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Computer-Aided Diagnosis of Pancreas
Serous Cystic Neoplasms: A Radiomics
Method on Preoperative MDCT Images
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Abstract
Objective: Our aim was to propose a preoperative computer-aided diagnosis scheme to differentiate pancreatic serous cystic
neoplasms from other pancreatic cystic neoplasms, providing supportive opinions for clinicians and avoiding overtreatment.
Materials and Methods: In this retrospective study, 260 patients with pancreatic cystic neoplasm were included. Each patient
underwent a multidetector row computed tomography scan andpancreatic resection. In all, 200 patients constituted a cross-validation
cohort, and 60 patients formed an independent validation cohort. Demographic information, clinical information, and multidetector
row computed tomography images were obtained from Picture Archiving and Communication Systems. The peripheral margin of each
neoplasm was manually outlined by experienced radiologists. A radiomics system containing 24 guideline-based features and 385
radiomics high-throughput features was designed. After the feature extraction, least absolute shrinkage selection operator regression
was used to select themost important features.A support vector machineclassifier with 5-fold cross-validationwas applied tobuild the
diagnostic model. The independent validation cohort was used to validate the performance. Results: Only 31 of 102 serous cystic
neoplasm cases in this study were recognized correctly by clinicians before the surgery. Twenty-two features were selected from the
radiomics system after 100 bootstrapping repetitions of the least absolute shrinkage selection operator regression. The diagnostic
scheme performed accurately and robustly, showing the area under the receiver operating characteristic curve¼ 0.767, sensitivity¼
0.686, and specificity¼ 0.709. In the independent validation cohort, we acquired similar results with receiver operating characteristic
curve¼ 0.837, sensitivity¼ 0.667, and specificity¼ 0.818. Conclusion: The proposed radiomics-based computer-aided diagnosis
scheme could increase preoperative diagnostic accuracy and assist clinicians in making accurate management decisions.
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Introduction

