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ABSTRACT

Although all sequence symmetric tandem mis-
matches and some sequence asymmetric tandem
mismatches have been thermodynamically charac-
terized and a model has been proposed to predict
the stability of previously unmeasured sequence
asymmetric tandem mismatches [Christiansen,M.E.
and Znosko,B.M. (2008) Biochemistry, 47, 4329–
4336], experimental thermodynamic data for fre-
quently occurring tandem mismatches is lacking.
Since experimental data is preferred over a predic-
tive model, the thermodynamic parameters for
25 frequently occurring tandem mismatches were
determined. These new experimental values, on
average, are 1.0 kcal/mol different from the values
predicted for these mismatches using the previous
model. The data for the sequence asymmetric
tandem mismatches reported here were then com-
bined with the data for 72 sequence asymmetric
tandem mismatches that were published previously,
and the parameters used to predict the thermody-
namics of previously unmeasured sequence
asymmetric tandem mismatches were updated.
The average absolute difference between the mea-
sured values and the values predicted using these
updated parameters is 0.5 kcal/mol. This updated
model improves the prediction for tandem mis-
matches that were predicted rather poorly by the
previous model. This new experimental data and
updated predictive model allow for more accurate
calculations of the free energy of RNA duplexes
containing tandem mismatches, and, furthermore,
should allow for improved prediction of secondary
structure from sequence.

INTRODUCTION

Non-canonical regions account for about half of the
secondary structure of RNA (1). In particular, tandem

mismatches or 2� 2 nucleotide internal loops, are wide-
spread and are found quite frequently. For example,
tandem mismatches have been found to occur in the
rRNA of Escherichia coli (2), Haloferex volcanni (3) and
Haloarcula marismortui (4); the mitochondrial 16S-like
rRNA of Clamydomonas reinhardtii (3); the genomic
RNA of the dengue-3 virus (5); turnip crinkle viral
RNA (6); and myotonic dystrophy type 2 RNA (7), to
name a few. It is important to note, however, that
tandem mismatches not only occur in a variety of different
RNA and in different organisms, but they also serve func-
tional roles within the RNA. For example, the aminogly-
coside ampramycin binds to a tandem mismatch in
bacteria and halts replication (8). Another functional
role of tandem mismatches occurs in the J4/5 loop of
the group I intron of Candida albicans. This tandem
mismatch is the docking site for the first step of the self-
splicing reaction required for processing of rRNA (9).

Due to the natural occurrence of tandem mismatches
and their functional roles within certain RNAs, the ability
to accurately predict tandem mismatches in secondary
structures can lead to a better understanding of tertiary
interactions and structure–function relationships and aid
in the design of pharmaceuticals. As a result, thermody-
namics of tandem mismatches have been studied quite
extensively (10–19). Recently, we reported a complete
periodic table of sequence symmetric tandem mismatches
and proposed an updated model for predicting the free
energy contribution of previously unmeasured sequence
asymmetric tandem mismatches (19). However, despite
these studies, only 8% of all possible tandem mis-
match—nearest neighbor combinations have experimen-
tally determined thermodynamic parameters. Due to a
lack of data, current algorithms that predict RNA second-
ary structure from sequence (1,20–24) are based on several
assumptions and may be oversimplified.

An obvious way to improve the current algorithms is to
expand the experimental data set for tandem mismatches.
Ideally, the algorithms should contain experimental
parameters for each possible tandem mismatch (1095
when defined as the tandem mismatch and the adjacent
nearest neighbors). Although this is unrealistic, what is
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possible is to measure the thermodynamics of tandem mis-
matches that occur frequently in nature. This would pro-
vide algorithms with experimental parameters for the
tandem mismatches that users of these programs would
most likely be interested in. Thus, the only tandem mis-
matches that would rely on a predictive model would be
those that occur less frequently in nature. In addition,
more experimental data would increase the amount of
tandem mismatch data that is available from which the
predictive model was derived, enhancing the accuracy of
the model. With this in mind, the frequency of occurrence
of tandem mismatches in a dataset of RNA secondary
structures was determined. Twenty five of the most fre-
quently occurring tandem mismatches were then optically
melted in order to derive their corresponding thermody-
namic parameters. In addition, this thermodynamic data
was used to update the predictive model used for tandem
mismatches that do not have experimental values. This
additional experimental data and updated predictive
model can now be incorporated into secondary structure
algorithms.

