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Abstract: Studying the long-term impact of continuous-flow left ventricular assist device (CF-LVAD)
offers an opportunity for a complex understanding of the pathophysiology of vascular changes in
aortic tissue in response to a nonphysiological blood flow pattern. Our study aimed to analyze aortic
mRNA/miRNA expression changes in response to long-term LVAD support. Paired aortic samples
obtained at the time of LVAD implantation and at the time of heart transplantation were examined
for mRNA/miRNA profiling. The number of differentially expressed genes (Pcorr < 0.05) shared
between samples before and after LVAD support was 277. The whole miRNome profile revealed 69
differentially expressed miRNAs (Pcorr < 0.05). Gene ontology (GO) analysis identified that LVAD
predominantly influenced genes involved in the extracellular matrix and collagen fibril organization.
Integrated mRNA/miRNA analysis revealed that potential targets of miRNAs dysregulated in
explanted samples are mainly involved in GO biological process terms related to dendritic spine
organization, neuron projection organization, and cell junction assembly and organization. We found
differentially expressed genes participating in vascular tissue engineering as a consequence of LVAD
duration. Changes in aortic miRNA levels demonstrated an effect on molecular processes involved
in angiogenesis.

Keywords: mRNA; microRNA; aorta; mechanical circulatory support; left ventricular assist device

1. Introduction

The use of continuous-flow left ventricular assist devices (CF-LVADs) in patients with
end-stage heart failure has become a widely used and sustainable treatment strategy, both
as a bridge to transplant (BTT) and as destination therapy (DT). CF-LVAD may induce
pathological changes to the aortic wall and aortic valve [1]. Important histologic changes
in the aortic wall, before and after CF-LVAD implantation, with degeneration of smooth
muscle cells and elastic fibers, were previously reported [2]. CF-LVADs may contribute
to the deterioration of aortic functional parameters (e.g., aortic stiffness) or structural
changes (e.g., increase of wall thickness or collagen content) through adverse effects of
the nonphysiological flow [3]. The nonpulsatile flow of CF-LVAD generates dynamic
remodeling within the aorta. Remodeling within the aortic root and proximal ascending
aorta may also contribute to the pathophysiology of aortic regurgitation with CF-LVAD.
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Studies have demonstrated that the proximal aorta dilates after chronic CF-LVAD support,
and that an increasing aortic diameter was associated with the development of aortic
regurgitation [4].

MiRNAs are endogenous small noncoding RNAs that regulate mRNA translation of
target genes through the RNA interference pathway, strongly influencing a wide range
of cellular processes and biological pathways [5]. As such, miRNAs are fine-tuners of
gene expression patterns in response to pathophysiological stimuli. Most miRNAs are
more ubiquitously expressed and are not cell-type specific. Thus, many miRNAs are
expressed at relatively low levels under basal conditions, but during pathological stress,
are strongly upregulated [6]. Changes in tissue miRNA expression levels due to blood
flow can potentially affect networks of genes regulating endothelial and vascular smooth
muscle cell (SMC) function, inflammation, and atherosclerosis [7].

Alteration in gene expression reflects changes in cellular function and behavior, in
development, and disease states. The major cardiovascular diseases, including coronary
artery disease, myocardial infarction, congestive heart failure and common congenital
heart disease, are caused by multiple genetic and environmental factors, as well as the
interactions between them. The underlying molecular pathogenic mechanisms for these
disorders are still largely unknown, but gene expression may play a central role in the
development and progression of cardiovascular disease [8]. Gene expression analysis
can also contribute to understanding and discovering novel and sensitive biomarkers of
cardiovascular disease. Over the past two decades, methods of measuring gene expression
have improved dramatically with a plethora of hybridization arrays available, followed by
RNA-Seq, the sequencing of short or long RNA reads using massively parallel sequencing
technology [9].

Studying the long-term use of LVADs offers an opportunity for a complex understand-
ing of the pathophysiology of vascular changes in patients with mechanical circulatory
support, which produce nonphysiological blood flow patterns. The aim of the present
study was therefore to detect accurate mRNA/miRNA associations in the aorta in response
to long-term LVAD.