Pancreatic cancer is one of the most mortal malignant tumors in

the world with an overall 5-year survival rate of only 8%.1

Thanks to the wide use of high-definition imaging scans, more

and more pancreatic cystic neoplasms (PCNs) have been dis-

covered and have aroused increasing awareness.2 There are 4

typical types of PCNs: serous cystic neoplasms (SCNs), intra-

ductal papillary mucinous neoplasms (IPMNs), mucinous cys-

tic neoplasms (MCNs), and solid pseudopapillary neoplasms

(SPNs). The SCNs are almost benign and indolent tumors, with

slow growth and very low risk of malignant progression.3,4

Most patients with SCN have no obvious symptoms and only

need to undergo conservative management and periodical ima-

ging scans rather than surgical resection.4,5 Whereas IPMNs,

MCNs, and SPNs have a relatively significant rate of malig-

nancy, and the best treatment choice is surgical resection before

these neoplasms progress to a high-grade cancer.6,7 Previous

studies showed that the clinical diagnostic accuracy of SCNs

was far from satisfactory, and more than half of patients who

should have been managed conservatively underwent unneces-

sary surgeries.8-12

For this reason, an accurate preoperative distinction

between SCNs and non-SCNs is quite important and signifi-

cant. Imaging plays an indispensable role in this issue. Imaging

examinations such as endoscopic ultrasound, computed tomo-

graphy (CT), and magnetic resonance imaging are widely used

clinically to provide radiologic information and increase diag-

nostic accuracy. Especially, abdominal multidetector row com-

puted tomography (MDCT) is an effective method that allows

enhanced thin-section scanning of the pancreas and has become

the preferred imaging modality in the early diagnosis of

PCNs.13,14 Unfortunately, correctly classifying different types

of PCNs by manual examination of radiological images is still a

huge challenge, even for an experienced radiologist.15

In recent years, computer-aided diagnosis (CAD) systems

have been increasingly designed to provide second opinions for

radiologists. After selecting the region of interest (ROI) and

extracting features from medical images (manually or automat-

ically), classification models are established through machine

learning algorithms to identify different types of tumors with

higher reliability and objectivity. Many algorithms have been

proposed for the diagnosis of tumors in various organs, such as

the thyroid, lung, breast and brain, while there are relatively

few CAD researches on PCNs.16 Furthermore, in the majority

of existing researches on PCNs, CT image features such as

tumor size, cyst number, and the presence or absence of calci-

fications all were recorded manually.15,17,18 This mainly

depends on radiologists’ experience and ignores amounts of

image information such as morphological details, texture char-

acteristics, and intensity changes. To solve this problem, the

radiomics method has been proposed and has become an emer-

ging field of research.19 It refers to the automatic high-

throughput feature extraction and analysis of medical images

to build robust models to identify different tumors or predict

patient survival.20 In a recent study, a radiomics approach has

been used to effectively enhance the preoperative prediction of

IPMN malignancy and to our knowledge, there are currently no

such studies for the classification of PCNs.21

The aim of our study was to automatically extract

quantitative features from MDCT images and develop a

radiomics-based CAD classification scheme that improves the

preoperative diagnostic accuracy of SCNs and provides support

opinions for clinicians to avoid overtreatment.

Materials and Methods

Patients

In this retrospective study, we included 260 patients who

underwent a pancreatic resection for a PCN from March

2007 to November 2016 at Department of Pancreatic Surgery,

Huashan Hospital of Fudan University, Shanghai, China. All

patients had provided written informed consent for imaging

and clinical data to be donated for the research. The research

was approved by the institutional review board of Huashan

Hospital (KY2018-019).

All patients had demographic information (age, sex)

recorded in the hospital information system. The ages of

patients (94 males and 166 females) ranged from 15 to 86 years

(mean age 53.4 [15.1] years). Definite histopathological diag-

nosis for each patient was performed by experienced patholo-

gists after the surgical resection. The database consisted of the

4 most common types of PCNs: 102 cases of SCNs, 74 cases of

IPMNs, 35 cases of MCNs, and 49 cases of SPNs. We created a

data set of 200 patients including 75 SCN cases, 58 IPMN

cases, 28 MCN cases, and 39 SPN cases who underwent

MDCT scan before May 2015 as the cross-validation cohort.

The other 60 patients who underwent MDCT scan between

May 2015 and November 2016 constructed the independent

validation cohort containing 27 SCN cases, 16 IPMN cases, 7

MCN, cases and 10 SPN cases. The IPMNs, MCNs, and SPNs

were classified into the non-SCN category. A summary of the

patient characteristics in different cohorts is shown in Table 1.

MDCT Protocol

All included patients had undergone abdominal 64-MDCT

before the surgery. All scans were obtained using a dedicated

dual-phase pancreatic protocol. More than 90% of patients had

1.5 mm slice images of each phase (noncontrast, arterial phase,

and venous phase), and the rest had slice images of 1 or 3 mm

thickness. Our operating procedure included acquiring CT slice

images of the abdomen from the superior liver capsule to the

iliac crests without contrast. Nonionic-iodinated contrast mate-

rial (370 mg I/mL) was then injected intravenously through a

power injector at a rate of 4 mL/s. The volume of contrast

material injected was based on the weight of the patient. Arter-

ial phase images were acquired 25 to 30 seconds after contrast

injection. For the venous phase, images were acquired 60 to 65

seconds after contrast injection.
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Image Analysis

Venous phase images were used for all cases because of better

tumor-background contrast.21 Two well-trained radiologists

with more than 5 years of experience reviewed all MDCT

images. For each patient, one of the readers selected the central

slice of the imaging scan and then outlined the peripheral mar-

gin of each neoplasm within the pancreas, capturing both solid

and cystic components. The other reader rechecked the slices to

finalize the boundaries and marked the ROI on each central

slice. This process provided the reliable delineation of the

tumor region and guaranteed the accuracy and reliability of

extracted features.

