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Initiation of antiretroviral therapy (ART) in early compared with chronic human immunodeficiency virus (HIV) infection is associ-
ated with a smaller HIV reservoir. This longitudinal analysis of 60 individuals who began ART during primary HIV infection (PHI) 
investigates which pre- and posttherapy factors best predict HIV DNA levels (a correlate of reservoir size) after treatment initiation 
during PHI. The best predictor of HIV DNA at 1 year was pre-ART HIV DNA, which was in turn significantly associated with CD8 
memory T-cell differentiation (effector memory, naive, and T-bet−Eomes− subsets), CD8 T-cell activation (CD38 expression) and 
T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) expression on memory T cells. No associations were found for any 
immunological variables after 1 year of ART. Levels of HIV DNA are determined around the time of ART initiation in individuals 
treated during PHI. CD8 T-cell activation and memory expansion are linked to HIV DNA levels, suggesting the importance of the 
initial host-viral interplay in eventual reservoir size.
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Human immunodeficiency virus (HIV) persists despite antire-
troviral therapy (ART) in a reservoir of latently infected cells [1, 
2], which is the focus of potentially curative interventions [3, 4]. 
There is much interest in which clinical, virological, or immu-
nological parameters might determine the size of the reservoir.

There is evidence that T-cell immunity before ART initiation 
may be key to the formation of the HIV reservoir. Pretherapy CD4 
and CD8 HIV-specific T-cell responses have been linked with lower 
levels of HIV DNA [5, 6] and T-cell activation has been shown in 
cross-sectional studies to relate to HIV reservoir size [5, 7–9]. In 
addition, immune checkpoint receptor (ICR) expression has been 
linked to reservoir size [5, 7, 8, 10, 11], however, a limitation of 

many of these studies is that ICR expression was measured on bulk 
T cells. Because the HIV reservoir is preferentially found in memory 
subsets [11, 12] that express higher levels of ICRs [10, 13–16], this 
may act as a potential confounder [17], and these studies often do 
not account for the expression of multiple ICRs and the relationship 
with T-cell activation [13–16, 18–20].

Accordingly, there are limited and conflicting data on which 
parameters predict reservoir size in treated HIV infection. 
Furthermore, few studies have assessed immunological factors 
during early HIV infection that may determine subsequent res-
ervoir size [5, 6, 21]. In the current study, we aimed to clarify 
this by using a longitudinally studied cohort of individuals 
treated during primary HIV infection (PHI) who were sampled 
before ART and again 1 year later once viremia was suppressed.

METHODS

Participant Information

HIV Reservoir Targeting with Early Antiretroviral Therapy 
(HEATHER) is a prospective observational cohort study of in-
dividuals who begin ART within 3  months of HIV diagnosis 
during PHI (West Midlands—South Birmingham  Research 
Ethics Committee reference no.  14/WM/1104). Individuals 
are considered to have PHI if they meet any of the following: 
HIV positive antibody test result within 6 months of a negative 
result, HIV antibody negative with positive polymerase chain 
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reaction (PCR) (or positive p24 antigen result or viral load 
[VL]), recent incident test algorithm assay results consistent 
with recent infection, equivocal HIV antibody test result sup-
ported by a repeated test within 2 weeks showing a rising op-
tical density, or clinical HIV seroconversion illness supported 
by antigen positivity. The time of seroconversion was estimated 
as the midpoint between the most recent negative or equivocal 
test result and the first positive result for those who met rel-
evant criteria, the date of recent incident test algorithm assay 
minus 120 days for individuals in whom this assay result indi-
cated primary infection, and the date of first positive test for all 
other participants. Individuals were excluded from this analysis 
if they had not achieved VL suppression to <50 copies/mL by 
1 year.

Flow Cytometry

Cryopreserved peripheral blood mononuclear cells were thawed and 
stained in Horizon Brilliant Stain Buffer (BD) containing all anti-
bodies and Live/Dead Near-IR (Life Technologies) at 1:300 dilution 
and stained at 4°C for 30 minutes in Horizon. Panel 1 included the 
following: CD3 BV570 (UCHT1), CCR7 Pacific Blue (G043H7), and 
CD27 AlexaFluor700 (M-T271) (all BioLegend); CD4 BV605 (RPA-
T4) and CD8 BV650 (RPA-T8) (BD); programmed cell death pro-
tein 1 (PD-1) phycoerythrin (PE)–eFluor610 (eBioJ105), CD45RA 
fluorescein isothiocyanate (HI100), and T cell immunoreceptor with 
immunoglobulin and ITIM domains (TIGIT) peridinin-chlorophyll 
protein complex (PerCP)–eFluor710 (MBSA43) (eBioscience); and 
Tim-3 PE (344823) (R&D).