MATERIALS AND METHODS

Compiling and searching a database for tandem mismatches

A database of 1899 RNA secondary structures containing
123 small subunit rRNAs (3), 223 large subunit rRNAs
(25,26), 309 5S rRNAs (27), 484 tRNAs (28), 91 signal
recognition particles (29), 16 RNase P RNAs (30), 100
group I introns (31,32), 3 group II introns (33) and 450
miRNAs (34–36). This database was searched for tandem
mismatches, and the number of occurrences for each type
of tandem mismatch was tabulated. In this work, G–U
pairs are considered to be canonical base pairs.

Design of sequences for optical melting studies

Sequences of tandem mismatches and nearest neighbors
were designed to represent those found most frequently
in the database described above. Each duplex chosen
was 10 base pairs long, with the tandem mismatches
occurring in the middle of the duplex. On either side of
the tandem mismatch are the adjacent nearest neighbors
and three additional canonical base pairs. The terminal
base pairs are G–C base pairs in order to prevent end
fraying of the sequence during melting. The duplexes
were also designed to have a melting temperature between
358C and 558C and to have minimal formation of hairpin
structures or mis-aligned duplexes.

RNA synthesis and purification

Oligonucleotides were ordered from the Keck Lab at Yale
University (New Haven, CT), Azco BioTech, Inc.
(San Diego, CA) or Integrated DNA Technologies
(Coralville, IA). The synthesis and purification of the
oligonucleotides followed standard procedures that were
described previously (19,37,38).

Optical melting experiments and thermodynamics

Optical melting experiments were performed in 1M NaCl,
20mM sodium cacodylate and 0.5mM Na2EDTA (pH
7.0). Melting curves (absorbance versus temperature)
were obtained, and duplex thermodynamics were deter-
mined as described previously (19,37,38). The thermody-
namic contributions of tandem mismatches to duplex
thermodynamics (�G837,tandem mismatch, �H8tandem mismatch

and �S8
tandem mismatch

) were determined by subtracting the
Watson–Crick contribution (39) from the measured
duplex thermodynamics. This type of calculation was
described previously (19).

Linear regression and tandem mismatch thermodynamic
parameters

Data collected for the 25 sequence asymmetric tandem
mismatches in this study were combined with previously
published data for 72 sequence asymmetric tandem mis-
matches (12,15–18). Similar to what was done previously
to derive parameters for sequence asymmetric tandem
mismatches (19), six variables were used for linear regres-
sion: (i) tandem mismatches with a U .U pair adjacent to
an R .R pair, tandem mismatches with one G .A or A .G
pair adjacent to a Y .Y pair, or tandem mismatches with
any combination of A .C, U .C, C .U, C .C, C .A or A .A
pairs; (ii) tandem mismatches with any combination
of adjacent G .A and A .G pairs or adjacent U .U pairs;
(iii) tandem mismatches with a U .U pair adjacent to a
Y .Y (not U .U), C .A, or A .C pair; (iv) tandem mis-
matches with a single G .G pair not adjacent to a U .U
pair; (v) tandem mismatches with an A–U or U–A nearest
neighbor; and (vi) tandem mismatches with a G–U or U–
G nearest neighbor. The calculated experimental contri-
bution of the tandem mismatch to duplex stability was
used as a constant when doing linear regression. To simul-
taneously solve for each variable, the LINEST function of
Microsoft Excel was used for linear regression. Based on
this dataset, the fourth parameter did not contribute to
tandem mismatch stability. Therefore, this parameter
was removed and linear regression was re-run with the
remaining parameters. Various other parameters and/or
combinations of parameters were tried, but the parameters
described here resulted in free energy contributions that
agreed closely with the experimental data and error values
that are comparable to those of the RNAstructure algo-
rithm (1,20,21).