We proposed a radiomics system containing 409 quantita-

tive features. The feature set consisted of 2 parts: 24 guideline-

based features and 385 radiomics high-throughput features. In

the first part, the demographic information (age, sex) of

patients was obtained from Picture Archiving and Communi-

cation Systems and radiologists recorded the location informa-

tion of tumors in the pancreas (head, neck, body, or tail). In

addition, we designed and extracted 21 morphological features

based on the clinical guideline of PCNs, specially focusing on

the following factors: cyst information, tumor shape, tumor

wall, calcification, and central scar.22 In the second part, we

designed and extracted 16 intensity features, 61 texture fea-

tures, and 308 wavelet features to uncover and quantify the

image information that could not be observed by the naked

eye, such as the intensity distribution and subtle texture

changes. Details of the radiomics system are shown in Supple-

mental Appendix 1.

Statistical Analysis

The data set was divided into 2 parts: The cross-validation

cohort was used to select the most valuable features and build

a classification model, and the independent validation cohort

was merely used to assess the performance of our model. The

division was based on the date of MDCT scans to avoid other

interference factors.

Feature selection refers to the search for a best subset of

features and is indispensable for an accurate classification. In

this step, we performed a 5-fold cross-validation with 100

bootstrapping repetitions on the cross-validation cohort to

obtain a reliable and effective feature subset. In each 5-fold

cross-validation, the cross-validation cohort was split into 5

folds. By holding 1 fold as the testing set, the other 4 folds

were put together as a training set to build a model. The process

continued until each fold was used as the testing set. The least

absolute shrinkage selection operator (LASSO) model was

used on the training set to select the most important features.

We recorded the selected features in each time of bootstrapping

and sorted all features by their occurrence frequency in all

repetitions. The top 20% of sorted features were retained as

the final optimal feature subset.

After feature selection, we performed the bootstrapping

repetitions of cross-validation again to reduce overfitting and

objectively evaluate the model. Each time a support vector

machine (SVM) model was built and tested to obtain prediction

results of the classification. The SVM is one of the most pop-

ular supervised learning algorithms in the machine learning

field and performs effectively in classification problems.23,24

We normalized the features into the range [�1,1] and then

utilized the SVM of linear kernel after comparing the classifi-

cation performance. The receiver operating characteristic

(ROC) curves were constructed and the area under the ROC

curve (AUC), sensitivity (SEN), and specificity (SPEC) were

calculated to evaluate the classification performance of the

model. All values were averaged, and the 95% confidence

intervals (CIs) of the AUC were also calculated. The classifi-

cation model was conducted on the independent validation

cohort to test its robustness and generalization. The perfor-

mance was also accessed by AUC, SEN, and SPEC.

All mentioned image and data processing were performed in

Matlab R2015b (Mathworks, Inc, Natick, Massachusetts).

Results

The 260 patients enrolled in the retrospective study were

divided into a cross-validation cohort of 200 patients and an

independent validation cohort of 60 patients. For each patient,

the central slice of the imaging scan was manually selected and

the peripheral margin of each neoplasm was outlined. Exam-

ples of different PCNs after manually outlining the tumor

region are shown in Figure 1.

After 100 bootstrapping repetitions of the feature selection

by the LASSO regression, we selected 22 features that were the

most statistically significant and appeared most frequently in

the repeated selection, from 409 quantitative features. The final

optimal feature subset is shown in Supplemental Appendix 2.

It could be divided into 2 main categories: 5 guideline-based

features reflected demographic and morphological information

such as sex, location, shape, and cyst size; 17 radiomics high-

throughput features revealed intensity and texture characteris-

tics, indicating calcification, central scar, and other density

difference. Representative features in each category are shown

in Table 2.

Table 1. Patient Characteristics of Patients in the Cross-Validation

Cohort and Independent Validation Cohort.

