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A B S T R A C T   

Today, the earth planet suffers from the decay of active pandemic COVID-19 which motivates scientists and 
researchers to detect and diagnose the infected people. Chest X-ray (CXR) image is a common utility tool for 
detection. Even the CXR suffers from low informative details about COVID-19 patches; the computer vision helps 
to overcome it through grayscale spatial exploitation analysis. In turn, it is highly recommended to acquire more 
CXR images to increase the capacity and ability to learn for mining the grayscale spatial exploitation. In this 
paper, an efficient Gray-scale Spatial Exploitation Net (GSEN) is designed by employing web pages crawling 
across cloud computing environments. The motivation of this work are i) utilizing a framework methodology for 
constructing consistent dataset by web crawling to update the dataset continuously per crawling iteration; ii) 
designing lightweight, fast learning, comparable accuracy, and fine-tuned parameters gray-scale spatial exploi-
tation deep neural net; iii) comprehensive evaluation of the designed gray-scale spatial exploitation net for 
different collected dataset(s) based on web COVID-19 crawling verse the transfer learning of the pre-trained nets. 
Different experiments have been performed for benchmarking both the proposed web crawling framework 
methodology and the designed gray-scale spatial exploitation net. Due to the accuracy metric, the proposed net 
achieves 95.60% for two-class labels, and 92.67% for three-class labels, respectively compared with the most 
recent transfer learning Google-Net, VGG-19, Res-Net 50, and Alex-Net approaches. Furthermore, web crawling 
utilizes the accuracy rates improvement in a positive relationship to the cardinality of crawled CXR dataset.   

1. Introduction 

The first confirmed unknown cause of pneumonia was found in 
Wuhan; the disease was named COVID-19 declared by WHO. The WHO 
confirmed that the Chinese epidemic of COVID-19 on the last of 2019 to 
be a community health crisis of global concern posturing a great threat 
to nations with the lack of healthcare organizations. The WHO reported 
that COVID-19 could be erased by primary recognition, lockdown, 
suitable caution, and carrying out a consistent tracking system by 
defining the COVID-19 characteristics [1]. The main step in fighting 
COVID-19 spread is observing the infected cases, letting those 

contaminated search for suitable analysis and instant diagnosis care, 
besides separating them to decrease the virus spread. Generally, Reverse 
Transcription-enzyme Polymerase Chain Reaction (RT-PCR) is the most 
important selection tool used to recognize COVID-19 cases [2,3]. 

Artificial Intelligence (AI) tools are currently utilized to assist with 
the study of the virus to identify the correct antivirus and appropriate 
treatment with the least side effects. A model based on the forecast to 
deal with COVID-19, which was discovered in China, at the end of 2019, 
is being investigated [4–6]. 

Currently, the major challenge is not only classifying the CXR im-
ages, but also collecting the X-ray image datasets that are randomly 
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distributed in different sites such as GitHub, Mendeley, Kaggle, Google 
drive, and the most common websites that host the CXR or any dataset 
related to COVID-19. With the crawling procedure, the web pages of the 
World Wide Web are being methodically looks and gathered information 
using search engines. This is performed by indexing the web pages and 
updating their contents. Furthermore, the web crawlers can copy the 
webpages for the processing stages by a most common search engine by 
simultaneously indexing and updating the downloaded webpages to 
facilitate the searching strategies by the users [7,8]. 

Moreover, the variability and updated version of the dataset inside 
the host websites required simultaneous updates and adapted to handle 
the new instances and cases. Therefore, this work is extended to use a 
cloud computing environment with elastic web crawling to manage and 
crawl the X-ray images from different sites and resources to provide 
enough X-ray images in diagnosis and classification issues as well as 
provide the updated versions of the images in the websites. The crawling 
process is a continuous process that focuses on enriching a system with 
valid input based on seeking a set of certain criteria. COVID-19 is a trend 
changeable and mutated virus, and its effects are always changed over 
time and in a continuous change rather than the other diseases. Also, 
COVID-19 mutation leads to lockdown and threats to human lives which 
requires healthcare organizations to discover new strains of the corona 
virus as a response to the multiple coronavirus strains variants. Our 
attention is on designing a system that handles and adapts to these 
continuous variants. Thus, the proposed classifier has to be adapted and 
enhanced continuously by updating its dataset and retraining the clas-
sifier, from this point was the intention for the crawler. The crawler is 
proposed to be responsible for fetching and continuously updating the 
dataset from not only one source but also multiple sources that can be 
added to make our classifier is listening and triggered by these sources 
continuously. Moreover, the cloud is one of the computation paradigms 
and environments characterized by the resilience in the computation 
resource allocation that is needed for crawling multiple sources of 
datasets, this requires varied processing and storage, and coverage or 
availability geographically. Ultimately, we can itemize the necessity and 
advantages like the following:  

• Adapting the classifier with the scans of the newly discovered cases,  
• Continuous mutation of the virus thus discovering new or changed 

effects that might appear in new shapes in the scan,  
• Adapting the dataset automatically without manual action 

interferences,  
• Covering more than one source of datasets by minimal efforts, just 

adding the source seeds in a configurable way,  
• The dataset of the classifier is a key factor in its design, so an adaptive 

dataset leads to the adaptive classifier,  
• Leveraging the cloud computing feature in process automation,  

• Designing the crawler over the cloud to erase infrastructure hassles 
such as settlement, preparation, scaling, operating, and monitoring. 