Structural investigation

Six previously solved three-dimensional structures con-
taining frequently occurring tandem mismatches were
downloaded from the Protein Data Bank (PDB) (40).
These structures were viewed using Insight II software
(Accelrys Software Inc.), and base–base hydrogen bond-
ing between the mismatch nucleotides was investigated.
A hydrogen bond was considered to be present when
the distance between the proton on the donor atom and
the heavy atom acceptor was less than 2.5 Å and when the
angle between the heavy atom donor, proton, and heavy
atom acceptor was between 1208 and 1808.
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RESULTS

Database searching

The database described above was searched for tandem
mismatches. In this database, 1092 tandem mismatches
were found, averaging about one occurrence in every
two sequences. Table 1 shows a summary of the database
results obtained. The first set of data lists frequency and
percent occurrence when the mismatch nucleotides and
nearest neighbors are specified. Categorizing tandem mis-
matches in this fashion results in 350 types of mismatches
in the database. The 30 tandem mismatch types listed in
the first data set (Table 1) account for 51% of the total
number of tandem mismatches found. The 320 types of
tandem mismatches not shown account for the remaining
49%; however, each type represents <0.6% of the total
number of tandem mismatches found. When categorized
in this manner, previous studies account for only 21%
of the total number of tandem mismatches found, but
after adding the data reported here, this percentage
increases to 59%. Similarly, previous studies thermody-
namically characterized only seven types of tandem mis-
matches in the top 30, but after adding the data reported
here, all of the tandem mismatches in the top 30 have been
studied.
The second set of data (Table 1) lists frequency and

percent occurrence when only the tandem mismatch
sequence is specified (nearest neighbors are not consid-
ered). Categorizing tandem mismatches in this fashion
results in 55 types of tandem mismatches in the database.
The 30 tandem mismatches listed in the second data set
(Table 1) account for 93% of the total number of tandem
mismatches found. The 25 types of tandem mismatches
not shown account for the remaining 7%, with each mis-
match representing <0.5% of the total number of tandem
mismatches found. When categorized in this manner, pre-
vious studies account for 93% of the total number of
tandem mismatches found. Adding the data reported
here did not change this percentage.
The third set of data (Table 1) lists frequency and per-

cent occurrence of 50 and 30 nearest neighbor combina-
tions. Categorizing tandem mismatches in this fashion
results in 21 types of nearest neighbor combinations in
the database, representing all possible types of nearest
neighbor combinations. When categorized in this
manner, previous studies account for 55% of all nearest
neighbor combinations, but after adding the data reported
here, this percentage increases to 92%.
The fourth set of data (Table 1) lists frequency and

percent occurrence of the tandem mismatch nucleotides
when A and G are categorized as purines (R) and C and
U are categorized as pyrimidines (Y). Categorizing
tandem mismatches in this fashion results in 10 types of
tandem mismatches, representing all possible combina-
tions. When categorized in this manner, previous studies
account for 99.5% of all combinations. Adding the
data reported here did not change this percentage. The
only combination that has not been measured is 50RR30/
30YY50 (with 50AA30/30CC50 being the only possible
tandem mismatch sequence in this category).

Thermodynamic parameters

Table 2 shows the thermodynamic parameters of duplex
formation that were obtained from fitting each melting
curve to the two-state model and from the van’t Hoff
plot of TM

�1 versus log (CT/4). Data for the duplexes
containing the 30 most frequently occurring tandem mis-
matches in the database are shown in order of decreasing
frequency. However, data for 33 duplexes are shown
because three tandem mismatches were melted with two
different stem sequences.

Contribution of tandem mismatches to duplex
thermodynamics

The contributions of the 33 tandem mismatches to duplex
stability are listed in Table 3. The examination of the
thermodynamic contributions of tandem mismatches to
duplex thermodynamics indicates a large variance in the
obtained thermodynamic parameters. Tandem mismatch
contributions to enthalpy, entropy and free energy
changes range from �31.1 to 38.4 kcal/mol, �101.7 to
117.1 cal/(K mol) and �1.7 to 3.7 kcal/mol, respectively.