Category

Cross-Validation

Cohort

Independent

Validation Cohort

SCNs Non-SCNs SCNs Non-SCNs

Age (mean [SD]) 54.1 (14.0) 52.5 (15.7) 57.6 (11.0) 51.7 (17.0)

Sex (case [%])

Male 20 (26.7) 56 (44.8) 7 (25.9) 11 (33.3)

Female 55 (73.3) 69 (55.2) 20 (74.1) 22 (66.7)

Total 75 125 27 33

200 60

Abbreviations: SCN, serous cystic neoplasm; SD, standard deviation.
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Guideline-Based Features

Sex. To quantify gender differences among patients, male cases

were marked as 1 and female cases were marked as 2. The

mean sex value of SCN cases was 1.735 (0.443) and that of

non-SCN cases was 1.576 (0.496; P value ¼ .009).

Location. The location information of the tumor in the pancreas

was recorded by radiologists and the feature values of pancrea-

tic head, neck, body, and tail were from 1 to 4. In our study, the

mean location value of SCN cases was 2.377 (1.180), slightly

greater than that of non-SCN cases (2.190 [1.264]). Although

the p value of the location information is higher than .05 (p

value¼ .273), this feature was selected in our radiomics system

and this issue will be discussed later.

Shape. Moment difference and rectangle-fitting factor were

used to describe the tumor shape. Moment difference was

designed to quantify the roughness of the tumor edge and the

rectangle-fitting factor was defined as the ratio of the tumor

area to its minimum enclosing rectangle. The mean moment

difference of SCN cases was 0.029 (0.012) and that of non-

SCN cases was 0.022 (0.012; P value <.001). The mean

rectangle-fitting factor of SCN cases was 0.715 (0.055) and

that of non-SCN cases was 0.733 (0.0.055; P value ¼ .004).

Figure 1. Examples of different PCNs after manually outlining tumor region. (A) MDCT image of a 66-year-old man whose cystic lesion was

diagnosed as intraductal papillary mucinous neoplasm (IPMN); (B) MDCT image of a 36-year-old woman whose cystic lesion was diagnosed as

mucinous cystic neoplasm (MCN); (C) MDCT image of a 57-year-old woman whose cystic lesion was diagnosed as serous cystic neoplasm

(SCN); (D) MDCT image of a 29-year-old woman whose cystic lesion was diagnosed as solid pseudopapillary neoplasm (SPN). MDCT

indicates multidetector row computed tomography.

Table 2. Representative Features in Different Categories.

Category Feature SCNs, (Mean [SD]) Non-SCNs, (Mean [SD]) P Value

Guideline-based features Sex 1.735 (0.443) 1.576 (0.496) .009

Tumor location 2.377 (1.180) 2.190 (1.264) .273

Moment difference 0.029 (0.012) 0.022 (0.012) <.001

Cyst size (mm2) 217.2 (245.1) 702.8 (1571.0) .039

Radiomics high-throughput features Intensity T-range 171.6 (48.01) 158.2 (38.78) .007

Wavelet intensity T-median 0.333 (0.840) 0.077 (0.850) .005

Wavelet NGTDM busyness 0.159 (0.116) 0.255 (0.273) .009

Abbreviations: NGTDM, neighborhood gray-tone difference matrix; SCN, serous cystic neoplasm; SD, standard deviation.
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The SCN cases had a greater moment difference value and a

lower rectangle-fitting factor value, which meant that SCNs

had a lobulated contour and non-SCNs had a relatively smooth

contour.

Cyst size. This feature was specially designed to extract the

information of cysts inside the tumor and automatically calcu-

late their average area. The mean cyst size of SCN cases was

217.2 (245.1) mm2 and that of non-SCN cases was 702.8

(1571.0) mm2 (P ¼ .039). We found that the cyst size was an

effective feature in distinguishing SCNs from non-SCNs.