Classification as a utility tool for many healthcare applications 
especially the COVID-19 pandemic is widely presented to diagnosis the 
patients based on image processing of CT and/or CXR images. The major 
motivation of this work is answering the question “How can crawling 
and classification help COVID-19 defense? To answer this question there 
are two interconnected axes, the first one the gathering and collecting 
the data that are commonly imbalanced and updated constantly and this 
required a crawling procedure. The second axis is the classification of 
the collected images as a utility to diagnosis the infected COVID-19 
patients. 

The main contribution of the proposed paper is shown as in the 
following points:  

1. Adapting the crawled updated CXR COVID-19 images datasets using 
a web crawler-based cloud environment.  

2. Designing a novel Gray-Scale Spatial Exploitation Net (GSEN) to 
detect infected COVID-19 cases easily.  

3. Optimizing the hyperparameters of GSEN by using Stochastic 
Gradient Descent (SGD) Optimizer. 

The organization of the paper is the literature survey investigated in 
Section (2). While in Section (3) the proposed method includes a web 
COVID-19 crawler and the utilized deep learning architecture. The re-
sults, comparative evaluation, and discussion are introduced in Section 
(4). Finally, the conclusion and future directions are clarified in Section 
(5). 

2. Related work 

Collecting different datasets with different locations is essential to 
track the variability and availability of the characteristics of this COVID- 
19 dataset. There are many different approaches based on AI to cate-
gorize and diagnose the infected cases that carry the virus. These ap-
proaches used CXR images to monitor and investigate the change of lung 
structure and chest depending on the analysis of X-ray images. The re-
sults prove the ability of X-rays to investigate and identify the infected 
persons. Furthermore, CT scans of the chest are utilized to clear more 
details inside the chest and the number and volumes of the batches. PCR 
tests are also utilized to determine the infected cases, but still, different 
problems are realized due to the instability of the results obtained 
[9–12]. 

COVID-19 data are being distributed across many data resources that 
contain low-quality data during inconsistent data structures [13,14]. 
Rao et al. [15] recommended a framework for collecting data and the 
possibility to identify COVID-19 cases. The data collected can be 

Table 1 
A comparison between previously well-known articles and the current proposed approach in terms of methods, architecture, fine-tuning, hyperparameter optimi-
zation, number of classes, and accuracy.  

Study Methods Architecture Fine 
Tuning 

Hyperparameter 
Optimization 

Number of 
Classes 

Accuracy 
(%) 

Das et al. [19] Transfer Learning Xception √ –́ 3  97.40 
Singh et al. [20] Deep Learning CNN √ √ 2  92.55 
Afshar et al. [21] Deep Learning Capsule Network CNN √ √ 4  95.70 
Ucar and Korkmaz  

[22] 
Transfer Learning Deep Bayes-SqueezeNet √ √ 3  98.3 

Khan et al. [23] Transfer Learning Xception √ √ 4  89.60 
Elzeki et al. [24] Deep Learning CXRVN √ √ 2  96.70 
Zhang et al. [25] Deep Learning CAAD √ √ 2  95.18 
Elzeki et al. [26] Transfer Learning VGG-19 √ √ 2  99.00 
Narin et al. [27] Transfer Learning InceptionV3, ResNet50, ResNet101, ResNet152, 

Inception-ResNetV2 
√ √ 2  99.70 

The Proposed 
Approach 

Deep Learning +
Crawler 

GSEN √ √ 2  95.60 
√ √ 3  92.76  
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employed to help in diagnosis and discover COVID-19 infected cases. 
While the progression of occurrences suggests that the virus might be 
transferred by a symptomless carrier, Hassanien et al. [16] present an 
algorithm for classifying COVID-19 X-Ray images that contain 40 
contrast-enhanced lung X-rays with a fixed size 512 × 512 given that 
fifteen normal and the remaining 25 images are positive COVID-19 lungs 
using CXR images. Shinde et al. [17] presented a review for Predicting 
COVID-19 cases and the recent attempts of these prototypes for moni-
toring this pandemic. 

Augmentation of datasets may be an effective solution for a limited 
number of collected datasets and to be adept with the applied DNN 
approach [3]. Pneumonia recognition for the applied CXR images with 
fine-tuned transfer learning is presented by Loey et al. [18]. They uti-
lized Generative Adversarial Networks (GAN) to augment a limited 
number of COVID-19 CXR images. Furthermore, they classify the images 
using the most common transfer learning Alexnet, VGG19, Googlenet, 
and Resnet50. 

Traditionally, different studies have been introduced to detect 
COVID-19 cases employing CXR images since the initial public release of 
COVID-19 datasets, several of which have leveraged variants of the 
COVID-19 to conduct such studies. It is important to note that as new 
patient cases are continuously added and made publicly available 
regularly, the COVID-19 dataset continues to evolve. To review the 
previously established research, a comparison is conducted in Table 1 
regarding the used classifiers and obtained accuracy. Das et al. [19] 
presented an extreme version of inception called Xception that can be 
validated based on the applied fine-tuning of the weights of networks. In 
Singh et al.[20] DCNN with hyperparameter values are applied to ensure 
that adaptive multi-objective differential evolution is fine-tuning to 
classify COVID-19 and normal cases. The COVID-CAPS architecture was 
developed by Afshar et al. [21] using a capsule CNN network to identify 
bacterial, normal, viral, and COVID-19 cases, with the architecture’s 
accuracy reaching 95.70 percent. SqueezeNet architecture is designed 
and fine-tuned for diagnosing COVID-19 cases using additive neural 
networks. Ucar and Korkmaz [22] present Bayesian optimization 
hyperparameters for classifying normal, pneumonia, and covid-19 cases. 
Khan et al. present a transfer learning depending on the Xception ar-
chitecture that is used to classify four classes with 89.60 percent accu-
racy [23]. 