Panel 2 included the following: CD3 BV570, CD38 
AlexaFluor700 (HB-7) (BioLegend); CD4 BV605, CD8 BV650, 
PD-1 PE-eFluor610, and Tim-3 PE. After this, cells were washed 
twice before fixation and permeabilization with Foxp3 Buffer 
Set (BD). Staining for intracellular epitopes was performed 
with: T-bet fluorescein isothiocyanate (4B10) (BioLegend) and 
Eomes eFluor660 (WD1928) (eBioscience). Samples were ac-
quired on an LSR II flow cytometer (BD). Data were analyzed 
using FlowJo software (version 10.8.0r1; Tree Star).

HLA Typing

HLA typing was performed to intermediate resolution using 
PCR with sequence-specific primers.

Soluble PD-1 and Tim-3 Quantification

Soluble PD-1 and soluble Tim-3 were measured in plasma 
by enzyme-linked immunosorbent assay (ELISA) using the 
Human PD-1 (PDCD1) ELISA kit (EHPDCD1; Thermo 
Fisher Scientific) and Quantikine ELISA Human TIM-3 
Immunoassay kit (DTIM30; R&D Systems) at 1:2 and 1:5 dilu-
tions, respectively.

Total HIV DNA Quantification

CD4 T cells were isolated by negative selection using the 
EasySep Human CD4 Enrichment kit (Stemcell Technologies) 

to a purity of approximately 95%. DNA was extracted from 
CD4 T cells with the QiaAMP Blood Mini Kit (Qiagen). Cell 
copy numbers were quantified using albumin quantitative 
PCR; 25 000 cell equivalents were used in HIV DNA quanti-
tative PCR with a probe targeted in the gag long terminal re-
peat (LTR) conserved region, performed in triplicate and as 
described elsewhere [22]. The mean number of copies of DNA 
was normalized to cell number and expressed as copies per 106 
CD4 T cells.

Statistical Analyses

Analyses were performed using R (version 3.2.2 or 3.4.3) and 
GraphPad Prism (version 7.0b). Corrgrams were generated 
using the R package corrplot (version 0.84) with Spearman 
correlations. Boosted regression trees are a machine learning 
approach that builds a series of regression trees, with each sub-
sequent tree iteratively aiming to improve the previous fit [23]. 
Boosted regression trees were fitted using the R package gbm3 
(version 2.2). The algorithm hyperparameters were set to the 
following values: cross-validation folds, 10; interaction depth, 5; 
shrinkage/learning rate,  0.0005; bag fraction,  0.5; minimum 
terminal node observations, 5; and distribution, gaussian. The 
results were not sensitive to different values of the interaction 
depth parameter, and the shrinkage parameter was adjusted be-
tween 0.0001 and 0.001 to aim for the optimal number of trees 
(the number that minimized cross-validation error) to fall in 
the range of 3000–10 000. 
Results presented are summarized outcomes of 100 models. 
LASSO (least absolute shrinkage and selection operator) is a 
multivariable regression analysis method designed to cope with 
multicollinearity and large numbers of predictors by adding 
a penalty to the coefficient of each term. LASSO models [24] 
were fitted using the R package glmnet (version 2.0–16) [25]. 
Gaussian regression models were fitted with an additive linear 
model (no interactions); λ was the value that minimized 10-fold 
cross-validation error plus 1 standard error. Where data were 
imputed, this was performed using the R package MissForest; 
this was a single imputation with the model containing all 
parameters (as listed in Supplementary Table 1) [26]. 