Radiomics High-Throughput Features

A total of 17 intensity and texture features were selected, show-

ing difference between SCNs and non-SCNs. Typically, the

intensity T-range, wavelet intensity T-median, and wavelet

neighborhood gray-tone difference matrix (NGTDM) busyness

were the most distinguishable. The mean intensity T-ranges of

SCN and non-SCN cases were 171.6 (48.01) and 158.2 (38.78),

respectively (P value ¼ .007). The mean wavelet intensity T-

medians of SCN and non-SCN cases were 0.333 (0.840) and

0.077 (0.850), respectively (P value¼ .005). The mean wavelet

NGTDM busyness of SCN and non-SCN cases was 0.159

(0.116) and 0.255 (0.273), respectively (P value ¼ .009). Thus,

SCNs had relatively wider intensity range, higher overall den-

sity, and more homogeneously distributed local density than

non-SCNs. These features will be further discussed later.

Then, we used an SVM classifier to intelligently combine

these 22 selected features and build a robust model. Three

calculated indicators showed a superior performance that

achieved an AUC of 0.767 (95% CI, 0.763-0.770), SEN of

0.686, and SPEC of 0.709 in the cross-validation cohort and

a higher AUC of 0.837, SEN of 0.667, and SPEC of 0.818 in the

independent validation cohort. These metrics indicated that our

classification model could accurately and efficiently identify

most SCN cases. We also compared the performance of our

SVM classifier with 4 classifiers that used feature subsets

selected by other classic feature selection methods.25 In the

Wilcoxon rank-sum test, we selected statistically significant

features with a P value lower than .01. In the w2 test and relief

method, features were sorted according to the calculated value

and then the feature subset with the best classification perfor-

mance was chosen. The logistic regression was used in the

same procedure as the LASSO regression to select the top

20% of sorted features. The SVM classification performance

metrics for each feature selection method are listed in Table 3.

The ROC curves are shown in Figure 2.

To evaluate the improvement brought by radiomics high-

throughput features, we compared the classification perfor-

mance of the SVM classifier using selected guideline-based

features with the SVM classifier using the full selected feature

set. The comparison result is shown in Table 4. Most metrics

indicated that high-throughput radiomics features could utilize

more image information than traditional guideline-based fea-

tures and greatly increase the diagnostic accuracy. Detailed

information regarding diagnostic discrepancies between radio-

mics CAD result and definitive histological diagnosis in the

independent validation cohort is shown in Table 5.

Table 3. SVM Classification Performance of Selected Feature Subsets With Different Methods.

Method of Feature Selection

Number of

Selected Features

Cross-Validation Cohort (5-Fold Cross-Validation With

100 Bootstrapping Repetitions)

Independent Validation

Cohort

AUC (95% CI) SEN SPEC AUC SEN SPEC

WRST 17 0.658 (0.653-0.663) 0.605 0.644 0.736 0.593 0.727

Relief 21 0.644 (0.639-0.648) 0.612 0.625 0.679 0.630 0.636

Logistic regression 20 0.628 (0.624-0.633) 0.621 0.564 0.667 0.630 0.576

w2 Test 16 0.667 (0.663-0.670) 0.573 0.671 0.733 0.630 0.697

LASSO 22 0.767 (0.763-0.770) 0.686 0.709 0.837 0.667 0.818

Abbreviations: AUC, area under the ROC curve; LASSO, least absolute shrinkage selection operator; SEN, sensitivity; SPEC, specificity; WRST, Wilcoxon rank-

sum test.

Figure 2. ROC curves of our radiomics-based CAD system in the

cross-validation and independent validation cohort. The red line is the

average curve of cross-validation cohort in 100 bootstrapping repeti-

tions with AUC ¼ 0.767, the purple line is the curve of validation

cohort with AUC ¼ 0.837, and the blue line is the reference line with

AUC ¼ 0.500. ROC indicates receiver operating characteristic; CAD,

computer-aided diagnosis; AUC, area under the ROC curve.
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Discussion