Updated model for predicting the thermodynamics
of previously unmeasured sequence asymmetric
tandem mismatches

An updated model to predict the thermodynamics of
previously unmeasured sequence asymmetric tandem mis-
matches was derived by compiling data for 72 sequence
asymmetric tandem mismatches from previous works
(12,15–18) and the data for 25 sequence asymmetric
tandem mismatches from this work. Linear regression
was then used to derive nearest neighbor parameters for
predicting the contribution of a tandem mismatch to
duplex thermodynamics. These parameters are shown in
Table 4. Table 4 also lists parameters for calculating
enthalpy and entropy contributions of rare sequence
asymmetric tandem mismatches.

We previously proposed a model for predicting the free
energy contribution of previously unmeasured sequence
asymmetric tandem mismatches (19). Since the database
of sequence asymmetric tandem mismatches has increased
from 72 to 97 tandem mismatches with the data reported
here, we re-derived the parameters used in the previous
model to determine if the additional data would change
any of the parameters published previously (19). With the
addition of the new data, there were some minor changes
to the previous parameters (Table 4). Initially, as done
previously, a parameter was derived for loops containing
a G .G pair not adjacent to a U .U pair. It was found that
these loops did not contribute to duplex stability.
Therefore, this mismatch combination was removed as a
parameter. Four of the remaining five parameters derived
with the additional data are within experimental error of
the previous data. The one value not within experimental
error was the penalty added per A–U nearest neighbor;
this penalty changed from 0.5 to 1.0 kcal/mol. The differ-
ence between the previous penalty and the new penalty is
likely due to the small sample size (eight occurrences) used
to generate this parameter previously; with the data
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Table 1. Summary of database search results for tandem mismatchesa
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Table 2. Thermodynamic parameters for duplex formationa

Continued
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reported here, the number of tandem mismatches with
A–U nearest neighbors has quadrupled in size (31 occur-
rences). A small sample size should not be a problem with
any other parameter, as all parameters now have at least
16 occurrences contributing to the derivation of that para-
meter. The penalty per A–U nearest neighbor is the same
as the penalty per G–U nearest neighbor, 1.0 kcal/mol.
Having an identical penalty for an A–U and G–U pair
adjacent to a tandem mismatch is consistent with previous
findings for tandem mismatches (1,20,21) and for 1� 2
nucleotide internal loops (41). In our previous model
(19), we recently proposed penalties that were slightly dif-
ferent, 0.5 kcal/mol per A–U nearest neighbor and
1.2 kcal/mol per G–U nearest neighbor. As stated pre-
viously, this difference was likely due to the small
sample size of tandem mismatches with A–U nearest
neighbors.

DISCUSSION

Database searching

Due to the size and diversity of the RNA secondary struc-
ture database that was searched, we have assumed that
the number and type of tandem mismatches found in
this database are representative of tandem mismatches
found in naturally occurring RNA.

It is clear from the first set of data in Table 1 that the
tandem mismatch—nearest neighbor combinations that
have been studied previously are not representative of

those found in nature. When looking at the second set
of data in Table 1, however, it appears as if the most fre-
quent tandem mismatches (considering the mismatch
nucleotides only) have already been studied. In 1997,
Xia et al. (15) reported the thermodynamics of asymmetric
tandem mismatches adjacent to G–C base pairs. As a
result, most of the tandem mismatches (considering the
mismatch nucleotides only) have already been studied.
However, it has been shown that the stability of tandem
mismatches depends not only on the identity of the
nucleotides in the loop but also on the identity of
the closing base pairs (1,10–21). Therefore, this work
(i) focuses on frequently occurring tandem mismatches
when considering both the nucleotides in the loop and
the nearest neighbors, (ii) compliments the work done in
1997 by Xia et al. (15), and (iii) provides additional, useful
information about the thermodynamic stability of tandem
mismatches.
We previously compiled the thermodynamics of all

