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An effective therapeutic approach for oxaliplatin-induced peripheral neuropathy
using a combination therapy with goshajinkigan and bushi
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ABSTRACT
Oxaliplatin-induced peripheral neuropathy (OIPN) occurs at extraordinarily high frequency, but no
effective treatment for this disorder has been established. Goshajinkigan (GJG), a traditional Japanese
medicine known as Kampo, is known to reduce OIPN in both basic and clinical studies. However, its
molecular mechanisms remain largely unknown. Here, we elucidate the mechanisms underlying the
therapeutic effects of GJG against OIPN and the therapeutic benefits of combining GJG with bushi, a
herbal medicine derived from the processed Aconiti tuber. Oxaliplatin (4 mg/kg) was injected into mice
twice a week for up to 4 and 3 weeks, respectively. OIPN was assessed using pain behavioral tests, such as
those testing cold hypersensitivity, thermal hyperalgesia, and mechanical allodynia, as well as a reduction
of the current perception threshold (CPT). GJG (0.3 or 1 g/kg) and bushi (0.1 or 0.3 g/kg) were orally
administered 5 times a week for 4 weeks. Behavioral analysis was performed 24 h after the final dose.

Oxaliplatin induced cold hypersensitivity andmechanical allodynia but not thermal hyperalgesia and reduced
CPT of Ad- and Ab-fibers but not C-fibers. All these effects were counteracted by GJG. Bushi, an ingredient of GJG
that shows analgesic effect, reduced oxaliplatin-induced cold hypersensitivity but had no effect on oxaliplatin-
induced mechanical allodynia. However, bushi significantly accentuated the effects of GJG when co-
administered with GJG. GJG reduces OIPN by counteracting the sensitization of Ad- and Ab-fibers and shows
analgesic effects against cold hypersensitivity and mechanical allodynia. These effects are potentiated by bushi.
The combination of GJGwith bushi has high potential for preventing OIPN.

Abbreviations: CPT, Current perception threshold; GJG, Goshajinkigan; OIPN, Oxaliplatin-induced peripheral neurop-
athy; TRP channels, Transient receptor potential channels
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Introduction

Oxaliplatin, a third-generation platinum drug, is widely used to
treat advanced/recurrent colorectal cancer.1-3 Oxaliplatin causes
neuropathy as an adverse effect with an extraordinarily high fre-
quency, which is viewed with suspicion because it is the most com-
mon dose-limiting factor for oxaliplatin therapy.4-6 The acute
phase of oxaliplatin-induced peripheral neuropathy (OIPN) is
characterized by cold hypersensitivity, which is followed by the
chronic phase of OIPN characterized by sensory ataxia, numbness,
and sensations of pain, such as mechanical allodynia. These symp-
toms of OIPN worsen with continued oxaliplatin therapy; there-
fore, the discontinuation of oxaliplatin therapy is frequently
required, leading to a decrease in therapeutic effects. However, a
limited number of OIPN treatments, such as calcium gluconate
and magnesium sulfate,7 analgesic drugs (pregabalin and
opioids)8,9 and antioxidants (silibinin and polyphenols, such as
quercetin),10,11 have been investigated in basic and clinical research,
and they have not achieved satisfactory outcomes in clinical
practice.

Goshajinkigan (GJG), a traditional Japanese herbal medicine
known asKampo, has been widely used in Japan to treat rhigosis or

numbness in the extremities and disease-associated neuropathies,
such as diabetic neuropathy.12,13 Recent accumulating evidences in
basic and clinical studies indicate that GJG improves OIPN.14-17

Mizuno et al recently demonstrated in an acute OIPN rat model
that GJGprevents oxaliplatin-induced cold hypersensitivity by sup-
pressing cold-sensitive TRP channels, such as TRPA1 and TRPM8,
in peripheral sensory neurons.18 However, the mechanisms under-
lying the GJG-induced amelioration of OIPN, especially the cumu-
lative neuropathy, remain unknown.

Bushi (TJ-3023, Tsumura & Co., Japan), a herbal medicine
derived from the processed Aconiti tuber, is one of the ingredients
of GJG and is well known to show an analgesic effect; 19,20 thus, it is
used not only for chronic and persistent pain, including neuro-
pathic pain, but also to potentiate the analgesic effects of some
kinds ofKampomedicines in Japan.21 Thus, bushi might potentiate
the analgesic effects of GJG inOIPNwhen co-administered.

