriminate between AD patients and controls

in studies using Simoa techniques compared to trad-
itional ELISA methods [43]. Even though, based on aut-
opsy studies, we would expect phosphorylated tau
accumulation to contribute to the integrity values of our
LC assessment, it is possible that the plasma p-tau181 in
our cohort of healthy individuals may not be sensitive
enough to the earliest tau pathological changes. Plasma
p-tau231 has been recently put forward as a promising
biomarker to discriminate individuals in early Braak
stages and with sub-threshold Aβ markers [44], which
cannot be achieved with p-tau181. Taking advantage of
these recent, more sensitive plasma tau markers may
therefore reveal distinct associations, especially in studies
of healthy older individuals. Our findings should thus be
interpreted in the broader context of neuronal injury
and increased risk for cognitive decline as well as inci-
dent dementia [45], including but not limited to AD.

Limitations
The strengths of our study include state-of-the-art inves-
tigation of the LC structure in vivo, using ultra-high field
imaging combined with a data-driven approach to exam-
ine associations between nocturnal awakenings and fine-
grained interindividual variability in LC morphology in
cognitively unimpaired older individuals. However, our
study also bears limitations. First, the cross-sectional ap-
proach restricts causal interpretation, although bidirec-
tional relationships between sleep-wake disruption and
LC alteration are likely at play [29]. While longitudinal
observations can provide information about the tem-
poral chain of events, interventional designs that inter-
fere with sleep-wake regulation and/or LC activity are
needed to address causality. In addition, previous studies

Table 3 GLMM outputs of the associations between subjective reports of nocturnal awakenings and the interaction term total
tau*middle-to-caudal LC structural integrity, considered bilaterally (model 1), for left LC (model 2), and for right LC (model 3)

Model 1 Model 2 Model 3

Total tau*middle-to-caudal LC integrity F1,61 = 4.23
p = 0.04
R2β* = 0.06

F1,61 = 4.26
p = 0.04
R2β* = 0.07

F1,59 = 1.96
p = 0.17

Middle-to-caudal LC integrity F1,61 = 1.47
p = 0.23

F1,61 = 1.55
p = 0.22

F1,59 = 1.20
p = 0.28

Total tau F1,61 = 3.12
p = 0.08

F1,61 = 3.17
p = 0.08

F1,59 = 1.05
p = 0.31

Age F1,61 = 4.08
p = 0.05

F1,61 = 5.01
p = 0.03
R2β* = 0.08

F1,59 = 2.61
p = 0.11

Sex F1,61 = 6.84
p = 0.01
R2β* = 0.10

F1,61 = 7.90
p = 0.007
R2β* = 0.11

F1,59 = 5.59
p = 0.02
R2β* = 0.09

Depression F1,61 = 7.94
p = 0.007
R2β* = 0.12

F1,61 = 6.64
p = 0.01
R2β* = 0.10

F1,59 = 9.35
p = 0.003
R2β* = 0.14

APOE status F1,61 = 1.83
p = 0.18

F1,61 = 2.19
p = 0.14

F1,59 = 2.24
p = 0.14
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reported a female vulnerability to AD pathology and
AD-related cognitive decline [46, 47], and a recent re-
view suggested a similar sex-specific vulnerability for the
LC-norepinephrine system [48]. While we and others
observed more subjective reports of nocturnal awaken-
ings in women compared to men, we did not see sex dif-
ferences in LC integrity measures, consistent with
previous in vivo LC MRI studies in cognitively unim-
paired individuals [16, 21, 49]. As the effect of sex may
be differentially expressed along the clinical continuum
of the disease [50], it will thus be important to further
examine the relationships between sex-specific vulner-
ability to AD, sleep metrics, and LC integrity in popula-
tions including cognitively impaired individuals. Finally,
future studies should include objective assessments of
sleep-wake regulation, such as actigraphic or EEG re-
cordings, alongside subjective measurements, to allow
for refined quantification of sleep-wake metrics. This
would also contribute to further identifying which char-
acteristics of nocturnal awakenings (e.g., timing, dur-
ation) are most closely related to LC structural integrity.

Conclusions
We provide in vivo evidence that more frequent self-
reported nocturnal awakenings are associated with worse
structural integrity of the LC in cognitively unimpaired
older individuals, particularly in those with elevated
plasma markers of neurodegeneration. Thus, the investi-
gation of sleep-wake disruption and LC structural integ-
rity in aging may constitute interesting targets to
identify individuals at higher risk of developing dementia
and holds promises for preventive interventions mitigat-
ing the effect of sleep disturbances on brain physiology.
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