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Background: Glioma is a primary malignant craniocerebral tumor commonly found in the central 
nervous system. According to research, preoperative diagnosis of glioma and a full understanding of its 
imaging features are very significant. Still, the traditional segmentation methods of image dispensation and 
machine wisdom are not acceptable in glioma segmentation. This analysis explores the potential of magnetic 
resonance imaging (MRI) brain tumor images as an effective segmentation method of glioma.
Methods: This study used 200 MRI images from the affiliated hospital and applied the 2-dimensional 
residual block UNet (2DResUNet). Features were extracted from input images using a 2×2 kernel size 
(64-kernel) 1-step 2D convolution (Conv) layer. The 2DDenseUNet model implemented in this study 
incorporates a ResBlock mechanism within the UNet architecture, as well as a Gaussian noise layer for data 
augmentation at the input stage, and a pooling layer for replacing the conventional 2D convolutional layers. 
Finally, the performance of the proposed protocol and its effective measures in glioma segmentation were 
verified.
Results: The outcomes of the 5-fold cross-validation evaluation show that the proposed 2DResUNet and 
2DDenseUNet structure has a high sensitivity despite the slightly lower evaluation result on the Dice score. 
At the same time, compared with other models used in the experiment, the DM-DA-UNet model proposed 
in this paper was significantly improved in various indicators, increasing the reliability of the model and 
providing a reference and basis for the accurate formulation of clinical treatment strategies. The method 
used in this study showed stronger feature extraction ability than the UNet model. In addition, our findings 
demonstrated that using generalized die harm and prejudiced cross entropy as loss functions in the training 
process effectively alleviated the class imbalance of glioma data and effectively segmented glioma.
Conclusions: The method based on the improved UNet network has obvious advantages in the MRI brain 
tumor portrait segmentation procedure. The result showed that we developed a 2D residual block UNet, 
which can improve the incorporation of glioma segmentation into the clinical process.
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Introduction

According to a 5-fold cross-validation evaluation results 
(1,2), glioma is accounting for 27% of primary central 
nervous system tumors (3-6) due to the influence of ionizing 
radiation and gene mutation. The incidence of glioma 
increases with age (1,2,6-8). With different-grade gliomas, 
there is different incidence rate. According to malignancy, 
glioma is pathologically classified into grade I to grade IV, 
among which grade II and below are low-grade gliomas 
(LGGs), and grade III and above are high-grade gliomas 
(HGGs) (9). For instance, the median survival time (MST) 
of HGG patients is generally less than 2 years, whereas the 
MST of HGG patients with HGGs is only 4–9 months. 
Furthermore, a molecular study has identified features that 
can enhance diagnosis and provide biomarkers (10). The 
presence of Isocitrate dehydrogenase 1 and 2 (IDH1/2) 
mutation along with X-encoded protein (ATRX) and 
TP53 mutations is indicative of diffuse astrocytomas, while 
IDH1/2 mutations combined with 1p19q loss is indicative 
of oligodendroglioma (10). Focal amplifications of receptor 
tyrosine kinase genes, telomerase reverse transcriptase 
(TERT) promoter mutation, and the loss of chromosomes 
10 and 13 with trisomy of chromosome 7 are distinctive 
features of glioblastoma and can be utilized for diagnostic 
purposes (10). Additionally, the presence of B-Raf proto-
oncogene (BRAF) gene fusions and mutations in LGGs 
and mutations in histone H3 in HGGs can also serve as 

diagnostic markers (11).
Magnetic resonance imaging (MRI) is the only magnetic 

imaging technology that can evaluate the biochemical and 
metabolic conditions of cells and tissues without trauma 
by evaluating the structure of tissue. It can initially assess 
the degree of tumor deterioration, identify the scope of 
invasion, and then analyze and judge the condition of 
brain tumors. In order to facilitate the accurate resection 
of glioma during surgery, the clinical treatment generally 
relies on a variety of advanced imaging modalities such 
as computed tomography (CT), MRI, positron emission 
tomography (PET), and diffusion tensor imaging (DTI) 
to delineate the boundaries of the glioma lesion. These 
imaging technologies assist surgeons in achieving maximal 
extent of resection. Among these modalities, MRI stands 
out for its multiplanar imaging capability and high spatial 
resolution, making it a widely utilized tool in the clinical 
imaging diagnosis of gliomas.

Currently, glioma has been confirmed to consist of 
tumors in a variety of tissue types (necrotic nucleus, active 
tumor margin, and edema tissue). MRI can scan different 
tumor tissues and generate correct glioma imaging reports, 
thus identifying and judging the types of gliomatosis (11), 
as shown in Figure 1. MRI astrocytoma imaging uses the 
following 4 main sequences: T1-weighted image (T1WI), 
T1WI contrast enhancement (T1WIce), T2-weighted 
image (T2WI), and fluid-attenuated inversion recovery 
(FLAIR), reflecting the different tissues (12). For example, 
FLAIR sequences are suitable for observing edematous 
tissues whereas T1ce sequences (MRI sequences obtained 
after injection of gadolinium-based contrast agent) are 
appropriate for the observation of the active components 
of the tumor nucleus. Thus, multiple MRI sequences allow 
physicians to visualize and analyze different tumor tissues 
and to treat them with the appropriate therapy.