In the present study, we demonstrate that OIPN, manifested as
cold hypersensitivity and mechanical allodynia, is associated with
the sensitization of Ad- and Ab-fibers, which is inhibited by GJG in
a mouse model. In addition, we demonstrate that GJG, when
combined with bushi, dramatically increases analgesic effects,
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demonstrating that a combination therapy using GJG and bushi is
a potential strategy for OIPN treatment.

Results

GJG inhibits oxaliplatin-induced cold hypersensitivity and
mechanical allodynia but not thermal hyperalgesia in mice

The repeated injection of oxaliplatin (4 mg/kg) induced a sustained
cold allodynia, measured as an increase in the duration of

withdrawal responses to cold stimulation using the acetone test, in
mice from day 3 after the first injection (Fig. 1A). Oxaliplatin also
led to a persistent cold hyperalgesia, measured as a decrease in the
latency of withdrawal responses using the cold plate test, from day
3 after the first injection (Fig. 1B). GJG (1 g/kg) ameliorated the
oxaliplatin-induced cold hypersensitivity at all the time points
tested (Fig. 1A and B). GJG ameliorated the cold allodynia in a con-
centration-dependent manner over a concentration range from 0.3
to 1 g/kg (Fig. 1E). However, oxaliplatin never induced thermal
hyperalgesia, measured as a decrease in the latency of withdrawal

Figure 1. Goshajinkigan inhibits oxaliplatin-induced cold hypersensitivity and mechanical allodynia but not thermal hyperalgesia in mice. Oxaliplatin (4 mg/kg) was
injected intraperitoneally twice a week for 4 weeks. Goshajinkigan (GJG) (0.3 or 1 g/kg) was administered orally, immediately after the injection of oxaliplatin, 5 times a
week for 4 weeks. The acetone test was performed at the indicated periods (A) and on day 3 (E) to assess the effects of GJG on oxaliplatin-induced cold allodynia. The
cold plate (B) and hot plate (C) tests were performed at the indicated periods. The latency of the withdrawal response against each thermal stimulus was measured. The
von Frey test was performed to assess mechanical allodynia at the indicated periods (D) and on day 18 (F). The paw withdrawal response to the tactile stimulus was evalu-
ated. d; days after oxaliplatin treatment; ��P < 0.01 compared with the control group; #P < 0.05, ##P < 0.01 compared with the oxaliplatin-treated group. Data are
expressed as the mean § standard error of the mean. nD 5–6 per group.
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responses using the hot plate test (Fig. 1C). As shown in Fig. 1D,
oxaliplatin also caused mechanical allodynia, which had a slow
onset and was significantly increased at day 11 and later after the
first administration of oxaliplatin. GJG (1 g/kg) significantly inhib-
ited the oxaliplatin-induced mechanical allodynia, but the lower
dose of GJG (0.3 g/kg) had no effect (Fig. 1F).

The oxaliplatin-induced hyperactivation of Ad- and
Ab-fibers, and its inhibition by GJG

The repeated injection of oxaliplatin had no effect on the
threshold of the 5-Hz stimulus, which is a measure of the sensi-
tivity of C-fibers (Fig. 2A and B). However, oxaliplatin signifi-
cantly reduced the threshold of withdrawal responses to the
250- and 2000-Hz stimuli at day 12 and day 5, respectively,
which lasted at least until day 26 (Fig. 2C and E). Thus,

oxaliplatin increased the sensitivities of Ad- and Ab-fibers but
not C-fibers. GJG (1 g/kg) significantly ameliorated these
changes in sensitivity at all time points (Fig. 2C and E). The
effects of GJG were not observed at the lower dose (0.3 g/kg)
(Fig. 2D and F).

Bushi potentiated the ameliorating effects
of GJG against OIPN

Bushi itself has analgesic effects; in fact, bushi (0.3 g/kg) alone
reduced oxaliplatin-induced cold allodynia (Fig. 3A). When co-
administered with GJG (0.3 g/kg), bushi significantly enhanced
the anti-cold allodynic effects of GJG (Fig. 3C). In contrast, nei-
ther bushi (0.3 g/kg) alone nor GJG (0.3 g/kg) alone showed an
analgesic effect against mechanical allodynia. However, when
they were co-administered, they significantly inhibited oxalipla-
tin-induced mechanical allodynia (Fig. 3B and D).