2. Results

The principal component analysis of expression profiles segregated samples before
and after LVAD support (Supplementary Figure S1). The mRNAs profile (Figure 1A)
demonstrated differentially expressed genes (DEGs). We identified a total of 277 DEGs
(Pcorr < 0.05) after long-term LVAD support. 141 DEGs were upregulated in aortic tis-
sue after LVAD support. Between twenty DEGs, we identified Collagen Type I Alpha 2
Chain (COL1A2); Chemokine-like receptor 1 (CMKLR1); S100 calcium-binding protein A4
(S100A4); Elastin (ELN); and Collagen Type III Alpha 1 Chain (COL3A1) to be upregulated
(all Pcorr < 0.0001). Solute Carrier Family 12 Member 2 (SLC12A2); Pyruvate Dehydroge-
nase Kinase 4 (PDK4); Inhibitor of DNA Binding 1 (ID1); Arginine and Glutamate Rich 1
(ARGLU1) and noncoding RNA metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) were downregulated (all Pcorr < 0.0001, Supplementary Figures S2 and S3). The
Wald test performed on samples after support to assess the effect of HeartMate II (HM II),
and HeartMate 3 (HM 3) devices did not show any significantly differentially expressed
genes (Supplementary Data S1).

Gene ontology (GO) analysis identified 31 biological processes in GO terms enriched
in explanted tissue (false discovery rate (FDR) q-value < 0.001), predominantly involved in
extracellular matrix organization and collagen fibril organization. Moreover, 17 molecular
functions of GO terms, and 10 cellular components of GO terms were also enriched
(Supplementary Data S1).
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The whole miRNome profile revealed 69 DE miRNAs (Pcorr<0.05, after Bonferroni
correction (BFC), Figure 1B). A total of 30 miRNAs were upregulated (Supplementary
Data S1), and the most increased expression was detected for let-7a/d/e/f; miR-181a/b;
miR-29b; miR-149 and miR-99b (all Pcorr < 0.01). The opposite effect of LVAD was found
on miR-19a/b; miR-654; miR-664a; miR-885; and -511 (all Pcorr < 0.01).

With the usage of miRWalk and miRDB, 170 DEGs were identified as potential targets
of upregulated miRNAs and 159 DEGs as potential targets of downregulated miRNAs. From
these, 138 DEGs were possible targets of both group miRNAs (Supplementary Data S1).Int. J. Mol. Sci. 2021, 22, x  3 of 14 
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miRNAs with Pcorr < 0.001; red points indicate miRNAs with Pcorr < 0.05, & Pcorr > 0.001. 
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Figure 1. Expression profiles in aortic tissue. Volcano plot of comparative mRNA resp. miRNAs expression profiles in
samples before and after LVAD support; x-axis indicates difference in expression level on a log2 scale; y-axis represents
corresponding P-values on a negative log scale. (A) mRNA profile: yellow points indicate mRNAs with Pcorr < 0.001; red
points indicate mRNAs with Pcorr < 0.05, & Pcorr > 0.001, & |logfc| > 3.5.; (B) miRNA profile: yellow points indicate
miRNAs with Pcorr < 0.001; red points indicate miRNAs with Pcorr < 0.05, & Pcorr > 0.001.

In order to discover the relationship between deregulated miRNAs and mRNAs, Pear-
son correlation between differentially expressed miRNAs and all potential target mRNAs
was assessed (Figure 2). This integrated mRNA/miRNA analysis revealed that potential
targets of miRNAs upregulated in explanted samples are mainly involved in GO biolog-
ical process terms related to cell junction assembly and cell junction organization (FDR
q-value < 0.05, Supplementary Data S1). Enriched GO terms in targets of downregulated
miRNAs were related to dendritic spine organization and neuron projection organization
(FDR q-value < 0.05, Supplementary Data S1). Moreover, an enriched Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway related to endocytosis was found (FDR
q-value < 0.05, Supplementary Data S1).
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mRNAs in samples after LVAD support. Selected overexpressed miRNAs are highlighted in pink circles, and underexpressed
miRNAs are highlighted in pink octagons. The targets are highlighted in blue circles. The full line indicates a positive
correlation, and the discontinued line indicates a negative correlation with target mRNAs.