60 sequence symmetric tandem mismatches (19). It is
interesting to note that only 3 of the 30 most frequently
occurring tandem mismatches (loop nucleotides and near-
est neighbors) are sequence symmetric (Table 1).
The database search to compile the values in Dataset

2 of Table 1 revealed 55 types of tandem mismatches in
the database; representing all possible types of tandem
mismatches.
Comparisons can be made between the most common

nearest neighbor combinations listed here (Dataset 3 of

Table 2. Continued
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Table 3. Contributions of 33 tandem mismatches to duplex stabilitya
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Table 1) and those found most frequently adjacent to
single mismatches (38) and 1� 2 nucleotide loops (41).
For tandem mismatches, a 50C–G and 30C–G combination
was the most frequent (see the first entry of Dataset 3 in
Table 1). This combination was the sixth most common
combination for single mismatches (38) and the most
common combination for 1� 2 nucleotide loops (41).
The most common combination for single mismatches
was a 50G–C and 30C–G combination (38) (which is the
10th most common for tandem mismatches). It is unclear
why single mismatches prefer different nearest neighbor
combinations than 1� 2 loops and tandem mismatches.

When categorizing the loop nucleotides as purines and
pyrimidines (Dataset 4 of Table 1), it is interesting to note
that the type of mismatch with the most possible combi-
nations, 50RY30/30RY50 (with 16 possible sequences), is
only the third most frequent. The top two types, all
purine and all pyrimidine loops, each only have 10 possi-
ble sequences. Therefore, there appears to be a preference
for all purine and all pyrimidine tandem mismatches, with
all purine being the most preferred. In fact, all purine
and all pyrimidine tandem mismatches account for 47%
and 24%, respectively, of all the mismatches found in the
database. Similar results were observed for 1� 2 nucleo-
tide internal loops; all purine (56%) and all pyrimidine
(15%) internal loops accounted for �75% of all the
1� 2 nucleotide internal loops in the database (41).

Thermodynamic contributions of tandem mismatches
to duplex thermodynamics

From the data in Table 3, it is evident that the stability
of a tandem mismatch does not determine its frequency
of occurrence. For example, the second most stable
tandem mismatch (50GGAG30/30CAGC50) is the 28th
most common. Similarly, a tandem mismatch that con-
tributes an unfavorable 3.1 kcal/mol toward duplex
stability (50AAUA30/30UCUU50) appears in the top 30.
Interestingly, all four tandem mismatches that have favor-
able free energy contributions (50GA30/30AG50, 50AA30/

30AG50, 50AA30/30GG50 and 50UU30/30UU50) also have
unfavorable free energy contributions when situated
between different nearest neighbor combinations.
It is interesting to note that there are three tandem

mismatches (loop nucleotides plus adjacent nearest neigh-
bors) that were studied in two different stem sequences
(Table 3). Two of the tandem mismatches, 50CAUC30/
30GGUG50 and 50CUUC30/30GUUG50, differ by only
0.2 kcal/mol when placed in the two different stems.
However, 50CGAG30/30GAGC50 differed by 1.1 kcal/mol
when placed in the two different stems. This difference is
likely due to non-nearest neighbor effects. Similar non-
nearest neighbor effects have been observed previously
(37,38,41–44). It has recently been reported that the accu-
racy of RNA secondary structure prediction by free
energy minimization is limited by non-nearest neighbor
effects (45). Since these effects may be complicated to
interpret, non-nearest neighbor effects were ignored here,
and data were treated as if stability relied only upon
immediate nearest neighbors and the identity of the
loop nucleotides. The role of non-nearest neighbor effects,
however, is currently being investigated.