Figure 2. The oxaliplatin-induced hyperactivation of Ad- and Ab-fibers, and its inhibition by goshajinkigan. The sensitivities of different types of peripheral neurons (C-,
Ad-, and Ab-fibers) were assessed using a neurometer test. The thresholds of paw withdrawal responses to electrical stimuli with 5 Hz (C-fibers, (A)and B), 250 Hz (Ad-
fibers, (C)and D), and 2000 Hz (Ab-fibers, (E)and F) were measured. (A), (C), and (E) shows the time courses of sensitization of C-, Ad-, and Ab-fibers, respectively. (B), (D),
and (F) show the concentration dependence of the effects of goshajinkigan on the sensitivity of C-, Ad-, and Ab-fibers, respectively on day 19. d, days after oxaliplatin
treatment; �P < 0.05, ��P < 0.01 compared with the control group; ##P < 0.01 compared with the oxaliplatin-treated group. Data are expressed as the mean § standard
error of the mean. nD 5–6 per group.
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Discussion

In this study, we demonstrated that OIPN is associated with the
sensitization of Ad- and Ab-fibers, all of which were inhibited
by GJG. Furthermore, we found that bushi, one of the ingre-
dients of GJG that is thought to be important for the analgesic
effects of GJG, significantly enhanced the therapeutic effects of
GJG when used in combination with GJG. This suggests that a
combination therapy using GJG and bushi is a potential strat-
egy for OIPN treatment.

We initially characterized OIPN in mice and investigated
the effects of GJG on OIPN. We found that oxaliplatin caused
cold hypersensitivity in the early period (Fig. 1A and B), which
was followed by mechanical allodynia (Fig. 1D). Interestingly,
it did not cause thermal hyperalgesia (Fig. 1C). These
characteristics of neuropathy in mice were similar to those seen
in the clinical symptoms in human.4,6 We also investigated the
effects of oxaliplatin on the sensitivity of individual peripheral
sensory neurons using a neurometer test22 and found that oxa-
liplatin causes a significant increase in the responsiveness of
myelinated peripheral sensory neurons, including Ad- and Ab-
fibers, which sense fast pain and tactile pressure, respectively.

However, oxaliplatin did not affect C-fibers (Fig. 2). The time
course of sensitivity of these A-fibers was roughly the same as
that of mechanical allodynia. Unlike nociceptive pain, mechan-
ical allodynia starts with a sense of innocuous tactile stimuli by
non-nociceptive neurons, such as Ab-fibers, which somehow
transmit tactile stimuli as pain in pathological conditions. The
sensitization of Ab-fibers, therefore, would be the most likely
event responsible for oxaliplatin-induced mechanical allodynia.
GJG significantly inhibited mechanical allodynia (Fig. 1D and
F) and the sensitization of Ad- and Ab-fibers (Fig. 2C-F). In
addition, Kono et al reported a morphological analysis demon-
strated that oxaliplatin causes the atrophy of axons containing
myelinated nerve fibers but not non-myelinated nerve fibers in
the sciatic nerves in rats and that this effect was ameliorated by
GJG.17 The simplest interpretation of these findings is that an
increase in the sensitivity of either Ad- or Ab-fibers or both is
involved in the induction of mechanical allodynia and that
GJG, acting on these sensory fibers, inhibits their sensitization.

As for heat sensation, the main heat sensor TRPV1 is almost
extensively located in C-fibers.23 This leads to the interpretation
that oxaliplatin affects neither thermal hyperalgesia (Fig. 1C)
nor the sensitivity of C-fibers (Fig. 2A and B). As for cold

Figure 3. Bushi potentiates the ameliorating effects of goshajinkigan against oxaliplatin-induced peripheral neuropathy. Goshajinkigan (GJG) (0.3 g/kg) and/or bushi (0.1
or 0.3 g/kg) were administered orally, immediately after the injection of oxaliplatin, 5 times a week for 3 weeks. The acetone test was performed on day 3 ((A)and C). The
von Frey test was performed on day 18 ((B) and D). ��P < 0.01 compared with the control group; #P < 0.05, ##P < 0.01 compared with the oxaliplatin-treated group.
$P < 0.05, $$P < 0.01 compared with the oxaliplatin C GJG group. Data are expressed as the mean § standard error of the mean. n D 10 per group.
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sensation, the cold sensors TRPA1 and TRPM8 are functionally
upregulated in dorsal root ganglion neurons after treatment
with oxaliplatin.18,24,25 TRPA1 is mainly colocalized with
TRPV1-positive neurons, which are present in C-fibers,
whereas TRPM8 is located in both C- and A-fibers.23 Oxalipla-
tin, however, induced cold hypersensitivity despite it having no
effect on the sensitivity of C-fibers in our study. Thus, the sim-
plest interpretation of our present results is that in our model
or administration schedule, oxaliplatin mainly acted on and
sensitized TRPM8 in myelinated A-fibers, thereby leading to
cold hypersensitivity. Alternatively, oxaliplatin may upregulate
TRPA1 or molecules other than TRPA1 in A-fibers or may
affect TRPM8 in A-fibers. Although the mechanisms underly-
ing oxaliplatin-induced cold hypersensitivity are still unknown,
we demonstrated that GJG significantly inhibited cold hyper-
sensitivity (Fig. 1A, B and E) and the sensitization of Ad- and
Ab-fibers (Fig. 2C-F). Considering the present results that oxa-
liplatin sensitized only myelinated A-fibers, where TRPA1 is
not present,23 GJG may mainly act on and inhibit TRPM8 in
A-fibers and, thereby, inhibit cold hypersensitivities. However,
further studies are needed to clarify this.