3. Discussion

Our multiple regression analysis is, to our best knowledge, the first study focused
on changes in mRNA/miRNA expression in paired aortic samples collected before LVAD
implantation and at the time of LVAD explantation, during heart transplantation (HTx).

We compared gene expression profiles using a robust and simple mRNA sequencing
method. We found the significant DEGs were predominantly involved in extracellular
matrix (ECM) and collagen fibril organization in aortic tissue after LVAD explantation.
ECM is an active and dynamic structure with a fundamental role in regulating vascular
function in normal and pathological conditions. Homeostasis of the vascular ECM may
affect intrinsic properties of the arterial wall and arterial stiffness [10]. The ECM is a key
component of the local cellular microenvironment. It comprises structural proteins (e.g.,
elastin and collagen), proteoglycans, and glycosaminoglycans. Among the different cell
types, smooth muscle cells (SMCs) and fibroblasts are examples of cells that produce signif-
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icant ECM. Interestingly, Coffey et al. [11], using analysis of the integrated miRNA/mRNA
network, identified pathways predominantly involved in extracellular matrix function in
patients affected by aortic stenosis.

The previously reported histologic analysis showed significant degenerative changes
in the aortic wall, SMCs disorientation and depletion, elastic fiber fragmentation and
depletion, medial fibrosis, and atherosclerosis changes in ascending aortic tissue at the
follow-up than at device implantation [2]. Furthermore, there was evidence of structural
remodeling within the aortas of CF-LVAD patients, including an increase in total wall
thickness, an increase in collagen content, and reduced elastin content that may explain
the increase in vessel stiffness [12]. We identified elevated expression of collagens COL1A1
and COL3A1. Collagen and elastin are the most abundant ECM proteins of the aortic wall,
and they are responsible for characteristic mechanical properties—tensile strength and elas-
ticity. Over-accumulated collagen in the aorta may lead to medial fibrosis, hypothetically
resulting in decreased arterial distensibility [13]. Surprisingly, we also detected elevated
expression of ELN, which is usually lowered in processes related to atherosclerosis, such as
pathological flow. We may only hypothesize whether this phenomenon can be attributed
to compensatory mechanisms reacting on the non-physiological flow pattern or should be
a subject for further research, as the reason for this observation is unclear at this stage of
research.

We found overexpressed S100A4, a member of the large family of S100 proteins,
under LVAD support. S100A4 controls different cellular pathways, exerting numerous
effects on processes that are cell- and tissue-type dependent. In activated fibroblasts, en-
dothelial, dendritic, and mast cells, as well as in macrophages, monocytes, neutrophils,
and T-lymphocytes, S100A4 has a significant role in stimulating invasion and migra-
tion, cytoskeletal dynamics and in promoting proinflammatory phenotypes [14]. S100A4
represents a well-known marker that characterizes a complex biological process where
endothelial cells assume a mesenchymal phenotype, known as the “endothelial-to mes-
enchymal transition”, changing morphology and functions, acquiring accentuated motility
and contractile properties, typical of fibrotic processes [15]. Furthermore, upregulated
CMKLR1 is currently the only chemerin receptor. CMKLR1 receptor, and the proposed pro-
and anti-inflammatory properties of chemerin, suggest a role of this adipokine in inflamma-
tory states and possibly atherosclerosis. It was reported that foam cell CMKLR1 expression
strongly and positively correlates with aortic atherosclerosis, but only marginally with
coronary atherosclerosis [16]. Our findings of aortic increased expression levels of COL1A2;
CMKLR1; S100A4; and COL3A1 may support previously mentioned morphological changes
in the aorta under CF-LVAD.