Moreover, Elzeki et al. [24] proposed a lightweight covid-19 chest x- 
ray network called CXRVN to classify two and three classes using a 
generative adversarial network for imbalanced applied COVID-19 
datasets. The confidence-aware anomaly detection (CAAD) model is 
presented by Zhang et al. [25]. Moreover, a transfer learning model 
based on VGG-19 to classify CXR imbalanced dataset images for speci-
fied COVID-19 patients is presented by Elzeki et al. [26]. Narin et al. 
[27] presented transfer learning based on InceptionV3, ResNet50, 
ResNet101, ResNet152, Inception-ResNetV2 with an average accuracy 
reached to 99.70% to classify two classes of CXR images. As investigated 
in Table 1 the related current work is based on CXR images concerning 
the applied study, the methods used, the architecture, the fine-tuning, 
the hyperparameters, the number of classes, and the accuracy. 

In this research, we are motivated to tackle some important concerns 
that are encountered by researchers in detecting CXR images. We crawl 
different datasets that updated the enrolled chest X-ray image simulta-
neously. The proposed architecture is based on a web CXR image crawler 
over a cloud computing environment then GSEN are applied to classify 
CXR images of the COVID-19 cases is. The proposed GSEN architecture 
not only classifies the CXR images but also extracts the most significant 
features of the images. Moreover, we visualize CXR images to investigate 
the characteristics of the enrolled images that might be helpful to 
correctly classify the normal and COVID-19 cases. 

3. Proposed method 

The basic conceptions of web COVID-19 crawler and deep learning 

based on GSEN are being discussed in the following section. 

3.1. Web COVID-19 crawler 

The crawler is the backbone and the stand of many systems such as 
general search engines, specific search engines, anti-virus, knowledge 
banks, and many other systems. On the Internet, Crawler looks for in-
formation that it assigns to certain groups, then lists and catalogs it so 
that the crawled data can be collected and checked. Until a crawl is 
started, the activities of certain computer applications need to be iden-
tified. Then the crawler executes these instructions instantly. An index is 
created with the results of the crawler, which can be accessed via output 
tools. The competence a crawler can learn from the Internet depends on 
simple commands. Fig. 1 is a flowchart that describes the procedures of 
the designed crawler process [28–30]. 

As the main component, it is responsible for gathering the base of 
data for the others component in the system. Crawler’s performance is 
the main factor that the main research challenge to enhance and opti-
mize. The performance is measured by execution time, scalability, 
availability, and flexibility. These factors are highly related to the 
computation paradigm that is used for running. To build a web crawler, 
there are two required phases. The first phase is finding the seed page. 
The seed page is the page that we will provide to the crawler. Ideally, it 
is only needed to provide the crawler with the link for the seed page to 
start the crawler off on its merry way. But depending on the approach 
needs, a list may be provided as a dictionary, data frame, etc. In such 
cases, all the same ideas and concepts are applied, and the approach is 

Fig. 1. The procedures of the designed crawler.  
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modified to meet the problem. 
The second phase is examining the speed page. Examining the maker 

page, the list of all brands is arranged alphabetically on a single web-
page. In most cases, when a page has several items (search results), they 
are split and distributed across multiple web pages and stored as sepa-
rate links, which can be found on a nag page tab. The crawler will have 
to be able to find all such nav page links. In the case of the maker page, 
all the information is listed on a single page. Algorithm 1 summarizes the 
steps of the proposed COVID-19 crawler as follows. 

Cloud computing is one of the advanced computation paradigms that 
have tremendous capabilities and features. Its features proved that it is 
the most proper computation paradigm for this research topic. Cloud 
computing is characterized by elasticity which means scalability and 
expandability, flexibility, reliability, region covering, and pay-as-use or 
on-demand. 

The proposed architecture for the crawler focused on two phases; the 
crawling steps, and the mounting on the cloud computing resources. In 
the first phase of crawling steps as shown in Fig. 2, the initial inputs of 
crawling are entered as configurations such as seed URLs for the sites 
that contain images of covid19 or referral links to pages that contain 
images for any level of depth. Moreover, the additional configurations 
like the number of images and types that are targeted of crawling. These 
configurations are the guidance of the crawling steps. The seed URLs are 
saved as initial values in the URLs queue. The HTTP fetcher retrieves the 
content of the referenced page, the parser extracts the included URLs 
from that page to start adding them to the queue, and the image fetcher 
retrieves the image URL from the queue to retrieve its image and retailer 
it in the COVID-19 image repository for each URL in the queue. The 
second phase of mounting the crawler on cloud computing is shown in 
Fig. 3 The extracted URLs are stored in a queue service which is struc-
tured as a first-in-first-out pattern. The queue size is configured and 
scaled on-demand in the runtime without affecting the operations. The 
extracted images from the crawled pages are stored in an elastic storage 
service. Elastic storage is storage that can be scaled up or down on- 
demand in runtime. Moreover, elastic storage can be shared or repli-
cated over different geographical regions. This storage can be archived 
or backed up on demand. 