Updated model for predicting thermodynamics
of tandem mismatches

Because we have collected thermodynamic data for
25 tandem mismatches that previously did not have
experimental values, when predicting the free energy con-
tributions of these mismatches in an RNA duplex, the
experimental values can be used. These new experimental
values, on average, are 1.0 kcal/mol different from the
values predicted for these mismatches using the previous
model.
In order to test the accuracy of this new model, the free

energies of all 97 sequence asymmetric tandem mismatches
compiled here were predicted using the updated model
(although this model would never be used for these
loops since they have experimental parameters available)
(see Supplementary Table S1). For the sequence

Table 4. Model for predicting the free energy contribution of previously unmeasured sequence asymmetric tandem mismatches at 378C

Tandem mismatches witha �G837 increments
proposed previously (19)
(kcal/mol)

�G837 increments
(kcal/mol)

�H8 increments
(kcal/mol)

�S8 increments
(eu)

a U�U pair adjacent to an R�R pair
or

a G�A or A�G pair adjacent to a Y�Y pair 1.1� 0.1 1.0� 0.1 �6.2� 2.2 �23.5� 6.9
or

any combination of A�C, U�C, C�U, C�C, C�A, or A�A pairs

any combination of adjacent G�A and A�G pairs
or �1.2� 0.3 �0.7� 0.2 �13.6� 3.3 �41.3� 10.4

two U�U pairs

a U�U pair adjacent to a Y�Y (not U�U), C�A, or A�C pair 0.8� 0.2 0.6� 0.2 �4.3� 3.0 �14.3� 9.5

a G�G pair not adjacent to a U�U pair �0.3� 0.2 0 0 0

per A-U nearest neighbor 0.5� 0.2 1.0� 0.1 �5.3� 2.2 �20.6� 6.9

per G-U nearest neighbor 1.2� 0.1 1.0� 0.1 �5.0� 2.6 �19.5� 8.1

aAny other base pair combinations in a tandem mismatch do not contribute to duplex stability.
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asymmetric tandem mismatches compiled here, the aver-
age absolute difference between the measured values and
the values predicted using these updated parameters is
0.53� 0.41 kcal/mol. Stated differently, 57% of the exper-
imental free energies were predicted within 0.5 kcal/mol,
86% were predicted within 1.0 kcal/mol and 96% were
predicted within 1.5 kcal/mol. As suggested by these num-
bers, there are some idiosyncrasies associated with the free
energy contributions of tandem mismatches that we still
do not understand. Using the model proposed previously
(19) and the same dataset of asymmetric tandem mis-
matches, the average absolute difference between the mea-
sured values and the values predicted is 0.58� 0.51 kcal/
mol. Overall, there is not a significant difference between
the two models. However, the new model does improve
the prediction for tandem mismatches that were predicted
rather poorly by the previous model. For example, for
eight tandem mismatches that were predicted poorly
(greater than 1 kcal/mol difference between the predicted
value and the experimental value) by the previous model,
the average difference between experimental and predicted
values was 1.7 kcal/mol. For the same eight loops using
the updated model, this average difference decreases to
0.9 kcal/mol.

Hydrogen bonding patterns in tandem mismatches

In order to investigate both the influence of structure on
the stability of tandem mismatches and if structural fea-
tures are important for determining a tandem mismatch’s
frequency of occurrence, the hydrogen bonding patterns
between tandem mismatch nucleotides in previously
solved three-dimensional structures were investigated.
Structures of four tandem mismatches in the top 30 were
downloaded from the PDB. One of the tandem mis-
matches was the most frequently occurring tandem mis-
match in the secondary structure database, 50GGAG30/
30CAGU50. This tandem mismatch occurred 57 times in
the secondary structure database and had a slightly favor-
able free energy contribution of �0.10 kcal/mol. The PDB
structure (1J5E) of the Thermus thermophilus 30S riboso-
mal subunit from the Ramakrishnan laboratory (46)
revealed that both G .A pairs are forming sugar-edge/
Hoogsteen pairs. One of the G .A pairs contained one
base–base hydrogen bond from the G amino proton to
the A N7. The other G .A pair contained two base–base
hydrogen bonds, one between an A amino proton and
G N3 and one between a G amino proton and A N7
(see Supplementary Figure S1). With the extensive hydro-
gen bonding within the tandem mismatch, it is unclear
why this tandem mismatch is only slightly stabilizing.
The next tandem mismatch investigated structurally was