Another important finding is that bushi, one of the ingre-
dients of GJG, significantly enhances the therapeutic effects of
GJG, thus proposing a combination therapy using GJG and
bushi. Bushi is widely used in Japan for several types of chronic
and persistent pains, including neuropathic pain. It has been
shown to potentiate the analgesic effects of some kinds of
Kampo medicine.21 Bushi, at a dose of 0.3 g/kg, improved cold
allodynia (Fig. 3A) and significantly potentiated the effects of
GJG against it (Fig. 3C). These results suggest that bushi may
play a pivotal role in the ameliorating effects of GJG against
cold allodynia and that a combination of GJG and bushi may
contribute to potentiating the action against it. However, a fur-
ther study to examine the effect of GJG eliminating bushi on
cold allodynia is needed to clarify whether bushi is the active
ingredient of GJG against it. Interestingly, neither GJG alone
nor bushi alone at a dose of 0.3 g/kg inhibited the oxaliplatin-
induced mechanical allodynia (Fig. 3B), but when co-adminis-
tered, they significantly inhibited mechanical allodynia
(Fig. 3D). Although the mechanisms underlying mechanical
allodynia are not simple, allodynia includes both peripheral
and central neuronal phenomena. As for central mechanisms,
the activation of spinal microglia26 or astrocytes20 is known to
be highly related to the pathogenesis of neuropathic pain. It has
become apparent that glial cells, especially microglia and astro-
cytes, in the spinal cord play a substantial role in the pathogen-
esis of neuropathy induced by anti-cancer agents, such as
paclitaxel, vincristine, and oxaliplatin.27-29 Furthermore, we
found that bushi is a strong inhibitor of astrocytic activation
and revealed its anti-allodynic effect caused by inhibiting spinal
astrocytes in the Seltzer mouse model.20 However, in the pres-
ent study, the activation of glial cells (changes in the localiza-
tion and morphology of microglia and astrocytes) was not
observed in the spinal dorsal horn of oxaliplatin-treated mice
on days 5 and 19 using immunohistochemical analyses (data
not shown). The reason for the failure of bushi alone to inhibit
the oxaliplatin-induced mechanical allodynia is either because
spinal astrocytes, the target cells of bushi, were not activated in
our OIPN model or because the symptom types of OIPN are

not exactly the same as those of neuropathic pain. Bushi has a
variety of other pharmacological activities, including a thermal
effect, an increase in blood flow, and the inhibition of platelet
aggregation,30-32 thus, we do not exclude the possibility that
bushi may potentiate the therapeutic effects of GJG via these
pharmacological activities.

In conclusion, we demonstrated that GJG prevented acute
and cumulative neuropathy using an OIPN mouse model. Fur-
thermore, we found that bushi potentiated the ameliorating
effects of GJG against OIPN. Thus, the combination of GJG
with bushi can improve the symptoms of patients who do not
respond adequately to monotherapy with either GJG or bushi.
These findings are expected to improve treatments and support
future clinical trials associated with oxaliplatin therapy.

Materials and methods

Animals

Eight-week-old male ICR mice (Japan SLC, Shizuoka, Japan) were
used in the present study. They were kept under controlled temper-
ature at 23§ 3�C and relative humidity of 50 § 20%, with a 12-h
light/dark cycle. Animals were allowed free access to solid food and
water in their home cages (4–5 mice per cage). All experimental
procedures were performed according to the Guidelines for the
Care and Use of Laboratory Animals approved by the Laboratory
Animal Committee of Tsumura &Co.