Glioma segmentation is believed to be one of the most 
important stages of treatment management (13,14). Recent 
developments in MRI protocols have led to a renewed 
interest in using automatic glioma segmentation with 
different MRI image weights. MRI can better distinguish 
any glioma and its surrounding abnormal tissues, capture 
the external morphology of individual tumor tissues 
of glioma patients, and grade the degree of glioma 
through image analysis to help further treatment. Glioma 
segmentation is considered an important step in MRI 
analysis in glioma patients. Typically, different degrees of 
gliomas are identified by MRI modality and multi-lateral 
3-dimensional (3D) scanning of the area. Therefore, it is 
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essential to grow an automatic glioma segmentation process 
with better precision in clinical practice to reduce the 
segmentation errors caused by self-related factors (13,14).

A l though t rad i t iona l  image  proces s ing-based 
glioma segmentation algorithms have achieved certain 
segmentation results in small-scale and low-modality glioma 
datasets, reports on large-scale and multimodal glioma 
dataset using these techniques are rare. Additionally, these 
methods process two-dimensional (2D) images and are 
not effective in segmenting process particularly 3D glioma 
regions. These methods require manual correction or post-
processing of the segmentation results and do not achieve 
fully automated segmentation of gliomas (15,16).

During the last two decades, computer-aided diagnosis 
(CAD) techniques, which are based on machine learning 
algorithms (MLA), have been widely used in the analysis of 
medical imagery (17,18). Various features of medical images 
are generated based on computer-aided technology to train 
the model’s parameters and provide rich features through 
the exercise model. These models have solved classification, 
regression, clustering, and association problems in 
medical images. For instance, deep learning techniques 
automatically obtain comprehensive image features directly 
from the data (19-21). Additionally, forward and backward 
adjustment algorithms have been used to adjust the 
parameters of the multi-modal MRI model to optimize its 
performance in glioma grading.

The classification of glioma plays a primary function 
in the formulation of a treatment plan and prognosis, and 
the machine segmentation mechanism of glioma is an ideal 
choice to solve the problem of traditional artificial pattern 
recognition and overcome the shortcomings of traditional 

image processing algorithm. The computer segmentation 
algorithm can realize automatic segmentation of glioma, 
greatly improve the accuracy of the algorithm, and execute 
large-scale multimodal segmentation of complex glioma. 
These algorithms have obtained remarkable results in 
the segmentation of large-scale multimodal complex  
glioma (22,23).

In the evaluation outcomes of the Brain Tumor Image 
Segmentation Benchmark (BraTS) validation set, Zikic 
et al. (24) used a single-branch 2D Conv neural network 
based on pixel-by-pixel segmentation, yet Pereira et al. (25) 
used a dual-branch pixel-by-pixel segmentation network. 
Meanwhile, Ben et al. (26) used 3 full convolutional 
networks for segmentation of gliomas, including a 2D full 
convolutional network and a 3D full convolutional network 
and fused the results by integrated learning techniques. Li  
et al. (27) conducted quantitative and qualitative experiments 
on the BraTS 2020 dataset to evaluate the performance of 
the Evidential Deep Learning model for segmentation and 
uncertainty estimation. The results show that this method 
has excellent performance in quantitative segmentation 
of uncertainty and robust segmentation of tumors (27). 
The publicly available training dataset provided for the 
2021 RSNA-ASNR-MICCAI Brain Tumor Segmentation 
(BraTS) Challenge was used in Boehringer’s study, 
consisting of 1,251 multi-institutional, multi-parametric 
MR images (28). Their result showed that the active 
learning approach, when applied to model training, can 
drastically reduce the time and labor spent on preparation 
of ground truth training data (28).

We developed a 2D residual block UNet in order to 
improve the incorporation of glioma segmentation into the 

Figure 1 MRI images of male patients with astrocytoma (grade II) (A) T1WI sequence; (B) T1WIce sequence; (C) T2WI sequence;  
(D) FLAIR sequence. MRI, magnetic resonance imaging; T1WI, T1-weighted image; T1WIce, T1WI contrast enhancement; T2WI,  
T2-weighted image; FLAIR, fluid-attenuated inversion recovery.
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clinical process. The efficiency is seamlessly interrelated 
with using something called the BraTS. Twenty of the 
most advanced tumor segmentation algorithms were used 
on sixty-five multi-contrast MR scans of LGG and HGG 
patients. As many as four raters had personally annotated 
these scans, and they were compared to sixty-five scans 
that were created using tumor image simulation software. 
It was specified that the Dice scores for WT, TC, and 
ET would be provided, with expert segmentation serving 
as the benchmark. Hospital of Hubei University of Arts 
and Science provided a distinct clinical dataset that was 
utilized in the subsequent evaluation of the approach. We 
present this article in accordance with the MDAR reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-1858/rc).

Methods

Network structure of the proposed model

In this area, either a thorough explanation of the possible 
analysis system, which is utilized in prior investigation, 
or the proposed mechanism is presented, including UNet 
model improvement procedures. Inclusion criteria were 
followed: All patients with MRI images were glioma 
patients. Therefore, the 200 MRI images have been taken 
from Hospital of Hubei University of Arts and Science. 
Training is a modeling process, and the process of verifying 
the model is verification. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 

2013). The study was approved by the ethics committee 
of Hospital of Hubei University of Arts and Science (No. 
XYS20220518) and individual consent for this retrospective 
analysis was waived.