RESULTS

Baseline Clinical Characteristics

We studied 60 individuals enrolled in HIV Reservoir Targeting 
with Early Antiretroviral Therapy (HEATHER), a longitudinal 
cohort of participants who began ART during PHI; clinical 
and demographic details are listed in Table 1. All participants 
were male and began ART a median (interquartile range) of 29 
(14–47) days after HIV diagnosis and 49 (33–93) days after es-
timated seroconversion. Different methods for diagnosing PHI 
(Table 1) were used; 25 participants (42%) were p24 antigen 
positive without detectable antibodies, consistent with Fiebig 
stage I or II at the time of diagnosis.
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The participants had a high median baseline VL (5.4 log10 
copies/mL; interquartile range, 4.5–6.4 copies/mL), which de-
clined during ART (Figure 1A); the frequency of VL sampling 
and time to suppression are shown in Supplementary Figure 1. 
There was a relationship between the first measured (baseline) 
VL and the method used to diagnose PHI (Figure 1B). Baseline 
VL was higher when measured closer to estimated seroconver-
sion (rs = −0.59; P = 9.1 × 10−7), suggesting that VL is of limited 
utility as a predictive variable in PHI because a stable “set point” 
has not yet been reached. The dynamics of CD4 and CD8 T-cell 
counts, as well as CD4/CD8 T-cell ratio after ART initiation are 
shown in Figure 1C.

Pre-ART HIV DNA is Predictive of HIV Reservoir Size After 1 Year of ART 

Quantitation of HIV DNA (copies per 106 CD4 T cells) is used 
here as the surrogate measure of reservoir size. Compared with 
pre-ART levels, HIV DNA levels decreased a mean of 0.9 log10 

copies after 1 year of therapy (Figure 2A) (P < 2.2 × 10−16). HIV 
DNA levels before therapy and after 1 year of ART were highly 
correlated (Figure 2B) (r = 0.74; P = 1.1 × 10−11). For a subset 
of 17 individuals, levels of total HIV DNA were also available 
3 years after ART initiation, and had declined a further 0.3 log10 
copies since year 1.  (HIV DNA levels were not correlated be-
tween those 2 measurements, although a positive trend was evi-
dent [Supplementary Figure 2] [r = 0.41; P = .10]).

Immunological and Clinical Variables Associated With HIV DNA Level

We next explored which clinical and immunological variables 
predicted HIV reservoir size (as listed in Supplementary Table 1). 
Clinical variables measured were CD4 and CD8 T-cell counts, VL, 
CD4/CD8 T-cell ratio, time to ART start, and time to VL suppres-
sion with ART. Immunological measures included flow cytometric 
quantitation (Figure 3A and Supplementary Figure 3) of CD4 and 
CD8 T-cell memory subsets, CD38 expression, ICR expression 

Table 1. Demographic and Baseline Clinical Characteristics of Participantsa 

Characteristic Participants, No. (%)b 

Male sex 60 (100)

Age, median (IQR), y 34 (28–41)

Interval median (IQR), d  

 From confirmed HIV-positive test to ART initiation 29 (14–47)

 From estimated date of seroconversion to ART initiation 49 (32–93)

 From ART initiation to first VL <50 copies/mLc 133 (90–230)

Baseline values, median (IQR)  

 CD4 T-cell count, cells/μLd 530 (409–663)

 CD8 T-cell count, cells/μLd 1037 (837–1318)

 CD4/CD8 ratiod 0.5 (0.4–0.8)

 VL, log10 copies HIV RNA/mL 5.4 (4.5–6.4)

Method for diagnosing primary HIV infection  

 Antigen positive (p24 or PCR) but antibody negative 25 (42)

 Rising antibody titer 1 (2)

 Negative test result within 6 mo of positive result 28 (47)

 Recent incidence testing algorithm 6 (10)

Mode of acquisition  

 MSM 54 (90)

 MSW 1 (2)

 Unknown/unrecorded 5 (8)

Initial ART regimen  

 Unknown/unrecorded 3 (5)

 Backbone  

  Tenofovir containing 52 (87)

  Abacavir containing 5 (8)

 Additional agent(s)  

  Protease inhibitor 33 (55)

  NNRTI 11 (18)

  Integrase inhibitor 12 (20)

  Protease inhibitor plus integrase inhibitor 1 (2)

Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus; MSM, men who have sex with men; MSW, men who have sex with women, NNRTI, nonnucleoside reverse-
transcriptase inhibitor; PCR, polymerase chain reaction; VL, viral load. 
aDemographic and baseline clinical characteristics of included participants from the HEATHER cohort. 
bData represent no. (%) of participants unless otherwise identified as median (IQR) values.
cFifty-nine of 60 individuals were virologically suppressed to <50 copies/mL before 1-year study visit; the remaining individual achieved virological suppression shortly thereafter, at the next 
VL measurement (Supplementary Figure 1) 
dData available for 59 of 60 individuals.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz563#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz563#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz563#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz563#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz563#supplementary-data
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(PD-1, TIGIT, and Tim-3 on memory CD4 and CD8 T cells), and 
soluble plasma ICRs (soluble PD-1 and soluble Tim-3). T-bet and 
Eomes are transcription factors that operate in concert in the de-
velopment of effector T-cell functions, with a T-betdimEomeshigh 
CD8 T-cell phenotype linked to functional exhaustion during HIV 
infection [27]; the proportion of T-bet/Eomes expressing CD8 
populations was also measured.