Current Research Status of SCN Diagnosis

Due to different tumor characteristics and management strate-

gies, the classification of different types of PCNs has generated

much interest. Patients need a noninvasive and affordable

approach to accurately distinguish SCNs from MCNs, IPMNs,

and SPNs, so that those with SCNs can avoid the morbidity and

high-economic costs of surgery. However, the preoperative

diagnostic accuracy of PCNs by clinicians is currently far from

satisfactory. According to a recent study of 141 patients with

histology-proven PCN, the overall preoperative diagnostic

accuracy of PCNs was 61.0% (86 of 141) while the diagnostic

accuracy of SCNs was only 24.2% (8 of 33).11 In our retro-

spective study of 260 patients with PCN, we were surprised to

find that the overall preoperative diagnostic accuracy by clin-

icians was 37.3% (97 of 260), and only 30.4% (31 of 102) of

SCN cases were correctly diagnosed. This meant that more

than two-thirds of patients with SCN suffered unnecessary

pancreatic resection.

Radiologic imaging technologies, especially MDCT scans,

play an important role in the preoperative diagnosis of PCNs.

In many recent researches, radiologists recorded descriptive

morphologic features from CT images based on their experience,

including the tumor size, location (pancreatic head, neck, body,

or tail), contour shape (smooth, lobulated), calcification (absent,

central, or peripheral), septa (absent, present), and central scar

(absent, present).13,15,17,18,26,27 Then, statistical methods and

even machine learning algorithms were used to analyze recorded

radiologic features to improve the diagnostic accuracy.

According to the results of Kim et al, significant differences

in tumor shape were found between serous oligocystic adeno-

mas (SOAs) and the other macrocystic neoplasms (MCNs and

IPMNs) (P < .05).26 Their research focused on the macrocystic

types of PCN and convinced us about the importance of fea-

tures of the tumor shape. Goh et al found that SCNs differ from

MCNs by their relatively higher male-to-female ratio (P ¼
.004), higher frequency of tumors occurring in the head of the

pancreas, and smaller cyst size (P < .001).27 In one research,

Cohen-Scali et al compared the CT appearance of 12 macro-

cystic SCNs, 11 MCNs, and 10 pseudocysts.13 They found that

location in the pancreatic head (P < .05), lobulated contour (P <

.005), and lack of wall enhancement (P < .005) were specific

for macrocystic SCNs compared with other PCNs. Li et al

adopted a CAD scheme to distinguish SOAs from MCNs.17

They found the tumor size, contour, and location features effec-

tive in SVM classifier and achieved an accuracy of 88.37% (38

of 43). However, their database was too small and only con-

tained SOA and MCN cases, which tremendously simplified

the classification problem.

These researches contributed to the accurate preoperative

diagnosis of PCNs but had their limitations. Furthermore, the

manual feature extraction in these researches was inefficient in

dealing with large amounts of data and the accuracy of these

descriptive features relied heavily on radiologists’ subjective

judgment. In the feature extraction section of our study, we

referred to the valuable results of these researches and realized

automatic extraction and quantification of these morphological

features.

Our Findings and Advantages of Radiomics Analysis

Here, we conducted the first retrospective study to evaluate the

clinical utility of radiomics features in automatic CAD of

SCNs. In our research procedure, we manually outlined the

accurate tumor boundary for each of the 260 patients and then

designed programs to extract 409 quantitative features, con-

taining both guideline-based features and radiomics high-

throughput features. Quantitative guideline-based features

provided similar information as descriptive morphological fea-

tures manually recorded in former researches and the automatic

feature extraction was more efficient and effective. Further-

more, radiomics high-throughput features containing intensity

features, texture features, and their wavelet decomposition

forms fully utilized image information and obtained more

Table 5. Diagnostic Discrepancies Between Radiomics CAD Result

and Definitive Histological Diagnosis in Independent Validation

Cohort.

Radiomics CAD Result

Definitive Histological Diagnosis

SCN

Non-SCN

IPMN MCN SPN Total

SCN 18 3 2 1 6

Non-SCN 9 13 5 9 27

Abbreviations: CAD, computer-aided diagnosis; IPMN, intraductal papillary

mucinous neoplasm; MCN, mucinous cystic neoplasm; SCN, serous cystic

neoplasm; SPN, solid pseudopapillary neoplasm.