Improvement of the UNet model
To address various problems associated with the traditional 
full convolutional networks such as shallow model depth 
(Single hidden layer neural network and single layer neural 
network (that is, logistic regression), usually a neural 
network with few hidden layers, such as only one or two 
layers, is called shallow model) and inadequate acquisition 
of image feature information, a full convolutional network 
model (the proposed network is a simple design that 
employs different heads involving graph convolutions 
focused on edges and nodes, capturing representations 
from the input data thoroughly) using the residual block 
(ResBlock, the residual block transfers information along 
the depth of the network by introducing skip connections 
that add the network output of the previous layer directly 
to the network input of the current layer) mechanism is 
proposed, which is based on the UNet model, for glioma 
segmentation. This model is known as the 2D residual 
block UNet (2DResUNet model; UNet with residual block 
helps to solve the gradient vanishing and gradient exploding 
problems and train deeper networks while ensuring good 
performance, Figure 2).

The proposed 2DResUNet model makes the following 
improvements in the original UNet partitioning model: 

Figure 2 2DResUNet network structure. 2DResUNet, 2D residual block UNet; 2D, 2-dimensional.
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(I) Based on the numerous varieties in the label, 
the picture is segmented according to many 
sequences in the input model and multiple gliomas. 
The original UNet single-channel input layer 
and single-channel output layer are modified 
to 4-channel input layer and 4-channel output  
layer (29). Additionally, a 2D Input Module is set 
to add a Gaussian noise layer to input data for data 
enhancement during the model training process.

(II) The encoder ResBlock structure is used to replace 
two convolutional layers in the down sample 
portion of the prototype to encode the picture 
information. This structure improves the model 
structure by using the residual mechanism to 
prevent the gradient disappearance and gradient 
explosive such that the features are extracted more 
effectively than simply overlaying the convolutional 
layers. Meanwhile, the pooling layer is replaced 
by a convolutional layer with a step size of two, 
which reduces the loss of information in the down 
sampling process (30,31). 

(III) In the up-sampling part of the model for solving 
the encoded element maps, the Decoder ResBlock’ 
structure is used to replace the two convolutional 
layers, which effectively reduces the information 
loss during the up-sampling process due to this 
model incorporating a modified atrous spatial 
pyramid pooling module to learn the location 
information and to extract multi-level contextual 
information. Meanwhile, the feature map is 

bilinearly interpolated using the UpSampling layer, 
thus, gradually recovering the image size.

(IV) The total of generalized die loss and weighted 
cross entropy (WCE) is used as the loss function 
(Loss function is a function that maps the value of 
a random event or its related random variables to 
a non-negative real number to represent the “risk” 
or “loss” of that random event) of model training 
for glioma class imbalance. Thus, the pixel weights 
are adjusted according to the distribution of 
positive and negative samples in the glioma labels. 
Additionally, loss value is continuously reduced 
towards the direction with the largest segmentation 
cross-comparison ratio.

Bra TS2018 local 5-fold cross-validated dataset was 
used as benchmark for models. The evaluation results in 
the BraTS2018 native 5-fold cross-validation are shown 
in Tables 1,2. Hence, to assess the division outcome of the 
suggested models, the intermediate networks designed 
during the model building process were experimentally 
evaluated and these intermediate networks mainly included 
the 2DDenseUNet, DM-ResUNet, DM-DenseUNet, and 
other networks.

Splitting approach
The 2DResUNet-based glioma segmentation method 
consists of 6 steps: data pre-processing, data enhancement, 
model training, performance evaluation, prediction data, 
data post-processing. The overall flow of segmentation is 
shown in Figure 3.

Table 1 Evaluation results in the BraTS2018 local five-fold cross-validation (where ± posterior values indicate variance) 

Model name
Dice score Specificity Sensitivity

WT TC ET WT TC ET WT TC ET

2DUNet 0.8447±0.111 0.7687±0.218 0.6929±0.259 0.9966±0.002 0.9979±0.001 0.9981±0.001 0.8585±0.111 0.7740±0.220 0.7927±0.164

3DUNet 0.8588±0.111 0.7687±0.218 0.6926±0.259 0.9966±0.002 0.9979±0.001 0.9981±0.001 0.8628±0.056 0.8316±0.166 0.7927±0.164

SegAN 0.8951±0.064 0.7619±0.216 0.7397±0.269 0.9974±0.001 0.9955±0.001 0.9972±0.002 0.9955±0.001 0.9972±0.002 0.8674±0.178

Isensee 
3DresUNet

0.8952±0.056 0.7902±0.215 0.7087±0.257 0.9969±0.002 0.9982±0.002 0.9989±0.001 0.8804±0.068 0.8012±0.144 0.8018±0.146

2DResUNet 0.8551±0.131 0.7430±0.220 0.7149±0.290 0.9970±0.001 0.9990±0.001 0.9996±0.003 0.9011±0.178 0.7982±0.252 0.7997±0.244

3DResUNet 0.8612±0.148 0.7561±0.131 0.7150±0.143 0.9939±0.001 0.9950±0.001 0.9931±0.001 0.9022±0.112 0.8052±0.200 0.8003±0.244

DM-ResUNet 0.8951±0.002 0.7902±0.131 0.7087±0.210 0.9969±0.002 0.9987±0.001 0.9989±0.003 0.8804±0.123 0.8012±0.198 0.8018±0.201

DM-DenseUNet 0.9013±0.059 0.7893±0.224 0.7132±0.267 0.9950±0.002 0.9983±0.003 0.9990±0.001 0.8936±0.068 0.7916±0.008 0.7931±0.188

DM-DA-UNet 0.9060±0.060 0.8911±0.205 0.7209±0.270 0.9967±0.002 0.9983±0.002 0.9990±0.001 0.9015±0.067 0.8189±0.146 0.7963±0.190

2DResUNet, 2-dimensional residual block UNet; WT, whole tumor; TC, tumor core; ET, enhancing tumor.
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(I) Step 1 of the algorithm is to perform preprocessing 
operations on the data, which is performed on 
the raw MRI of glioma to eliminate the factors 
affecting the activity of the neural network in the 
basic image acquisition and transform the image 
into the input form required by the model. Its main 
operations include image bias correction, image 
cropping, image normalization, random sampling, 
and other operations.