Several parameters were highly correlated with HIV DNA 
levels. Corrgrams were used to screen the relationship of 

variables measured before ART initiation (baseline; Figure 
3B) and after 1 year of ART (Figure 3C), with the HIV res-
ervoir at 1 year. Each row or column in the corrgram rep-
resents a different variable ordered by the strength of the 
Spearman correlation with reservoir size at 1  year (in the 
top left corner). Circles indicates correlations between 
2 variables (P  <  .05). Variables with a statistically signifi-
cant relationship to reservoir size at 1 year are indicated in 
Figure 3B (green box).
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The corrgrams for variables at baseline and 1 year look very dif-
ferent (Figure 3B and 3C, respectively). When exploring variables 
measured immediately before ART, those that were closely related 
to reservoir size (top left corner of corrgram) were also highly cor-
related with each other. The variable with the strongest correla-
tion with HIV reservoir size at 1 year was the level of HIV DNA 

measured at baseline. However, 25 other variables were associated 
with the reservoir and/or each other (Figure 3B, green box).

For variables measured after 1 year of ART—the same time 
the HIV reservoir was measured (Figure 3C)—there is little ev-
idence of any correlation with reservoir size. These data suggest 
that certain variables are the key determinants of the HIV DNA 
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level just before ART initiation, which is, in turn, the main pre-
dictor of the HIV reservoir later during ART.

CD8 T-Cell Activation and Memory Expansion as Key Determinants of HIV 

DNA Level

The data set poses several challenges for multivariable 
models, especially because 7.4% of observations are missing 
(Supplementary Figure 4), owing, for example, to unavailable 
samples. The large number of parameters measured relative to 
observations was also problematic, as was the strong correl-
ations between many of these variables. To ensure the robust-
ness of any conclusions, 2 models with different approaches to 
prediction from complex data, boosted regression trees, and 
LASSO regression, were fitted.

A boosted regression trees model was fitted with baseline 
total HIV DNA as the outcome, and all other baseline variables 
as predictors (Figure 4A). The figure shows that 11 of the 49 
predictors had a consistent influence in predicting baseline res-
ervoir size. Notably, CD8 memory subsets (the proportions of 

effector memory and naive cells) and CD8 CD38 expression 
were the variables with the highest relative influence.

LASSO regression identified 6 variables that were inde-
pendently predictive of baseline HIV DNA (Figure 4B); all 6 
were also selected by the boosted regression trees model. The 
variables with greatest influence on baseline HIV DNA levels 
were associated with CD8 memory expansion (the proportion 
of naive and effector memory as well as T-bet−Eomes− CD8 T 
cells) and T-cell Tim-3 expression (effector memory CD8 and 
transitional memory CD4 T cells), as well as CD38 expression 
on CD8 T cells. A sensitivity analysis was conducted using only 
observations that were complete; results from both analyses 
were consistent, noting that the unimputed model selects fewer 
variables (Supplementary Table 2).

Pre-ART HIV DNA Level as Dominant Predictor of Reservoir Size After 1 

Year of ART

After establishing which variables were related to baseline HIV 
DNA, we fit regression models to explore whether any variables 
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had additional relationships with reservoir size after 1 year of ART. 
HIV DNA at baseline was the most influential variable (Table 2, 
Supplementary Figure 5, and Supplementary Table 2), but no im-
munological variables measured at 1 year affected reservoir size, 
consistent with the modest correlations observed in the Figure 
3C corrgram (model B in Table 2 and Supplementary Figure 
5B). Of the clinical variables and immunological variables meas-
ured at baseline, only time from ART start to VL suppression 
independently predicted reservoir size (model A  in Table 2 and 
Supplementary Figure 5A).

Relationship Between Reservoir Size and HLA Class I

HLA type can be considered a surrogate marker of HIV-specific 
CD8 T-cell immunity [28, 29]. Figure 5 shows the relationship 
between HLA class I alleles and HIV DNA after 1 year of ART. 
Alleles associated with viral control cluster together, associ-
ated with low HIV DNA levels. The converse is seen for alleles 

associated with progression. The same relationship was ob-
served with baseline HIV DNA (data not shown).