Table 4. SVM Classification Performance With Different Feature Sets.a

Feature Set Number of Features

Cross-Validation Cohort (5-Fold Cross-Validation With

100 Bootstrapping Repetitions)

Independent Validation

Cohort

AUC (95% CI) SEN SPEC AUC SEN SPEC

Selected guideline-based features 5 0.707 (0.704-0.710) 0.747 0.602 0.774 0.778 0.636

Full selected feature set 22 0.767 (0.763-0.770) 0.686 0.709 0.837 0.667 0.818

Abbreviations: AUC, area under the ROC curve; CI, confidence interval; SEN, sensitivity; SPEC, specificity; SVM, support vector machine.
aThe full selected feature set contained both selected guideline-based features and radiomics high-throughput features.
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image details that were hard to discover with the naked human

eyes.28 Then, instead of simply adding up the factors, we used

LASSO regression to select the most statistically important

features and build up an optimal feature subset. The redun-

dancy between highly relevant variables can be eliminated and

the most influential variables were selected to get a refined

statistical model with high accuracy and interpretability.29,30

The results showed that the LASSO regression could select the

most effective feature subset and achieve a better performance

than other methods in each indicator value. Owing to the super-

ior feature selection of the LASSO regression, we acquired an

optimal feature subset of 22 features from 409 radiomics fea-

tures. Then, we adopted the SVM, a supervised-learning

model, to address various classification situations and achieved

a tremendous diagnosis performance improvement compared

with clinical diagnosis. As we all know, machine learning

requires large data sets to acquire valid results. Compared with

existing CAD studies, the sample amount of our database had

an absolute advantage and this ensured the reliability and

applicability of our research.17,31

According to the results of our study, guideline-based fea-

tures were effective in the CAD scheme, with AUC of 0.707.

Sex was an important factor in the diagnosis of SCNs, with a P

value of .009, because IPMNs are more common in males

while SCNs, MCNs, and SPNs are more common in women.22

Age was not a statistically significant feature in our study, with

a P value of .3238, which was consistent with early researches

of Kim et al and Goh et al.26,27 However, age is considered an

important discriminator in many recent researches.22,32,33 To

explain the discrepancy, we calculated patients’ average age in

each category. The average age (mean standard deviation [SD])

in SCN and non-SCN categories was 55.0 (13.4) and 52.3

(16.1), respectively. In the non-SCN category, the average ages

of patients with IPMNs, MCNs, and SPNs were 62.4 (8.70),

49.4 (15.2), and 39.2 (15.0), respectively. When IPMNs,

MCNs, and SPNs were all considered as non-SCNs, age

became a weak feature in distinguishing SCNs from other

PCNs. This was one of the limitations of LASSO algorithm

and was also due to the insufficient database. The tumor loca-

tion showed no statistical significance, with a P value of .273,

but surprisingly this feature was selected in 100 bootstrapping

repetitions of LASSO. According to the results of Goh et al and

Scoazec et al, SCNs occur more frequently in the pancreatic

head rather than the body or tail, MCNs are more likely to

appear in the pancreatic tail of women, and IPMNs have a

higher probability to appear in the pancreatic head and neck

of men.27,34 This is the advantage of the LASSO regression

over traditional statistical methods. The tumor location was

an effective feature when combined with other features such

as sex and tumor shape. Features about the tumor shape indi-

cated obvious statistical significance. Especially, the P value of

moment difference was less than .001. Relatively speaking,

non-SCNs tended to have a regular oval shape with smooth

contour, while SCNs tended to have a multicystic or lobulated

contour. This finding was also consistent with the results of

Sahani et al and Kim et al.22,26 The cyst size was also an

effective feature in our study. According to existing reports,

SCNs usually have plenty of small cysts or a few macrocysts;

compared with SCNs, cysts of MCNs are smaller in numbers

and greater in size; SPNs usually present as single heteroge-

neous masses with solid and cystic components and have a

large size; however, cysts of IPMNs are typically small.27,32

In our study, the average cyst size (mean [SD]) in SCN and

non-SCN categories was 217.2 (245.1) mm2 and 702.8

(1571.0) mm2, respectively. In the non-SCN category, the aver-

age cyst sizes of patients with IPMNs, MCNs, and SPNs were

201.3 (481.0), 1223.4 (2332.6), and 1088.3 (1769.1) mm2,

respectively. This feature alone may be not effective in distin-

guishing SCNs from IPMNs, but the combination of several

features achieved a better performance in the SVM classifier.