The EC2 is an elastic cloud computing service. It is a virtual machine 
that is configured firstly, prepared with crawl APIs, and made as a vir-
tual machine image to be instantiated many times on demand in the 
runtime. EC2 is the link between the queue and elastic storage, which 
reads the next URL from the queue and marks this URL with a lock to 
block other instances from working on it. The newly extracted URLs are 
inserted at the end of the queue and stored in the extracted images in the 
elastic storage. 

Fig. 2. Steps of crawling CXR COVID-19 images.  

Fig. 3. CXR COVID-19 image crawler architecture based on cloud computing.  

Fig. 4. The proposed GSEN structure for CXR COVID-19 images.  
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3.2. Deep learning-based GSEN architecture 

Deep learning is one of the commonly utilized techniques that offer 
state-of-the-art precision. It has an effective role in image processing 
especially medical applications that have not been accomplished before 
[31]. Deep learning in health care addresses a wide variety of topics, 
stretching on or after cancer screening and tracking disease to tailored 
treatment recommendations. Today, different sources of data radiolog-
ical imaging including CT, X-ray, MRI scans, pathology as well as 
genomic sequences recently, have provided large quantities of data to 
physicians [32–35]. DCNN is considered as one of the most crucial 
techniques that are used to extract the features of the enrolled images as 
well as a promising classifier of that feature. Generally, DCNN consists of 
three layers that are convolution, pooling, and full connection. The 
convolution layer is used as a feature extractor layer to classify COVID- 
19 X-ray input images. The pooling layer is a downsample layer that 
controls the over-fitting problem. The fully connected layer is used for 
the classification of normal/abnormal cases. 

In this paper, a system based on GSEN was built to be used in COVID- 
19 x-ray image classification to normal and abnormal categories. The 
percentage of COVID-19 virus existence can be visualized and tracked 
based on the expectation–maximization algorithm and SoftMax activa-
tion function. The architecture of the proposed system is shown in Fig. 4. 
Initially, the main difference described as “Any Gray-Scale Spatial 
Exploitation Net (GSEN) is a specific CNN architecture” that have major 
pros for Chest images can be itemized as: 

a. The GSEN is a simple architecture that consists only of four con-
volutional blocks each is composed of a single convolutional, Batch 
Normalization, ReLU activation function, and Max Pooling. On other 
hand, the traditional CNN consists of Multiple Complex Blocks like 
Convolutional, Residual, and much more.  

b. The GSEN is a fast net, which is a lightweight architecture in memory 
space, initialization stage, number of parameters, number of blocks, 
and the structure of each block. Hence, the GSEN are designed spe-
cifically for grayscale images.  

c. The GSEN architecture is an efficient net, that deals more efficiently 
in processing the grayscale images without any transformation, 
scaling, or floating-point operations.  

d. The GSEN architecture is the cross computable net that can execute 
grayscale processing on CPU/GPU while the traditional CNN must 
execute only on GPU. 

The proposed system is executed using four convolutional layers, by 
which each layer covers a batch normalization, and Rectified Linear Unit 
(ReLU) activation function. SGD optimizer is applied to the proposed 
GSEN architecture to learn the parameters of the features that are con-
voluted such that SGD conveys to zero means and the variance are 

normalized [36,37]. 
The Rectified Linear Unit (ReLU) is the function that is activated 

based on the hidden layer such that the convoluted input feature “x” of 
the ReLU is mathematically introduced as in Eq. (1). 

ReLU(x) =
{
x, x ≥ 0
0, x < 0 (1) 

The normalization of the batch has been determined based on the 
mean and variance for the enrolled features “x” as shown in Eqs. (2), and 
(3). The mean is the expected value of × such that: 

μ = E[xi] (2) 

The variance is determined by: - 

σ2 = E(xi − μ] (3) 

The normalized value of × is given by Eq. (4) as follows: 

ẋ =
xi − μ
̅̅̅̅̅
σ2

√
+ ∈

(4) 

The score vectors of the enrolled CXR COVID-19 images symbolized 
by Swx , such that the probability of the scored values is given in Eq. 5. 

Pi =
eSwx

∑n
i=1eS

wn (5)  

3.3. SGD optimizer 

The redundancy of data is very valuable to the routine utilization of 
optimizers like SGD. Meanwhile, the learning rate varies from compar-
atively major to minor that well known as the scheduling process. 
Consequently, it is necessitating to estimate the parameters to be 
convergence by futzing the parameters ultimately [38]. Practically, the 
main usage of the SGD is to reduce the cost function given a great 
number of training sets that lead to very expensive procedures [39]. The 
minimization of the SGD cost is investigated in Equations (1), and (2) 
given the simple linear in Equation (6). 

Y = a0 + a1X+ x (6)  

Where X, Y represents the independent, dependent variables, respec-
tively, x is the error. a0, a1 are the interception, and the slope of SGD 
optimizer, respectively. 

For a given parameter a0, a1 the cost function (s) can be determined 
as in Equation (7) as follows. 

s(a0, a1) =
1
2n

∑n

i=0

(
ha(xi)− yi

)2 (7) 

As shown in Fig. 5, the main purposes of the SGD optimizer are to 
minimize the cost function such that minimizea0, a1s(a0, a1) [40]. 