Our data are consistent with HIV specific immunity, the 
general immune landscape and clinical parameters all con-
tributing to the size of the HIV reservoir with ART. Figure 4C 
summarizes our findings. The only 2 independent variables that 
predicted HIV reservoir size after 1 year of ART were pretherapy 
HIV DNA level and the time taken to achieve VL suppression 
after starting therapy. Baseline HIV DNA was associated with 
HLA class I type and specific markers of T-cell activation, ex-
pansion, and exhaustion.

DISCUSSION

This work demonstrates the importance of immunological 
events before ART initiation in determining subsequent reser-
voir size. HIV DNA levels before ART were the most important 
predictor of HIV DNA a year later, suggesting that reservoir 
size is “set” early. HIV DNA before ART was more closely re-
lated to CD8 T-cell activation, memory expansion, and Tim-3 
expression than any clinical parameters, including before ART 
(summarized in Figure 4C). Several predictors of reservoir size 
presented here have been observed previously [5, 30–33], but 
ours is the first study to define the independence of relation-
ships between T-cell activation, memory expansion, and ICR 
expression with eventual reservoir size.

A key finding is that HIV DNA levels before ART initiation 
were the main predictor of subsequent reservoir size. Several 
other studies have shown a relationship between pretherapy 
HIV DNA levels and those during ART [30–33]; we extend these 
findings by demonstrating the dominance of pretherapy HIV 
DNA over contemporaneously measured T-cell parameters.
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Table 2. Predictors of Reservoir Size at 1 Yeara

Predictors

Coefficient

Model A  Model B 

Baseline log10 total HIV DNA 0.29 0.27

Time from ART start to VL suppression (d) 0.00031 …

Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus; VL, viral 
load.
aLeast absolute shrinkage and selection operator (LASSO) output for predictors of reservoir 
size (total HIV DNA level at 1 year). Model A includes all baseline clinical and immunological 
variables, including baseline total HIV DNA levels (50 predictors; n = 60; deviance explained, 
0.49). Model B includes all immunological measures at 1 year along with baseline total HIV 
DNA level (44 predictors; n = 60; deviance explained, 0.42). Variables that do not significantly 
contribute to the model have a coefficient of 0; only those with a nonzero coefficient are 
shown. Missing values were imputed. Coefficients represent the change in log10 total HIV 
DNA per unit predictor variable.
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Higher levels of pre-ART T-cell activation predicted in-
creased levels of HIV DNA. This might be driven by higher 
initial viral burden or poorer CD8 effector function. Cross-
sectional studies have shown relationships between HIV DNA 
and CD8 T-cell activation when ART is already established [7, 
9, 34], although this is not consistently seen [32, 35], and we did 
not find it in our study. Most prior studies have used HLA-DR/
CD38 coexpression, which could explain this discrepancy. 
Indeed, the use of CD38 expression alone as a measure of CD8 
T-cell activation is a limitation of the current study, because this 
marker is constitutively expressed on naive CD8 T cells [36].

Tim-3 is a marker of CD8 T-cell exhaustion during HIV infec-
tion [18]. Associated defects in proliferation, cytotoxicity, and 
the ability to rescue functionality via Tim-3 blockade, however, 
have been assessed only during the chronic phases of infection 
[18, 37]. In a 2018 analysis of exhaustion-specific genes during 
HIV infection, Tim-3 was not included because, like CD38, it 
was also highly expressed in effector as well as exhausted CD8 
T-cell transcriptomic signatures [38]. That Tim-3 has activating 
roles is supported by findings that signaling through Tim-3 
enhances TCR signaling in lymphocytic choriomeningitis 
virus infection models [39]. It is thus possible that during PHI 
Tim-3 marks a population of activated but not yet terminally 
exhausted cells, and that its link with HIV DNA content in this 
study represents T-cell activation.

We have focused on the relationship of T-cell expansion and 
ICR expression to the HIV reservoir. Immune activation during 
HIV infection is likely multifactorial—being due not only to the 
virus but to other processes (including microbial translocation 
and herpesvirus, particularly cytomegalovirus, coinfection) 
[40]. Innate immune responses have been linked to reservoir 
size and play a role in mediating this activation. 