(II) Step 2 is to enhance the data of the pre-processed 
image, increase the amount and type of data in 
the procedure of model activity, and improve the 
generalization ability and segmentation effect of the 
model. For a relatively small data set of gliomas, 
this step has effectively improved the segmentation 
effect of the model, mainly including the image up 
and down, left and right rotation, random cropping, 
translation transformation, random scaling, random 
rotation, and other data enhancement operations.

(III) Step 3 is model training, thus training the model 
parameters. For model training, the environment 
of the exercise parameters and the initialization of 
the model weight parameters have a direct impact 
on the model training.

(IV) Step 4 is to estimate the enactment of the 
activity standard using the Dice score, specificity, 
sensitivity, and Hausdorff distance, as described in 
section Training of the splitting model.

(V) Step 5 is the process of predicting new cases, 
namely, the process of predicting test data without 
labels, and the trained model can be used to predict 
the test data after the model training is completed.

(VI) Step 6 is the process of data post-processing, as the 
model may have mis-scored multiple score, so the 
data post-processing operation is needed for the 
model-predicted glioma mask.

Additionally, the model uses a 2D convolutional full 
convolutional network for feature extraction and sampling 
of the complete input image, which has a good performance 
in distinguishing the types of diffuse glioma and makes up 
for the problem of a small amount of data in model training. 
2DDenseUNet is the 2D full convolutional network in the 
first stage of DM-DA-UNet network, which is extracted 
separately for experiments in local cross-validation in 
order to confirm the efficacy of DenseBlock. Compared 
with the 3D convolutional full convolutional network, 
feature extraction has higher sensitivity, and is suitable for 
segmentation of glioma regions with fewer middle layers 
and larger thickness in brain MRI, which has better clinical 
applicability (32,33).

Structure of the proposed 2DResUNet
In the proposed 2DResUNet structure, the Input Module 
is used as shown in Figure 4 and the Gaussiannoise layer 
is added to the Input Module structure to add a Gaussian 
noise with normal variation of 0.01 to the input data to 
alleviate the overfitting phenomenon during the model 

Table 2 Evaluation results in the BraTS2018 local five-fold cross-
validation test set (where ± trailing values indicate variance)

Model name
Hausdorff distance

WT TC ET

2DUNet 9.15±3.571 8.14±4.701 3.82±2.120

3DUNet 11.24±4.445 8.40±4.715 3.20±1.714

GAN 8.14±3.089 8.48±3.631 4.44±2.404

Isensee 
3DResUNet

10.69±3.783 7.55±4.199 4.22±1.883

2DResUNet 8.50±3.255 7.17±3.909 4.02±1.876

3DResUNet 9.20±3.332 6.11±4.018 3.12±1.913

DM-ResUNet 10.32±4.001 7.05±3.821 3.56±2.301

DM-DenseUNet 12.62±4.225 8.45±4.215 3.97±1.903

DM-DA-UNet 12.20±3.907 8.53±4.721 4.15±2.018

2DResUNet, 2-dimensional residual block UNet; GAN, 
Generative adversarial network; WT, whole tumor; TC, core 
tumor; ET, enhancing tumor.

Figure 3 Algorithm flowchart of 2DResUNet-based glioma 
segmentation method. Data means data with 2DResUNet-based 
glioma. 2DResUNet, 2D residual block UNet; 2D, 2-dimensional.
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training. Features are extracted from input images using a 
2×2 kernel size (64-kernel) 1-step 2D convolution (Conv) 
layer.

Meanwhile, for a traditional L-layer convolutional neural 
network, if there is an input image, then the nonlinear 
transformation of the ith layer of the gannet is denoted as 
H(.) where H(.) is the accumulation of various function 
processes such as batch normalization (BN), rectified linear 
unit (ReLU), pooling DX* Conv, and so on. Moreover, 
if we let X denote output of the ith network layer in the 
conventional neural network, then it is represented in Eq. [1].

( )1i i iX H X −=  [1]

For ResNet, a SkipConnection is added to the traditional 
convolutional network such that the ith layer of the ResNet 
network is expressed as shown in Eq. [2].

( )1 1i i i iX H X X− −= +  [2]

This structure is generally called ResBlock structure, 
which has effectively replaced the simple convolutional 
layer overlay in the convolutional network, thus improving 
the model performance.

Based on the idea of ResBlock, 3 Encoder ResBlocks for 
feature encoding and 3 2D Convs with step size 2 are used 
in the down sampling part of 2DResUNet. The Encoder 
ResBlock structure is the basic structure of the model for 
encoding the feature map during down sampling, as shown 
in Figure 5, and consists of 2 Conv nuclei of size 3×3 (step 1),  
a BN layer and parametric ReLU (PReLU) activation 

function. The ADD-tool fuses the input features with the 
output features to construct the ResBlock, so Encoder 
ResBlock is a structure based on the ResBlock structure for 
feature extraction.

Up-sampling part of 2DResUNet uses 4 Decoder 
ResBlocks for decoding, 3 2D UpSampling for up-sampling 
the feature map to restore the size, and 1 Output Module 
for output masks.