Fig. 5. The architecture of the SGD optimizer.  
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The parameters are initially utilized, at that time altered iteration of 
the gradient descent yields the parameters to the global minima over the 
data path called the trajectory. In various technologies, Batch Gradient 
Decent is accumulated by summing up, which results in time con-
sumption and, as a result, higher complexity of the chosen platform. The 
SGD looks at one sample or a small subset or mini-batch example and 
make a progress in the space of parameters to the global minima. Instead 
of the SGD receipts the batch simply and directly to achieve the glob-
al–local minimum, the SGD cost is adapted by randomly shuffling the 
dataset of the trained CXR COVID-19 images such that the number of 
trained instances is calculated. As a result, the features are selected 
depending on the summation accumulated by the first iteration in that 
direction and decrease gradually towards the global minima. Therefore, 
to optimize the accuracy of the system, it is preferred to use as many 
numbers as possible of iterations to get optimized results of the learning 
process [40–42]. 

4. Experimental results and discussion 

In this paper, we designed the proposed architecture to perform two 
scheduling processes that are sequentially carried out. The first process 
is the crawling process which includes the collection of the CXR image 
from different datasets. Afterward, the crawled CXR COVID-19 images 
are utilized to process both feature extraction and classification stages 
based on using GSEN architecture. 

4.1. Crawling experiment 

In this step, the crawling experiment is concentrating on the per-
formance assessment with the crawling architecture overcloud envi-
ronment. Accordingly, the execution time is determined in seconds to 
ensure the duration executed to crawl the images with minimum elapsed 
time. The experiment was performed five times indicates that the 
elapsed time varies related to the applied Virtual Machines (VM) that are 
crawled, such that the 1-VM, 2- GSEN VMs, 3-VMs, 4-VMs, and 5-VMs 
are utilized. On the other hand, the total number of the crawling 
pages and the extracted CXR COVID-19 images are fixed. In this work, 
the proposed crawler architecture is implemented using Java language 
concluded IDE development based on Oxygen and JDK-8. Furthermore, 
we utilized a central database that is designed to crawl the extracted 
Uniform Resource Locators URLs from different distributed web pages. 
To signboard the URL status, each URL record has a flag and an identifier 
that might be executed or not. 

Over the cloud environment, the experimental results were per-
formed such that each crawler instance is operating in a distinct VM 
based on Amazon Elastic Cloud Computing EC2. At this time, the 
Amazon EC2 provides various instance selection types; nevertheless, we 
have instantiated type t2.micro. The T2.micro category includes Giga-
Byte memory, Intel Xeon processors, clocked at up to 3.3 GHz, and EBS 
memory. In addition, the performance of the t2.micro network varies 
from low to medium and the internet speed during the current test 
ranges from 140 to 210 Mbps. We created instances in the Northern 
Virginia (US East) region. Additionally, the database is designed to 
centralize all robot instances and is built on top of the Amazon Rela-
tional Database Service (RDS). Typically, RDS services are simple to 
extend relational databases in the cloud and allow you to focus on your 

business and applications. Therefore, we used the MySQL DB instance, 
whose type is DB.t2.micro. Additionally, DB.t2.micro has a vCPU, 1 GiB 
of RAM, and general-purpose database (SSD) storage. Therefore, the 
origination zone is the same region and region as the robot versions in 
Northern Virginia (US East). 

4.1.1. Statistical analysis 
In this work, the experimental results consist of two important var-

iables, the first one is the instances numbers and the second is the 
number of crawled CXR images. Consequently, we investigated the 
proposed crawler architecture using five instances. The instances are 
increasing from one instance to five instances. In the proposed, we 
determine statistical parameters, these parameters include the average, 
and standard deviation, min, and max, of the crawling time (seconds) 
obtained in the training phase. Accordingly, the experimental results of 
this experiment are shown in Table 2 and Fig. 6 as follows. 

Here we noticed that the average running time is increased con-
cerning the number of instances. For example, in the case of five in-
stances, the running time reached 124.848 s. Also, the standard 
deviation (STD) for running time is decreased concerning the number of 
instances. For example, in the case of five instances, the STD running 
time reached 0.417008393 s as shown in Fig. 7. Also, maximum and 

Table 2 
Five instances average running time in seconds for multiple VMs based on the Amazon Cloud Computing environment.  

Number of Images 50 100 150 200 250 300 

1-Instance  102.176  102.7766  307.882  407.488  493.718  587.12 
2-Instances  53.424  106.774  167.226  220.944  270.002  321.488 
3-Instances  34.998  73.844  113.006  150.532  183.17  214.632 
4-Instances  30.626  63.892  91.91  124.92  146.094  176.756 
5-Instances  22.954  49.828  78.106  103.008  124.896  124.848  

Fig. 6. The running time operates on numerous VMs on Amazon Cloud.  

Fig. 7. Five instances STD running time in seconds for multiple VMs based on 
Amazon Cloud Computing environment. 
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minimum running time in seconds for multiple VMs based on the 
Amazon Cloud Computing environment is represented in Fig. 8. This 
means that the proposed crawler architecture is incrementally varied 
with the number of CXR COVID-19 images as well as the number of 
instances. 

5. Classification of the crawled dataset 

5.1. PC properties 

The experimental results for classification-based GSEN were per-
formed using a package of software containing MATLAB-2020a estab-
lished on a workstation Core i7, 16-RAM, NVIDIA 4G- GT 740 m GPU 
environment. 