High-throughput radiomics features mined the deep infor-

mation of MDCT images. When these features were added into

the CAD scheme, the classification performance was greatly

improved. The AUC increased from 0.707 to 0.767 in the cross-

validation cohort and from 0.774 to 0.837 in the independent

validation cohort. According to the values of intensity, texture,

and wavelet features of tumor density, SCNs had relatively

higher overall density and more homogeneously distributed

local density than non-SCNs. Typically, the P value of wavelet

intensity T-median feature was .005 and that of wavelet

NGTDM busyness feature was.009. T-median referred to the

median of gray values in tumor region. The NGTDM reflected

the differences between a pixel and its surrounding neighbors,

showing local texture details. The cyst fluid of SCNs is usually

described as a clear, thin, watery fluid, while MCNs and

IPMNs contain thick, viscous, and turbid fluid; SPNs contain

heterogeneous solid and cystic components.35 This partly

accounted for the difference between SCNs and non-SCNs in

the intensity, texture, and wavelet features. We also found that

tumors with calcification or central scar usually had a wider

range of intensity and a stronger ROI contrast because calcifi-

cation or scar region in CT images was shown as bright spots

with higher intensity than general tumor tissue. Typically, the P

value of intensity T-range feature was .007.

Actually, there are 4 morphological patterns of SCNs:

microcystic, macrocystic (also known as oligocystic), mixed,

and solid.4,27 Microcystic SCNs are multilobular tumors

formed by numerous tiny cysts and usually have a honeycomb

or sponge appearance with central calcified scar.36 Features of

the central scar and calcification were especially effective in

distinguishing microcystic SCNs from other PCNs. While

macrocystic SCNs have a relatively small (countable) number

of cysts and the central scars typically seen in microcystic

SCNs are absent.37 Features of sex, tumor location, shape, and

density were more valuable in distinguishing macrocystic

SCNs from other PCNs, especially MCNs.13 Mixed SCNs are

defined by the combination of microcystic and macrocystic

pattern, and solid SCNs are tumors without distinguishable

cystic lesions on images. Mixed and solid SCNs account for

a quite small proportion of SCNs and are relatively hard to

distinguish from other PCNs.4 We will design specific features

for these 2 types in our further research.
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There are some other limitations of our study. First, we only

outlined the peripheral margin of tumors in central slices to

extract 2-dimensional image features. We will design auto-

matic segmentation algorithms in the future to replace manual

segmentation and realize the reconstruction of tumors to extract

3-dimensional features. Second, most of the misclassified

tumors were found to be smaller tumors. We will pay more

attention to these cases and continue to improve classification

accuracy. Lastly, the database of our current study was still

insufficient and we will include more patients with PCN from

other hospitals to create a multicenter database. With larger

amounts of data, we can more convincingly pick out effective

features and accurately classify each type of PCNs.

In conclusion, our study proposed a radiomics-based CAD

scheme and stressed the role of radiomics analysis as a novel

noninvasive method for improving the preoperative diagnostic

accuracy of SCNs. In all, 409 quantitative features were auto-

matically extracted, and a feature subset containing the 22 most

statistically significant features was selected after 100 boot-

strapping repetitions. Our proposed method improved the diag-

nostic accuracy and performed well in all metrics, with AUC of

0.767 in the cross-validation cohort and 0.837 in the indepen-

dent validation cohort. This demonstrated that our CAD

scheme could provide a powerful reference for the diagnosis

of clinicians to reduce misjudgment and avoid overtreatment.
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