In the up-sampling part of 2DResUNet, the Decoder 
ResBlock structure is the basic structure for decoding 
the feature map in the up-sampling process, as shown in  
Figure 5, which mainly consists of two convolutional kernels 
with a size of 3×3 (step 1). The corresponding BN layer and 
PReLU activate these functions of these two convolutional 
layers and a convolutional block for extracting the features 
on the input side. The kernel size is 1×1 with fixed bias and 
the ADD mechanism is used to fuse the input and output 
features to construct the ResBlock (34,35).

Loss function
In the glioma segmentation task, the glioma region to be 
segmented often accounts for a small percentage of the 
multi-layered 3D brain MRI and there is an imbalance 
between the foreground and background pixel categories. 
This category imbalance can cause the model to fall into a 
local minimum of the loss function during training and lead 
to poor training results. Therefore, this category imbalance 
can be mitigated by adjusting the loss function to increase 
the weight of the foreground region.

A commonly used UNet loss function is Dice loss, which 
was proposed by Kshirsagar et al. (35). This loss function 
makes the model reduce the loss in the direction of the 
largest intersection ratio between the predicted result and 
the true mask during the training process, thus alleviating 
the category imbalance. The original Dice loss can be 
expressed as shown in Eq. [3].

( )( )1 1

1 1

1 1
1

2

N N
n n n nn n

N N
n n n nn n

p r p r
DL

p r p r

ε ε

ε ε
= =

= =

+ − − +
= − −

+ + − − +
∑ ∑
∑ ∑

 [3]

Where N, pn, rn, and ε denote the number of pixels, pixel 
value of the predicted result, pixel value of the true mask, 
and constant value, respectively.

Although Dice loss can alleviate the category imbalance 
problem in binary classification problems to some extent, it 
often performs poorly on multi-region segmentation tasks. 
This is because during the training process, as soon as a 

Figure 4 Input module structure. 2D, 2-dimensional; StdDev, 
standard deviation.

Figure 5 Encoder ResBlock structure. ResBlock, residual block; 
2D, 2-dimensional; BN, batch normalization; Perl, Practical 
Extraction and Report Language.
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prediction result of a region in the multi-region is wrong, a 
large change in Dice loss will occur, which leads to drastic 
gradient changes and unstable training.

In response to this phenomenon, a loss function called 
generalized Dice loss (GDL) has been proposed, which 
integrates Dice loss for multiple regions of the lesion based 
on Dice loss and quantifies the results of multi-region 
segmentation using a single metric. The GDL calculation is 
expressed as shown in Eq. [4].

1

1

1 2
L N

l ln lnl n
L N

l ln lnl n

w r p
GDL

w r p
=

=

= − ×
+

∑ ∑
∑ ∑

 [4]

L, N, rln, and pln denote title classifications, the numeral 
of pixels, the pixel value of the true mask, and the pixel 
value of the predicted outcome, respectively.

( )2

1

1
l N

lnl

w
r

=

=
∑

 [5]

wl denotes the weight of each category.
In the process of 2DResUNet model design, to better 

solve the problem of unbalanced categories in glioma 
segmentation and the need to segment multiple regions, the 
proposed approach adds the WCE on top of the GDL as 
the loss function. The WCE is based on the Cross Entropy 
loss procedure to weight the target region to be segmented, 
so as to enhance the learning of the target region of the 
model.

( ) ( )1 1

1 2 3 4

1 log 1 log 1

1, 5, 2, 4

N L
l n n n nn l

WCE w r p r p
N

W W W W
= =

= − + − −  

= = = =

∑ ∑
 [6]

Therefore, the loss function utilized by the 2DResUNet 
is the total of WCE and GDL, which can be expressed as 
Eq. [7].

Loss GDL WCE= +  [7]

In order to verify that the loss function has effectively 
mitigate the category imbalance, a comparison experiment 
of the loss function was designed. 

Data pre-processing methods and statistical analysis

The preprocessing mechanism used in the 2DResUNet-
based glioma segmentation method is described as follows: 

(I) Initially, 4 input sequences correspond to T1WI, 

T1ceWI, T2WI, and FLAIR of size 240×240×155 
are bias corrected, respectively.

(II) Brain region of the 3D image is determined, and 
the image cropping frame is obtained.

(III) The bias corrected image is cropped in 3D 
using the cropping frame to remove unnecessary 
background information.

(IV) The cropped image is then normalized to make it 
easier for the neural network to learn.

(V) Finally, the normalized image is randomly sampled 
to obtain the input sequence for training the 
2DResUNet model with a size of 4×128×128.

In the process of MRI generation by MRI machines, 
due to the performance limitations of the machines and 
the surrounding environment, the generated MRIs often 
show bias field effects with inhomogeneous intensity and 
motion artifacts (36,37). This bias field effect causes image 
blurring and noise, which makes image segmentation more 
difficult, so bias correction of the original MRI is needed 
to eliminate the effect of bias field effect on model training 
and prediction.

Image standardization 

Generally, MRI is obtained by different scanners and the 
intensity value distribution of the original MRI is often 
uneven. This uneven intensity distribution is not conducive 
to the training of neural network models. Therefore, the 
cropped images need to be intensity normalized using axial 
series of a normal brain from the same MR machine so 
that the intensity distribution of the images is limited to a 
certain range, which is more conducive to the convergence 
of the model training process and reduces the influence of 
discrete points.

As for the glioma image, the image contains a large 
number of background regions with zero-pixel intensity. 
The mean and standard deviation of all pixel points cannot 
be used as normalization as in the natural image when 
performing pixel normalization. The standard and friction 
of the pixel intenseness of non-zero areas need to be used to 
normalize each pixel point in the image such that the pixel 
intensity in the image is uniformly distributed around 0, as 
shown in Eq. [8].