5.2. Dataset characteristics 

Several publicly available datasets, especially in medical applica-
tions, recently exist on different websites, such as GitHub, Mendeley, 
Google Drive, and so on. Most of these websites’ pages host and contain 
the latest COVID-19 images, whether X-ray and/or CT images that are 
constantly updated. In this work, we crawled different CXR COVID-19 
images from different websites. We implemented the experimental 

results using two different datasets. The first dataset is called MOMA 
dataset from Mendeley [43] consists of 603 chest X-ray images. The 603 
chest X-ray images were composed of 221 COVID-19, 382 non-COVID 
images, samples are shown in Fig. 9. 382 non-COVID images consist of 
148 pneumonia and 234 normal cases. The second dataset is collected 
using our proposed crawler from Kaggle and Github which consists of 
COVID and non-COVID images as well. We randomly crawled different 
updated versions from the mentioned sites and the collected datasets 
were trained, tested, and validated based on fixed-parameter sets illus-
trated as follows. 

5.3. Parameter’s setting 

In this section, all experiments were performed based on fixed 
hyperparameter values. The applied values of the proposed GSEN ar-
chitecture are investigated in Table 3. 

5.4. Measures of performance 

To assess the performance of the proposed GSEN architecture, the 
confusion matrix containing sensitivity, precision, specificity, accuracy, 
and F1 score are utilized to ensure the reliability of the proposed GSEN 
architecture as shown in Eqs. ((8)–(12)) as follows. 

Recall = Sensitivity = TP/(TP+ FN) (8)  

Specificity = TN/(TN + FP) (9)  

Precision = TP/(TP+ FP) (10)  

Accuracy = (TP+ TN)/(TP+ TN + FP+ FN) (11) 

Fig. 8. Five instances maximum and minimum running time in seconds for 
multiple VMs based on Amazon Cloud Computing environment. 

Fig. 9. Samples of MOMA dataset [43] (a) Normal X-Ray images, (b) infected X-Ray COVID-19 images.  

Table 3 
List of hyperparameter values of the proposed GSEN architecture.  

Hyper-Parameter Value 

Learning-Rate 0.01 
Batch-Size 32 
Momentum 0.8 
Weight-Decay 0.001 
Maximum no. of iterations (2-classes) 200 
Maximum no. of iterations (3-classes) 600  
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F1 − score = 2TP/(2TP+ FP+ FN) (12)  

Where TP: True Positive, TN: True Negative, FP: False Positive, FN: False 
Negative. 

5.5. First experiment: Crawling of two classes (COVID-19 or normal) 

In this scenario of experiments, we used 113 tested X-ray images 
crawled from different two sources of webpages. The first source 
collected by Moony was founded on the Kaggle.com website as in the 
following link “https://www.kaggle.com/paultimothymooney/chest- 
xray-pneumonia”. They collected 5,863 CXR COVID-19 images with 
two labels “Pneumonia” and “Normal”, we utilized only 234 out of 1341 
normal cases. The second source collected from both Faizan (GitHub- 
website) founded in the following link “https://github.com/smfai200/D 
etecting-COVID-19-in-X-ray-images”, and Bachir (Kaggle-website) as in 
the following link “https://www.kaggle.com/bachrr/covid-chestxray”, 
and we utilized only 221 COVID-19 cases. Therefore 455 COVID-19/ 
Normal are successfully collected, and we tested 113 out of 455 im-
ages (~25%) of the total collected CXR COVID-19 images were tested. 
The confusion matrix of the first scenario of an experiment is shown in 
Fig. 10. 

As investigated in the above Fig. 10, the accuracy of the proposed 
GSEN architecture of the crawled 113 CXR COVID-19 images reached 

95.60% which indicates the reliability of the proposed GSEN architec-
ture based on the crawled images over the cloud computing environ-
ment. The accuracy and loss of this experiment are shown in Fig. 11 by 
which we found that after 200 iterations the accuracy is stabled to be 
95.60% with minimum loss value. Table 4 investigate briefly the final 
results of the proposed GSEN for the 113 crawled 113 tested CXR im-
ages. We found that the validation accuracy was 95.58% with a mini-
mum loss of 0.5797 after 200 iterations and 20 epochs. The elapsed time 
was 22 min and 56 s indicates that the proposed architecture is more 
speed to recognize and classify CXR COVID-19 images with higher ac-
curacy and minimum loss. The histogram of the normal and COVID-19 
cases of the 113 tested images was shown in Fig. 12 such that 58 
normal and 55 COVID-19 cases were successfully classified. Fig. 10. The confusion matrix of the tested 113 CXR COVID-19 images.  

Fig. 11. The resulting accuracy and loss of the proposed GSEN after 200 iterations.  

Table 4 
The validation results of the crawled 113 CXR using GSEN architecture.  

Epochs Iteration Time Elapsed Validation 
Accuracy 

Validation Loss 

20 200 22 min and 56 sec  95.58%  0.5797  

Fig. 12. The histogram of the classified CXR includes 58 normal and 55 COVID- 
19 cases. 
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The numerical results of the confusion matrix are shown in detail in 
Table 5 such that the proposed architecture accuracy was 95.60 % of the 
classified Normal/COVID-19 cases which proves the system robustness 
and reliability for the crawled CXR images. 

5.6. Visualization 

Deep dream evidence is a feature visualization technique in deep 
learning that synthesizes images that strongly activate network layers. 
The visualized features are essential to understand and diagnosis the 
proposed GSEN. This helps to visualize CXR COVID-19 images using the 
features represented by each convoluted layer. 