Changes in aortic wall functional properties as the possible consequence of a pulsatility
decrement caused by implantation of CF-LVAD were described [3]. Patel et al. reported
that patients with CF-LVADs before heart transplant had an increase in proximal aortic
stiffness compared with patients without an LVAD or with pulsatile flow LVADs before
transplant [3,17]. DEGs involved in ECM organization could also suggest a potential link
with the development of acquired aortic insufficiency (AI), a significant complication that
develops following the implantation of CF-LVAD [18,19]. We detected downregulated
MALAT1, a gene coding stiffness-sensitive long non-coding RNA. This non-coding RNA
regulates stiffness-dependent VSMC proliferation and migration [20], which may influence
aortic functional properties.

Despite the advantages and improving results of the CF-LVAD therapy, the loss of
pulsatility may lead to different complications on the micro and macrovascular levels.
Vascular changes may be linked with the occurrence of clinically adverse events related to
CF-LVAD therapy, such as non-surgical bleeding, e.g., gastrointestinal bleeding related to
arteriovenous malformations [21] or von Willebrand factor (vWF) deficiency [22], or other
clinical complications such as cerebrovascular events [23,24], device thrombosis [25,26] or
development of aortic insufficiency [27,28].



Int. J. Mol. Sci. 2021, 22, 7414 7 of 14

One of the pathogenetic mechanisms of cardiovascular complications with CF-LVADs
may be endothelial dysfunction. Endothelial dysfunction is related to heart failure in
general. After the implantation of the device, the endothelial dysfunction does not im-
prove and may even deteriorate [29]. In our miRNAs profile, we identified deregulated
multiple miRNAs involved in vascular remodeling (Table 1) which potentially involved
endothelial dysfunction progression. Several miRNAs have been shown to control the
varying mechanisms which govern SMC plasticity [30]. In response to LVAD, we found
upregulated miRNAs that influence SMC dynamics and downregulated miRNAs known to
stimulate apoptosis during atherosclerosis plaque development. Leeper et al. reported that
chronic SMC apoptosis accelerates vascular disease progression, promotes calcification,
and induces features of medial degeneration, like atrophy, elastin fragmentation, and
enhanced glycosaminoglycan deposition, thus worsening endothelial dysfunction [30].

Table 1. miRNAs participated in vascular remodeling in aortic tissue.

miRNA Expression Target (s) Function

miR-23b up TLP3, FOXO4, CHI3L1, SMAD3 SMCs proliferation, differentiation, cytokine
production

miR-29b up COL1A1, COL3A1, COL5A1, ELN, MMP2, MMP9,
PTEN, ADAMTS7

ECM production, SMCs proliferation, arterial
calcification, cell apoptosis

miR-155 up SMAD, BCL6, CTLA4, MMP1, MMP3, SOCS,
NF-κB signaling transcription factor

SMCs differentiation, regulation of
inflammation

miR-206 up ARF6, SLC8A1 SMCs differentiation

miR-34a down SIRT1, NOTCH SMCs proliferation, differentiation

miR-145 up KLF4/5, MYOCD, ELK1, SRF, SOX9
SMCs differentiation, proliferation

Inhibits TGF-β signaling, ECM production,
regulation of fibrosis

miR-19a/b down FZD4, LRP6, TLR2, TGFBRI/TGFBRII
ECs proliferation, differentiation,

angiogenesis, WNT signaling pathway,
regulation of fibrosis

miR-20a down MKK3, TLR4 Reduction of ECs migration and
angiogenesis, TXNIP signaling, inflammation

miR-149 up FGFR1, GPC1 Regulation of angiogenic functions of ECs

Let-7a/c/e/f up TGFBR3, TBX5, ADRB1, EDN1, FGF5, IL6, IκBβ
Regulation of angiogenesis of ECs and

inflammation

miR-100 up mTOR, NOX4 Regulation of neovascularization

miR-99b up NOX4, TGFβ Differentiation of ECs

miR-30c/e up CTGF Promotion of the synthesis of ECM and
collagen, regulation of fibrosis