A 2018 study of soluble biomarkers during acute infection 
demonstrated that several of these were related to HIV reser-
voir size (also measured by total HIV DNA) before and after 
96 weeks of ART, independently of VL [21]. The soluble bio-
markers identified can all be produced by myeloid cells in re-
sponse to interferon α/γ signaling; the authors of that study 
speculate that this could indirectly reflect innate and/or T-cell 
responses to viral replication [21]. In addition, recent evidence 
suggests that immunometabolic pathways may have a relation-
ship with the HIV reservoir [41, 42]. These factors, not meas-
ured in the current study, may play a role in mediating the 
observed relationship between T-cell expansion/activation and 
reservoir size, and they require further study.

It is interesting that VL was only modestly correlated with 
baseline HIV DNA level, because we had hypothesized that 
these would be closely linked. Several studies have demon-
strated a relationship between pretherapy VL and HIV DNA [30, 
32, 43, 44]. Notably, many of these studies included individuals 
treated during chronic infection, when VL will have reached 
set point. In contrast, during PHI the VL is substantially more 

labile. Within this cohort there was a link between baseline VL 
and how long after estimated seroconversion this was measured 
(Figure 1B), whereby individuals with more recent serocon-
version had a higher VL. This has also been observed in an-
other PHI cohort with similar time since infection [45], and the 
finding suggests that VL measures taken over this time capture 
the decline from peak, rather than a steady state, a finding that 
could explain the modesty of the relationship seen in our study.

It is also possible that the overall pre-ART viral burden (du-
ration and magnitude of viremia) influences HIV reservoir size 
and is poorly captured by a single measurement during PHI. 
The consistent observation that earlier ART limits reservoir size 
[6, 31] implies a role for the total pretherapy viral burden. Two 
findings here suggest an influence of viral burden on overall res-
ervoir size. The first is the previously reported relationship be-
tween HLA class I alleles and HIV reservoir size [5], which we 
confirmed, and which invokes a role for CD8 T-cell killing of 
virally infected cells as a driver of reservoir size. 

The second finding is the observation that time to VL sup-
pression had an influence on reservoir size independently 
of baseline HIV DNA. This may be because individuals with 
longer time to VL suppression may have a window after ART 
initiation for reservoir seeding to continue, a hypothesis sup-
ported by recent findings from a large cohort study showing 
that time to suppression and viral blips influence HIV DNA 
levels [46]. Slower time to viral suppression may also reflect 
higher pretherapy viral burden. Although most individuals 
began ART at their baseline visit (median, 0 days after baseline 
visit; 82% within 1 week), a small proportion had a larger in-
terval between these dates (maximum, 48 days), providing ad-
ditional time for reservoir seeding not captured in the baseline 
HIV DNA measurement.

Several cross-sectional studies have shown a relationship be-
tween PD-1 or TIGIT expression on bulk CD4 T cells during 
ART and overall reservoir size [7, 8, 10, 47]. In contrast, we did 
not find this relationship. Previous studies, which have meas-
ured PD-1 on bulk T cells [7, 8, 10], may actually be capturing 
T-cell maturation, because the expanded memory subsets ex-
press higher levels of ICRs [10, 13–16], potentially explaining 
this discrepancy. Knowing that ICR expression on bulk T cells 
may be confounded by memory composition, we chose to 
measure these parameters on different memory subsets. Overall, 
this work suggests that memory expansion may be more closely 
linked to HIV DNA levels than ICR expression.

A limitation of the current study is that reservoir size was 
measured only using total HIV DNA. This measure is clinically 
relevant because lower levels have been associated with delayed 
viral rebound after treatment interruption [3]. Most of the HIV 
reservoir, however, is not replication competent [48, 49], and 
we did not assess whether these immunological measures had 
any impact on the quality of proviruses comprising the reser-
voir. A  major strength of the study is its longitudinal design. 
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Although 1 year of follow-up represents a significant duration, 
it may not be sufficient for ART to stabilize the HIV reservoir. 
Supporting the use of this time point, other studies have shown 
relationships between HIV DNA levels at early time points and 
those much longer after ART initiation [30, 32, 50]. However, 
understanding predictors of the eventual long-term reservoir 
will require further analyses after longer follow-up.

This work has shown that the magnitude of the early immuno-
logical insult, reflected in CD8 T-cell activation and memory expan-
sion, drives HIV DNA levels. These results suggest that targeting of 
host or viral factors that lead to early viral expansion and T-cell ac-
tivation may be a way of limiting HIV reservoir size, and they con-
firm the importance of starting ART as early as possible.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
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