The deep dream shows different insights at different levels and 
blocks whereas using different pyramid scales. The pyramid scale can 
help generate more informative images for layers at the beginning of the 
network. Fig. 13 The visualization of the classified CXR COVID-19 im-
ages including normal, and COVID-19 cases, (a) Activation channel for 2 
CXR COVID-19 images, (b) CXR COVID-19 images at different pyramid 

scales. Fig. 13 is a complex diagram representing the investigation of 
deep dream in the different layers in a different block. We notice the 
informative details increase at a higher level of pyramid scale and last 
layers that are interested in the contents of images. 

5.7. Experiment 2: (Crawling of three classes (COVID-19, normal, and 
Pneumonia)) 

To boost the architecture’s ability to classify more than two classes 
such as COVID-19, Normal, and Pneumonia, we expand the experi-
mental results to classify three class labels. In this scenario of an 
experiment, we used 603 crawled CXR images found in [43], and the 
samples of the collected CXR COVID-19 images were shown in Fig. 14. 
We tested 25% of the overall 603 CXR COVID-19 images such that 150 
CXR COVID-19 images were crawled and tested. The confusion matrix of 
the proposed GSEN based on the three-class labels are shown in Fig. 15. 
The classification accuracy of the three-class labels is 92.67%. Table 6 
determines the validation accuracy, Number of epochs, Number of it-
erations, elapsed time, and validation loss of the tested 150 CXR COVID- 
19 images based on GSEN architecture. 

The confusion matrix of the three-class labels is investigated in 
Table 7 which indicates the system reliability in terms of precision, 
recall, F1-score, and accuracy for the tested 150 CXR COVID-19 images 
that are crawled and classified using GSEN architecture. The comparison 
between the proposed GSEN and recent transfer learning approaches 
using the same crawled CXR COVID-19 images are shown in Fig. 16. The 
comparison study is performed using the same hyperparameter values in 
Table 3. Furthermore, we utilized the same number of CXR COVID-19 
images which are 113 Normal, and COVID-19 cases as well as 150 

Table 5 
The confusion matrix results were obtained measuring sensitivity, 
specificity, accuracy, precision, and F1 score in the first 
experiment.  

GSEN -architecture Dataset-1/Crawler-1 

Sensitivity  93.40 
Specificity  98.10 
Accuracy  95.60 
Precision  98.30 
F1 score  95.80  

Fig. 13. The visualization of the classified CXR COVID-19 images including normal, and COVID-19 cases, (a) Activation channel for 2 CXR COVID-19 images, (b) 
CXR COVID-19 images at different pyramid scales. 
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tested CXR COVID-19 images representing three class labels which are 
Normal, Pneumonia, and COVID-19 cases. The comparison study in-
dicates that the proposed GSEN architecture is superior to other recent 

transfer learning approaches in both two and three class labels. For 
Fig. 16, using the same crawled dataset, we compared the proposed 
GSEN architecture with the most recent CNN models such as GoogleNet, 
VGG-19, Res-Net 50, and Alexnet for both two and three class labels. We 
utilized the same hyperparameter values in Table 3. The superiority of 
the proposed GSEN architecture results from a simple structure of the 
internal network. Furthermore, this architecture is specially designed to 
identify Gray X-ray images. The results obtained depend on the accuracy 
that is calculated from Equation 11. There is a slight enhancement of the 
proposed GSEN architecture compared with the GoogleNet and Res-Net 
50. On the other hand, the loss error of the proposed GSEN were 0.5797, 
and 1.2264 for two and three classes respectively compared with the loss 
error of GoogleNet that reached the minimum values 0.2454 and 
0.5873 for two and three class labels. The other compared VGG-19, Res- 

Net 50, and Alexnet achieved loss error 1.2545, 2.0054, 0.6987 for two 
class labels. While for three class labels the VGG-19, Res-Net 50, and 
Alexnet achieved loss error 2.0598, 3.9954, 1.2378 respectively. 

Fig. 14. (a) The samples of the crawled 603 CXR COVID-19 images including, (a) Normal Cases, (b) COVID-19 Cases, and (c) Pneumonia dataset found in Shams 
et al. [43]. 

Fig. 15. The confusion matrix of the 150 CXR COVID-19 images tested with the 
three-class labels (Pneumonia, Normal, and COVID-19). 

Table 6 
The validation results of the crawled 113 CXR using GSEN architecture.  

Epochs Iteration Time Elapsed Validation accuracy Validation loss 

60 600 91 min and 18 sec  92.67%  0.21543  

Table 7 
The precision, recall, F1-score, and accuracy of the tested 150 CXR COVID-19 
images using GSEN for three class labels normal, pneumonia, and COVID-19.  

3-Class Labels Precision Recall F1-score Accuracy 

Normal  93.10%  93.10%  93.10% 92.76% 
Pneumonia  94.74%  92.31%  93.51% 
COVID-19  90.74%  92.45%  91.59%  

Fig. 16. The comparison study of the proposed GSEN and recent deep learning 
transfer learning approaches Googlenet, VGG-19, Res-Net 50, and Alexnet for 
both two and three class labels. 
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5.8. Comparative analysis and discussion 

As a result of collecting crawled CXR COVID-19 images from various 
dataset websites, the proposed GSEN architecture uses the highest 
number of CXR COVID-19 images and achieves better execution. The 
proposed GSEN architecture’s accuracy of the crawler-based CXR 
COVID-19 images is 95.60 percent for two-class labels and 92.67 percent 
for three-class labels. The comparison between the proposed 3 classes 
COVID-19 CXR images based on crawling-GSEN and Goodwin et al. [44] 
based on 12 models ensembles shows that there are slightly enhanced 
results in terms of F1 score, precision, recall, accuracy as shown in 
Fig. 17. 