miR-142-3p down ADAM9, HMGB1, AZIN1, JNK1 Regulation of fibrosis

miR-15b/16 down TGF-βR1, p38, SMAD3, SMAD7, ENDOGLIN,
AKT3

Regulation of fibrosis, cell apoptosis, and
angiogenesis

miR-885 down ULK2 Cell autophagic processes

miR-511 down FOXC1 Regulation of angiogenesis

miR-664a down TGFBR2, AKT Inhibits TGF-β signaling, ECM production,
regulation of fibrosis

miR-654 down PTEN, ATM, ADAM10, RAB22A Regulation of fibrosis and inflammation

For more details see [30–44].
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Several authors, including Morgan et al., observed worsened endothelial function in
long-term CF-LVAD patients [31]. In our study, we observed dysregulation in miRNAs
participating in the regulation of vascular development, growth, and differentiation [32],
which may indicate the role of these miRNAs in the further development of endothelial
dysfunction. Interestingly, we also identified upregulated miRNAs that regulate mRNAs
encoded by genes in human endothelial cells related to vascular function and blood
pressure regulation [33].

Correlation analysis revealed that miR-409-3p (upregulated in explanted tissue), one
of the most potent fibrinogen downregulating miRs [45], potentially affects the expression
of the highest number of genes (10 genes with a correlation coefficient higher than |7|).
However, only two genes correlated negatively, suggesting they may be direct targets
(ZEB1 and RAP1A). ZEB1 gene is associated with the regulation of vasculogenesis [46],
whereas RAP1A promotes angiogenesis and dynamic regulation of endothelial barrier [47].

It should be mentioned that in our study, patients with two types of LVAD were
studied—an axial-flow LVAD HeartMate II and the HeartMate 3, a centrifugal-flow pump
with intrinsic artificial pulsatility. Nevertheless, this intrinsic pulsatility was originally
designed to enhance pump washout and prevent blood stasis and thrombosis. Our previous
work found that this pulsatility does not avert endothelial dysfunction [29,48]. Therefore,
the HeartMate 3 should also be considered as CF-LVAD. We are aware that our population
of patients is not exceedingly large; nevertheless, we did not observe any differences
between the pump types.

The vasculature is one of the most dynamic tissues that encounter numerous me-
chanical cues derived from pulsatile blood flow, blood pressure, the activity of smooth
muscle cells in the vessel wall, and the transmigration of immune cells [49]. Endothelial
cell junction assembly and cell junction organization play pivotal roles in tissue integrity,
barrier function, and cell–cell communication, respectively [50]. In this study, a multistep
approach combining mRNA and miRNA expression profiles and bioinformatics analysis
was adopted to identify the mRNA/miRNA regulatory network. Enriched GO terms in
targets of upregulated miRNAs were related to cell junction assembly and cell junction
organization.

4. Materials and Methods
4.1. Subjects

All examined individuals provided their informed consent, which the institution’s
ethics committee approved together with the study protocol. The protocol of this study
was conducted according to the principles of the Declaration of Helsinki [51].

A total of 16 patients (median age 57 years, range 18–65) who required mechanical
circulatory support from HeartMate II (N = 4) and HeartMate 3 (N = 12) as a bridge to
transplantation or destination therapy from July 2015 to March 2018 at the Institute for
Clinical and Experimental Medicine in Prague, were enrolled in our study. The etiology
of heart failure was predominantly nonischemic dilated cardiomyopathy (N = 13). The
median LVAD support duration was 382 days (ranging from 162 to 887 days). The basic
characteristics of the patients are summarized in Table 2.
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Table 2. Demographics of the patients selected for mRNA/miRNA analysis.