( )0

0

I
norm

I

I I
I

µ
σ

>

>

−
=  [8]

The intensity histograms of the original T1 sequence 
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images of patients in the BraTS2018 (38-40) dataset and the 
intensity histograms of the normalized images are shown in 
Figure 6. The ratio of test set, validation set, and training 
set 1:1:8 was divided by the BraTS2018 data set. Dice 
scores of different loss functions evaluated by validation set 
were obtained after 10 generations of training on the local  
data set.

Training of the splitting model 

For the pre-processed glioma images, online data 
enhancement can be performed in batch, which allows 
the generation of enhanced data and their insertion into 
the model for training. The standard with the promising 
metrics is established and saved.

In the process of model activity, in order to protect 
computer recollection and acquire the full picture data 
of the patient, image data should be input as much as 
possible. 2DResUNet uses random sampling to obtain 
128×128 patches for training and continuously adjusts the 

parameters of relevant convolutional layers by forward and 
backward propagation during the training process. First, it 
is established to 8 and then the numeral of activity iterations 
(epoch) is set to 13. The optimizer employed is Stochastic 
Gradient Descent (SGD) procedure where the learning rate 
(lr) is 0.08, the momentum parameter (momentum) is set 
to 0.9, and the decay value of the lr after each parameter 
update is set to 0.00005.

Results

The Dice score of different loss functions evaluated by 
the validation set after 10 generations of training in a local 
dataset divided by the BraTS2018 dataset with the ratio of 
test set, validation set, and training set, in a ratio of 1:1:8 
is shown in Table 3. As mentioned above, using the loss 
function of the sum of GDL and WCE can significantly 
improve the segmented glioma region.

The training procedure of the 2DResUNet model 
is demonstrated in Figure 7. The N4 bias correction  
algorithm (41), an improved bias correction algorithm 
based on the N3 bias correction algorithm, is an effective 
and stable bias correction algorithm based on hierarchical 
processing methods and B spline interpolation. For a 
glioma patient data in the BraTS2018 dataset, the intensity 
histogram of the original T1 sequence is shown in  
Figure 8A,8B, whereas the intensity histogram of the image 
with non-zero pixel intensity is shown in Figure 8C,8D, 
which show that in the original glioma MRI, the intensity 
distribution of the image is uneven and the overall intensity 
value is low, yet the pixels with weak intensity occupy a large 
ratio of the pixels with intensity 0. The overall intensity 
histogram and the non-zero power histogram of the T1 

Figure 6 The intensity histograms of the original T1 sequence images of patients in the BraTS2018 dataset and the intensity histograms of 
the normalized images. (A) Raw image intensity histogram; (B) histogram of image intensity after standardization.

Table 3 Comparison of 2DResUNet using different loss functions

Loss function
Dice score

WT TC ET

WCE 0.8209 0.7096 0.6823

GDL 0.8393 0.7280 0.7058

GDL+ WCE 0.8579 0.7463 0.7100

WT, TC, ET are the target of three different types of BraTS 
segmentation. 2DResUNet, 2D residual block UNet; WT, whole 
tumor; TC, tumor core; ET, enhancing tumor; WCE, weighted 
cross entropy; GDL, generalized Dice loss.
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series after the N4 bias correction algorithm are shown 
in Figure 8B and Figure 6C, respectively, which show that 
after the N4 bias correction algorithm, the number of low-
intensity pixels in the glioma image is significantly reduced, 
the proportion of pixels with intensity 0 is effectively 
reduced, and the overall image intensity distribution is more 
uniform. The intensity imbalance was eliminated.

In order to obtain the optimal model structure for 
segmentation, the loss function significance (Loss) of 
the verification set is utilized as the standard for model 
conservation during the activity method. The loss curves 
of the validation set of the original UNet model and the 
2DResUNet model during training which are shown in 
Figure 9 were used to verify the validity of the network 
structure, with the full of GDL and WCE as the loss 
procedure and the models trained for 13 generations. From 
the decreasing trend of the curves, we can see that the loss 
curve of 2DResUNet model decreases more rapidly than 
that of the original UNet model during the training process, 
and the loss value in each iteration is lower than that of the 
original UNet model. The 2DResUNet model is superior 
to the original UNet model in terms of network structure. 
However, since 2DResUNet is an improved network based 

Figure 7 Training flow chart of 2DResUNet. 2DResUNet, 2D 
residual block UNet; 2D, 2-dimensional.

Figure 8 Intensity histogram of the T1 sequence before and after bias correction. (A) Intensity histogram of the original image; (B) intensity 
histogram of bias-corrected images; (C) non-0 intensity histogram of the original image; (D) intensity histogram of non-zero bias corrected 
images.
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on UNet, the number of iterations in which the loss does 
not decrease anymore is relatively similar, and both of them 
stop decreasing after about 8 iterations.

The change curve of validation set loss during training 
for each model is shown in Figure 10. Among these curves, 
the 2DDenseUNet model had a better loss reduction trend 
than the 2DResUNet model and the traditional UNet 
model. Additionally, it was structurally better than the other 

two models.
During the training process, the loss curve of validation 

set allows a comparative analysis of models using the same 
loss function but with different structures. For our study, 
to confirm efficiency of the suggested 2DResUNet and 
2DDenseUNet hybrid approach, Bra TS2018 local 5-fold 
cross-validated dataset was used as benchmark for models. 
Additionally, it was used under the condition that the lot 
of training repetitions is set to 12 and the sum of GDL 
and WCE is used as the loss function, the variation curves 
of the validation set loss for each prototypical throughout 
the exercise procedure. The change curve of validation set 
loss during training for each model is shown in Figure 10.  
Among these curves, the 2DDenseUNet model has a better 
loss reduction trend than the 2DResUNet model and the 
traditional UNet model. Additionally, it is structurally 
better than the other two models.