In Fig. 17, the proposed GSEN architecture is compared with the 
Goodwin et al. [44] based on three-class labels COVID-19, Pneumonia, 
and Normal cases. They utilized the twelve ensembles model and the 
average accuracy of the Goodwin combined architecture reached 
89.40% while the proposed architecture accuracy achieved 92.76%. On 
the other hand, in terms of the loss function, the proposed GSEN ar-
chitectures achieved loss error 1.2264, while the Goodwin architecture 
achieved an error loss less than 0.4. 

Nevertheless, the proposed approach employs a higher number of 

CXR COVID-19 images. In general, the proposed approach outperformed 
well than other techniques. Table 8 contains information on the studies 
that used deep learning to diagnose CXR COVID-19 images. The 
comparative study [21,23,27,32,45–57] discussed the confusion 
matrices of the state-of-the-art approaches with different methods are 
presented in Table 8. We noticed that the proposed crawler GSEN 
approach is not the top result but on the other hand, the crawling of CXR 
images from different sites is still the major contribution of this work. 
This is because it provides updated versions of images simultaneously as 
well as an enhancement of the classification accuracies will be validated 
in using large-scale datasets. 

6. Conclusion and future work 

A web crawler is considered one of the main sources of dynamic and 
updated information. Focused web crawling is a more specialized 
crawler that focuses on a specific domain or topic of information, so this 
manuscript is designed based on topical web crawling to collect and 
update the data set from a specific source for a specific content that 
makes the proposed system is continuously up to date automatically. 
The variability and instability of the enrolled datasets uploaded to the 
host websites such as Kaggle, GitHub, Google Drive, Mendeley, and the 
other host websites are more confused for the researchers who are 
interested in diagnosis and prognosis CXR images. Currently, machine 
learning approaches, particularly regression and classification issues, 
are considered the most significant tools to fight COVID-19 spread. In 
this work, we presented an architecture based on crawling the updated 
CXR COVID-19 images from different websites using a cloud computing 
environment. Furthermore, the updated images are simultaneously 
adapted to be enrolled in the feature extraction and classification stages. 
The feature extraction and classification stages are based on GSEN to 
classify the input CXR images. The extracted feature can be handled 
based on a convoluted layer and the results indicate the robustness and 
superiority of the proposed system compared with the state-of-the-art. 
We proposed two experiments that demonstrate and prove the ability 
of the proposed GSEN using large-scale standard datasets. We used an 
elastic web crawler over cloud computing to collect different sources of 
datasets and the experimental results investigated that the classification 
accuracies were 95.60%, and 92.76% for 113 and 150 CXR COVID-19 
images such that 113 CXR COVID-19 images are two class labels; 
COVID-19 and Normal cases, and 150 are three class labels Normal, 
Pneumonia, and COVID-19 cases, respectively. As presented in the 
experimental results, although the utilization of the limited number of 

Fig. 17. CXR COVID-19 image diagnostic studies performance comparison for 
three-class labels. 

Table 8 
CXR COVID-19 image diagnostic studies performance comparison for two-class labels.  

Studies Methods Accuracy (%) Sensitivity (%) Specificity (%) Recall (%) Precision (%) F1 score (%) 

Narin et al. [27] CNN– ensemble 94.00  –  –  –  – – 
Abbas et al. [45] DCNN –  97.91  91.87  –  93.36 – 
Afshar et al. [21] COVID-CAPS 95.70  90.00  95.80  –  – – 
Hemdan et al. [46] COVIDX-Net 90.00  –  –  –  – 91.00 
Khan et al. [23] CoroNet 89.60  –  –  98.20  93.00 – 
Maghdid et al. [47] CNN-AlexNet 94.00  –  –  –  – – 
Xu et al. [48] CNN ResNet18 86.70  –  –  –  – – 
Song et al. [49] CNN-ResNet50 93.00  –  –  –  – – 
Zheng et al. [50] CNN –  90.70  91.10  –  – – 
Ghoshal et al. [51] CNN 92.90  –  –  –  – – 
Wang et al. [52] CNN 93.30  –  –  –  – – 
Apostolopoulos, et al.  

[53] 
VGG-19 93.48  –  –  –  – – 

Ozturk et al. [32] DarkCovidNet 87.02  –  –  –  – – 
Murugan et al. [54] E-DiCoNet 94.07  98.15  91.48  85.21  98.15 91.22 
Shi et al. [55] iSARF 

(Random Forest) 
87.90  90.70  83.30  –  – – 

Hall et al. [56] 3 Models Ensembled 91.24  78.79  93.12  –  – – 
He et al. [57] DenseNet169 (Self-supervised Transfer 

Learning) 
86.00  –  –  –  – 85.00 

The proposed algorithm Crawling + GSEN 95.60  93.40  98.10  –  98.30 95.50  
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CXR images to be classified using GSEN, it is expected that the accuracy 
will be increased for large-scale crawled datasets. For future direction, 
we plan to use CT images and study different updated cases of the 
COVID-19 x-ray image. In the future, the proposed approach would be 
used as transfer learning. 
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