N (female %) 16 (18.8%)
Age (years) 49.6 ± 16.8

BMI (kg/m2) 25.6 ± 5.5
Diabetes mellitus (%) 1 (6.3%)

Hypertension (%) 8 (50%)
Hyperlipidemia (%) 5 (31.3%)

CVA/TIA (%) 0
NYHA classification IV (%) 11 (68.8%)

Etiology of nonischemic DCM (N) 13
Idiopathic 11
Familial 1

Toxic 1
Etiology of hypertrophic cardiomyopathy 1

Etiology of ischemic DCM (N) 1
Etiology of noncompact DCM (N) 1

CRTD/ICD before LVAD implant, % 12 (75%)
Type of LVAD
Heart Mate II 4
Heart Mate 3 12

Days of LVAD support (days) 382 (325.5)
HF, heart failure; CVA, cerebrovascular accident; TIA, transient ischemic attack; NYHA, New York Heart Associa-
tion; DCM, dilated cardiomyopathy; CRTD, cardiac resynchronization therapy defibrillator; ICD, implantable
cardioverter-defibrillator. Categorical data are presented as number (%), continuous data as mean± SD or median
(IQR), respectively. Familial DCM is only defined if the patient has one or more family members diagnosed with
idiopathic DCM or has a first-degree relative who experienced sudden unexplained death under 35 years. Days
of LVAD support are based on patients who already underwent HTx.

4.2. Sampling

Paired aortic tissue was obtained at the time of LVAD implantation and at the time
of HTx from CF-LVAD patients. Approximately 30 mg of tissue was immediately after
exclusion from aorta inserted into RNase/DNase-free tubes pre-filled with All Protect
Tissue Reagent (Qiagen GmBH Strasse 1, Hilden, Germany). Samples were stored for
2–4 weeks at 4 ◦C and then at −80 ◦C before RNA extraction. The storage time of tissue
ranged from 33 to 876 days.

4.3. mRNA and miRNA Analysis

Total RNA, including miRNA, was extracted from 10 mg of aortic tissue according
to protocol using the miRCURYTM RNA isolation kit for tissue (Qiagen GmBH Strasse 1,
Hilden, Germany). RNA quality and quantity were assessed using a Fragment Analyzer
system (Agilent technologies, 301 Stevens Creek Blvd., Santa Clara, CA, USA).

Gene expression was measured in paired samples from 10 patients. QuantSeq 3′

mRNA sequencing for RNA quantification was performed using a high-throughput tech-
nique using 3′mRNA-Seq Library Prep Kit FWD and 3′mRNA-Seq Library Prep Kit REV
(https://www.lexogen.com/quantseq-3mrna-sequencing/; accessed on 20 March 2020)
at Lexogen (Campus Vienna Biocenter 5, 1030 Vienna, Austria). QuantSeq. 3′ mRNA
library preparation predominantly produces fragments for sequencing close to the 3′ end
of polyadenylated mRNA, generally from the last exon and the 3′ untranslated region
(3 UTR) [52]. The total RNA input was 20 ng. There was no prior poly(A) enrichment
or rRNA depletion. The QuantSeq Forward kit has an oligo (dT) primer containing the
Illumina-specific Read 2 linker (P7), which is annealed to the 3′ end of the mRNA fragment
to synthesize the first cDNA strand via reverse transcriptase. The second strand synthesis
is commenced by random priming and DNA polymerase extension. The random primer
contains the Illumina-specific Read 1 linker sequence (P5). Sequencing commences from
the Read 1 sequencing primer and goes toward the poly(A) tail with only one fragment
produced per transcript [9].

https://www.lexogen.com/quantseq-3mrna-sequencing/
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SYBR green-based real-time quantitative PCR (RT-PCR) for miRNA profiling (in a total
of 16 patients) was performed using miRNome Panels (Qiagen GmBH Strasse 1, Hilden,
Germany). Passive Reference Dye (ROXTM 30 nm) was included for all PCR reactions.
Measurement was performed using the QuantStudio6 Flex instrument (ThermoFisher
Scientific, 81 Wyman Street, Waltham, MA, USA). Inter-plate calibrators (IPC) for calibration
between PCR plate runs, and spike-in controls to ensure the quality of RNA isolation, cDNA
synthesis reaction, and PCR was included in each measurement [53].