We conducted experiments to verify the cogency of the 
3D-DA UNet density-block. These trials were approved 
out under the state that the BraTS2018 local 5-fold cross-
validation divided dataset was used as a model and both 
models were trained for 100 generations. Additionally, 
wavelength dependent loss (WDL) was used as the loss 
function and validation set loss of each model during the 
training process, as shown in Figure 11. The trend of each 
model during training is shown in Figure 11.

As soon as model training was completed, the model 
was mature enough to be used as a prediction instrument, 

Figure 9 Variation of validation set Loss during the training of 
original UNet and 2DResUNet. 2DResUNet, 2D residual block 
UNet.

Figure 10 Comparison of Losses of 3 2D convolutional models in 
the training process. 2DResUNet, 2D residual block UNet; 2D, 
2-dimensional.

Figure 11 Comparison of loss of 4 3D convolutional models 
during training. 2DResUNet, 2-dimensional residual block UNet; 
2D, 2-dimensional; 3D, 3-dimensional.
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examination set, to acquire the model-predicted glioma 
segmentation outcomes, namely, the glioma segmentation 
mask. In the examination set split up by local 5-fold cross-
validation, the proposed glioma prediction outcomes of per 
model are demonstrated in Figure 12, where Figure 12A is 
the original T1 sequence of a patient in BraTS2018 dataset; 
Figure 12B is real labeled glioma division mask of the patient 
and the green area indicates the edema region, the yellow 
province demonstrates the enhancement province, and the 
red area demonstrates the essence province; Figure 12C  
is the prediction mask of the proposed 2DResUNet model 
and we have observed that the segmentation result has a 
good segmentation sensitivity and can segment the real 
glioma region, but there are cases of over-segmentation 
and mis-segmentation; Figure 12D is the prediction mask 
of the enhanced 2DDenseUNet on the 2DResUNet, which 
reduces the cases of over-segmentation or mis-segmentation 

in the 2DResUNet while ensuring the segmentation 
sensitivity and improves the segmentation accuracy;  
Figure 12E is the prediction mask of DM-DenseUNet 
model, the attention mechanism is removed from DM-
DenseUNet model such that the effectiveness of the 
engagement tool is verified, and the segmentation outcomes 
display that the attention mechanism can effectively improve 
the segmentation accuracy; Figure 12F is the prediction 
mask of DM-DA-UNet, which has a better segmentation 
effect on the three regions of glioma compared with other 
models, and effectively reduces the mis-segmentation 
and multi-segmentation in each region, which is basically 
consistent with the mask distribution of real glioma.

The evaluation results in the BraTS2018 local 5-fold 
cross-validation are shown in Tables 1,2, respectively. To 
assess the division effect of the suggested models, the 
intermediate networks designed during the model building 

Figure 12 Comparison of the prediction results of each model on the test set. (A) Original T1 sequence; (B) real glioma mask;  
(C) 2DResUNet prediction mask; (D) 2DDenseUNet prediction mask; (E) DM-DenseUNet prediction mask; (F) DM-DA-UNet prediction 
mask. 2DResUNet, 2-dimensional residual block UNet.
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Table 4 Results of the official BraTS2017 validation set

Model structure
Dice score Specificity Sensitivity

WT TC ET WT TC ET WT TC ET

2DResUNet 0.85 0.74 0.70 0.99 0.99 0.99 0.87 0.76 0.72

DM-DA-UNet 0.90 0.80 0.73 0.99 0.99 0.99 0.89 0.77 0.75

Naceur 0.89 0.76 0.81 – – – 0.82 0.82 0.69

Wang 0.88 0.82 0.74 – – – – – –

Havaei 0.88 0.79 0.63 – – – 0.87 0.79 0.80

Kamnitsas 0.90 0.79 0.73 – – – 0.90 0.78 0.76

Zikic 0.84 0.74 0.69 – – – – – –

Isensee 0.89 0.79 0.73 0.99 0.99 9.99 0.89 0.82 0.80

Pereira 0.87 0.73 0.68 – – – 0.86 0.77 0.70

2DResUNet, 2-dimensional residual block UNet; WT, whole tumor; TC, core tumor; ET, enhancing tumor.

process are experimentally evaluated and these intermediate 
networks mainly include the 2DDenseUNet, DM-
ResUNet, DM-DenseUNet, and other networks.

Discussion

Alternatively, existing techniques have used multiple full 
convolutional networks such as DeepMedic, FCN, and 
UNet for integrated learning to segment the gliomas 
and obtained the best segmentation results on the  
BraTS2017 (38) dataset so far. Therefore, it is observed 
that the present full convolutional network-based glioma 
division method is mightily better than the pixel-by-
pixel convolutional neural network segmentation method 
in terms of segmentation precision and segmentation 
sensitivity. Additionally, the simultaneous usage of 
considerable different dimensional models to segment 
gliomas has effectively enhanced the segmentation 
outcomes as demonstrated in Table 4. This is because the 
proposed model adds (I) ResBlock mechanism to the UNet 
model, (II) a Gaussian noise layer to the input layer for 
data enhancement, and (III) replaces the pooling layer with 
a 2D convolutional layer. Thus, it has a stronger feature 
extraction ability than the original UNet model.