Drugs

Oxaliplatin was purchased from Wako Pure Chemical Indus-
tries, Ltd. (Osaka, Japan). GJG is composed of 10 herbal medi-
cines: Rehmanniae radix (5.0 g), Achyranthis radix (3.0 g),
Corni fructus (3.0 g), Moutan cortex (3.0 g), Alismatics
rhizome (3.0 g), Dioscoreae rhizome (3.0 g), Plantaginis semen
(3.0 g), Hoelen (3.0 g), processed Aconiti tuber (1.0 g), and
Cinnamomi cortex (1.0 g). This drug was prepared as a spray-
dried powder from a hot-water extract (yield 16%) and
obtained from Tsumura & Co. (Tokyo). Bushi (TJ-3023), a
processed Aconiti tuber, was also obtained from Tsumura &
Co. Oxaliplatin was dissolved in 5% glucose solution. GJG and
bushi were dissolved in distilled water.

Experimental schedule

To establish an OIPN mouse model, oxaliplatin (4 mg/kg body
weight) or its vehicle (5% glucose solution) was injected intra-
peritoneally twice a week for 4 weeks (days 1, 2, 8, 9, 15, 16, 22,
and 23). GJG (0.3 or 1 g/kg body weight) and bushi (0.1 or
0.3 g/kg body weight) were administered orally 5 times a week
for up to 4 and 3 weeks, respectively. The acetone test and cold
plate test, which are used to assess cold sensations, and the hot
plate test, which is used to assess heat sensations, were per-
formed on days 0, 3, 10, 17, and 24. The von Frey test, which is
used to assess mechanical allodynia, was performed on days 0,
4, 11, 18, and 25. The neurometer test, which is used to assess
the threshold of peripheral sensory neurons to electrical stim-
uli, was performed on days 0, 5, 12, 19, and 26.
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Assessment of cold hyperalgesia and cold allodynia

Cold hyperalgesia induced by oxaliplatin was assessed using a
cold plate test, which was performed according to the method
described by Mizuno et al.18 Briefly, mice were placed on a Hot/
Cold Plate Analgesia Meter (MK-350HC, Muromachi Kikai Co.,
Ltd, Tokyo, Japan), the temperature of which was kept at 4�C.
The latency of withdrawal responses, such as the elevation and
licking of each hind paw, during 150 s were recorded. Cold allo-
dynia induced by oxaliplatin was assessed using the acetone test.
Approximately 50ml acetone (Wako Pure Chemical Ltd., Osaka,
Japan) was sprayed onto the plantar skin of the right hind paw,
and the time spent in the elevation and licking of the stimulated
hind paw during 60 s was measured.

Assessment of thermal hyperalgesia

The hot plate test was performed to assess thermal hyperalge-
sia. Mice were placed on a Hot/Cold Plate Analgesia Meter, the
temperature of which was kept at 50�C. A cut-off time of 45 s
was set to prevent tissue damage. The latency of withdrawal
responses, such as the licking and flinching of each hind paw,
was recorded.

Assessment of mechanical allodynia

The von Frey test, which was used to assess mechanical allody-
nia, was performed according to the method described by
Shibata et al.20 Briefly, a 0.16 g von Frey filament was applied
to the plantar surface of the right hind paw. The paw with-
drawal in response to the tactile stimulus was scored as follows:
0, no response; 1, a withdrawal response away from the stimu-
lus with slight flinching and/or licking; and 2, an intense with-
drawal response away from the stimulus with brisk flinching
and/or licking. One trial involved 10 applications of the fila-
ment, each of which was scored as 0, 1, or 2. The trial was eval-
uated based on a total score of 0–20 at the culmination of the
test (% of maximum score).

Measurement of current perception threshold

The neurometer test, which was used to assess the thresholds of
peripheral sensory neurons, was performed according to the
method described by Matsumoto et al.22 Briefly, electrodes
(Neurotron Inc., Baltimore, MD) were attached to the right planter
surfaces of the hind paw. Transcutaneous neuronal stimuli (sine-
wave pulses of 5, 250, or 2000 Hz for activation of the C-, Ad-, or
Ab-fibers, respectively) were applied using a Neurometer� CPT�/
C (Neurotron Inc.). The minimum intensity (mA) at which each
mouse showed a withdrawal response of the stimulated hind paw
was defined as the current threshold.

Statistical analysis

All results are expressed as the mean § standard error of the
mean. All statistical analyses were performed using StatLight2000
software (Yukms Co., Ltd, Tokyo, Japan). All behavioral data,
except for that of the von Frey test, were analyzed using one-way
analysis of variance (ANOVA) with post hoc multiple

comparison using Tukey’s test. The data for the von Frey test
were analyzed using ANOVA performed with Scheff�e’s multiple
comparison tests. Differences resulting in P values of <0.05 were
considered statistically significant.
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