4.4. Processing of mRNA Sequencing Data

QuantSeq 3′ mRNA sequencing produced 140 million reads with 35–76 bp length. Raw
reads were trimmed of bases with Phred 33 quality lower than 30 using Cutadapt software
v2.9 [54]. Reads mapping to rRNA and UniVec (common vector contaminations in RNA
sequencing) databases were discarded. Mapping was performed using a bowtie aligner [55],
with one mismatch allowed. The remaining reads were mapped with STAR aligner to the
human genome (GRCh 38.95), with one mismatch allowed [56]. Only uniquely mapping
reads were assigned to individual genes using featureCounts software [57].

4.5. DESeq2 Analysis of mRNA Expression

Genes with less than 10 counts per all samples were removed before further analysis.
Raw counts were normalized using the median ratio method built in DESeq2 software [58].
To account for paired samples, parameters included in the DESeq2 model were patient
IDs and conditions before (implant) and after (explant) LVAD. Differential expression
between implant and explant samples was tested with one parameter Wald test built in
DESeq2; p values were adjusted for multiple testing with Bonferroni correction (BFC). A
p-value < 0.05 was considered statistically significant.

4.6. Gene Ontology Analysis

Gene ontology was performed using Gene Ontology enRIchment anaLysis and visu-
aLizAtion tool (Gorilla), a web-based tool [59]. All genes expressed in measured samples
(threshold > 10 raw counts per all samples) were ranked using the following formula –log
(p-value) * log2FC; the resulting list was used as input for calculating the p-value of the
minimum hypergeometric score, as described in detail by [60]. KEGG pathway analysis
was performed with clusterProfiler tool using 10,000 permutations and a gene set size
between 3–800 genes. As input for KEGG pathway analysis, the same ranked list of genes
was used for GO analysis [61,62].

4.7. miRNA Profile Analysis

Gene Expression software (GenEx SW, Multid Analysis AB, Göteborg, Sweden) was
used for miRNA expression analysis. Ct values higher than 35 were replaced by 35. A
total of 330 miRNAs with a call rate <40% (i.e., more than 60% data are invalid of that
miRNA) were removed from further analysis. The missing data, exceedingly low miRNA
levels, were replaced by deltaCt + 2 (representing at least 1/4 of the detectable miRNAs
amount). Data were normalized with the mean expression of all miRNAs and converted
to relative quantities and Log2. P values were corrected for multiple testing with BFC. A
p-value < 0.05 was considered statistically significant.

4.8. Integrated mRNA/miRNA Analysis

Differentially expressed miRNAs were used to predict mRNA targets in miRWalk (http:
//mirwalk.umm.uni-heidelberg.de/search_mirnas/; accessed on 18 October 2020) and
miRDB (http://www.mirdb.org/; accessed on 18 October 2020) databases. miRDB target
prediction was restricted to gene targets with prediction scores less than 60, and miRNAs
with more than 2000 genes in the genome were excluded. For prediction in the miRWalk
database, no restrictions were used. All genes expressed in our samples, which appeared
in the predicted targets in either of the databases, were used for correlation analysis.

http://mirwalk.umm.uni-heidelberg.de/search_mirnas/
http://mirwalk.umm.uni-heidelberg.de/search_mirnas/
http://www.mirdb.org/
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Pearson correlation was used to correlate log10 transformed normalized expression values
of differentially expressed miRNAs with log10 transformed normalized expression values
of expressed genes. Only pairs with a correlation better than −0.7/0.7 were considered for
further GO analysis and KEGG pathway. GO analysis and KEGG pathway were performed
using clusterProfiler with the same parameters described in Section 4.6.

5. Conclusions

The study provides additional insight into the pathophysiology of vascular changes
observed in patients after LVAD implantation. Significant regulation of mRNAs involved
in ECM and collagen fiber organization in response to the implantation of LVAD was
observed, which may suggest infliction of ECM homeostasis resulting in changes of intrinsic
properties of the vascular wall and arterial stiffness.
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