In our work, to assess the division outcome of the 
suggested models, the intermediate networks designed 
during the model building process were experimentally 
evaluated and these intermediate networks mainly included 
the 2DDenseUNet, DM-ResUNet, DM-DenseUNet, and 
other networks. Among these networks, 2DDenseUNet 

is the 2D full convolutional network in the first stage of 
DM-DA-UNet network, which is extracted separately for 
experiments in local cross-validation in order to verify the 
effectiveness of DenseBlock. DM-ResUNet is a network 
structure that uses only the ResBlock mechanism without 
the Attention mechanism in the design of DM-DA-UNet. 
DM-DenseUNet structure is a network structure that uses 
only the DenseBlock mechanism without the attention 
mechanism in the design of DM-DA-UNet. In addition, 
2DUNet in relevant papers (42-44) is copied (the original 
UNet configuration is utilized as the intake picture of the 
convolutional network neural in the 2D Conv model). 

Meanwhile, the results of the 5-fold cross-validation 
evaluation display that the proposed 2DResUNet structure 
has a high sensitivity despite the slightly lower evaluation 
result on the Dice score. At the same time, compared with 
other models used in the experiment, the DM-DA-UNet 
model suggested in this paper was significantly improved 
in various indicators (dice score, specificity, sensitivity, 
Hausdorff distance), increasing the reliability of the 
model and providing a reference and basis for the accurate 
formulation of clinical treatment strategies. 

Although the models have evaluated quantitatively 
through local partitioning of datasets and cross-validation, 
the validation by local partitioning of datasets alone may 
suffer from training overfitting due to the small amount 
of data compared to real-world scenarios. The suggested 
2DResUNet and DM-DA-UNet models were used to 
perform predictions and validations on the BraTS2017 
dataset, and the results of those analyses were then uploaded 
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to the official website for users to review and provide input 
on. Comparing the glioma segmentation model to the 
glioma segmentation model in relevant research (38-40) 
provided an objective verification of the model’s validity 
through comprehensive examination of the validation 
data set. This allowed for a more accurate diagnosis of 
gliomas. In the model evaluation using the BraTS2017 
verification set, the 2DResUNet structure demonstrated 
higher sensitivity but a lower Dice score compared with 
the glioma segmentation model in relevant papers (40-42). 
The proposed DM-DA-Unet structure has a significant 
segmentation effect on specificity, sensitivity, and the Dice 
score are all terms that are discussed. The cutting-edge 
model also has a Dice score that is incredibly near to the 
Dice score accuracy of the promising segmentation model 
on the BraTS2017 forum at the moment. 

However, existing glioma segmentation methods, 
which rely on traditional image processing and computer 
parameter acquisition, show shortcomings in glioma 
diagnosis and evaluation. Therefore, deep learning 
in brain glioma segmentation and grading is of great 
significance for the establishment of surgical plan and the 
improvement of prognosis. Among the deep learning-
based glioma segmentation methods, the full convolutional 
network model has been shown to be very effective in 
glioma segmentation. In this paper, we have suggested the 
2DResUNet model to address problems of small perceptual 
field, shallow model depth, and large information loss 
in the coding and decoding process of the current full 
convolutional network model. The proposed model adds (I) 
ResBlock mechanism to the UNet model, (II) a Gaussian 
noise layer to the input layer for data enhancement, and 
(III) replaces the pooling layer with a 2D convolutional 
layer. Thus, it has a stronger feature extraction ability 
than the original UNet model. In addition, the category 
imbalance in the glioma data is alleviated and gliomas are 
efficiently segmented thanks to the profession of the total 
of GDL and WCE as the failure process in the exercise 
method. Various experiments were performed to verify 
the presentation of the proposed structure, confirming 
its effectiveness in glioma segmentation. Of course, it is 
obvious that the method based on the improved UNet 
network has obvious advantages in MRI brain tumor image 
segmentation and has stronger feature extraction ability 
than the earlier UNet model. In addition, it can effectively 
alleviate the classification imbalance of glioma data and 
effectively segment glioma. We have found that using 
GDL and subjective cross entropy as loss functions in the 

training process can effectively alleviate the class imbalance 
of glioma data and effectively segment glioma. Despite the 
novel findings, our study has several limitations that should 
be considered: the 2D networks still have the problem of 
losing some of the spatial information of 3D images. For 
instance, the batch size was limited by graphics processing 
unit (GPU) memory during training and evaluation. We 
will continue to ameliorate the web based on the difficulties 
of the 2D network and the issue of too many 3D network 
parameters to improve the segmentation effect.

Conclusions

Since the traditional image replication processing and 
machine learning segmentation methods are not ideal in the 
segmentation of glioma, this paper explores the potential 
of MRI brain tumor images like the previously published 
papers as an effective segmentation method for gliomas.

In conclusion, MRI scanning can provide clinical 
information on the signal characteristics of glioma. It offers 
important reference value for the degree grading of glioma, 
provides scientific basis for the accuracy and sensitivity of 
tumor diagnosis, and is worthy of clinical popularization 
and application. In addition, the method based on the 
improved UNet network has obvious advantages in MRI 
brain tumor image segmentation and has stronger feature 
extraction ability than the earlier UNet model. Moreover, 
it can effectively alleviate the class imbalance of glioma data 
and effectively segment glioma. Our findings demonstrated 
that the use of GDL and subjective cross entropy as loss 
functions in the training process effectively alleviated the 
class imbalance of glioma data and effectively segmented 
glioma.
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