the third most frequently occurring tandem mismatch in
the secondary structure database, 50CGAG30/30GAGC50.
This tandem mismatch occurred 41 times in the secondary
structure database and had a favorable free energy
contribution of �0.69 or �1.74 kcal/mol, depending on
the identity of the stem duplex. Interestingly, this
tandem mismatch also contains two adjacent G .A pairs,
similar to the tandem mismatch described above.
Hydrogen bonding of this tandem mismatch was

investigated in three different PDB structures, the PDB
structure (1NKW) of the Deinococcus radiodurans large
ribosomal subunit from the Yonath laboratory (47), the
PDB structure (1S72) of the H. marismortui large riboso-
mal subunit from the Moore and Steitz laboratories (48)
and the PDB structure (1YFV) of a synthetic RNA from
the Turner laboratory (49). The tandem mismatch in each
of these structures had slightly different features. In PDB
ID 1NKW, both G .A pairs are in a sugar-edge/
Hoogsteen conformation; however, there are no base–
base hydrogen bonds (see Supplementary Figure S2). In
both PDB ID 1S72 and 1YFV, the GA pairs are also in a
sugar-edge/Hoogsteen conformation; however, both pairs
in both structures have two base–base hydrogen bonds, a
G amino proton to A N7 and an A amino proton to G N3
(see Supplementary Figure S3). It is difficult to interpret
the influence of the structure on either the thermodynam-
ics or frequency of occurrence for this tandem mismatch
due to the difference in stability when this tandem mis-
match is placed within different stems and due to the dif-
ferent hydrogen bonding patterns found for this tandem
mismatch in various PDB structures.

A third tandem mismatch with two G .A pairs was
investigated, 50UGAG30/30AAGC50. This tandem mis-
match occurred 16 times in the secondary structure
database and had an unfavorable free energy contribution
of 2.13 kcal/mol. Structural features of this tandem mis-
match were investigated in the PDB structure (1NYI) of
the hammerhead ribozyme from the Scott laboratory (50).
Once again, both G .A pairs are in a sugar-edge/
Hoogsteen conformation with both pairs having an A
amino proton to G N3 hydrogen bond and a G amino
proton to A N7 hydrogen bond (see Supplementary
Figure S3). After investigating all five structures contain-
ing tandem G .A pairs, it is not straightforward to identify
the structural features that lead to the varying thermody-
namic stabilities.

Perhaps major contributors to the thermodynamic
stabilities are the identities of the closing base pairs.
The last tandem mismatch discussed above, 50UGAG30/
30AAGC50, has one U–A and one G–C adjacent base pairs
and was the most unfavorable thermodynamically of
the three. The second tandem mismatch discussed above,
50CGAG30/30GAGC50, has one C–G and one G–C adja-
cent base pairs and was the most favorable thermodyna-
mically. The first tandem mismatch discussed above,
50GGAG30/30CAGU50 has one G–C and one G–U adja-
cent base pair and was more stable than the third and less
stable than the second tandem mismatch.

Another tandem mismatch that was investigated was
50CUUG30/30GUUC50. This tandem mismatch occurred
19 times in the secondary structure database and had a
favorable free energy contribution of 0.44 kcal/mol.
Structural features of this tandem mismatch were investi-
gated in the PDB structure (280D) of an RNA dodecamer
from the Kundrot laboratory (51). Both U .U pairs are in
a Watson–Crick/Watson–Crick conformation with both
pairs having two U imino proton to U carbonyl oxygen
hydrogen bonds (see Supplementary Figure S4).

The base pairing between the tandem mismatch nucleo-
tides in the PDB structures discussed here shed little
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light on the relationship between structure and thermody-
namics and the reason why nature prefers particular
tandem mismatch sequences over others. In addition to
base–base hydrogen bonds, perhaps base–backbone
hydrogen bonds, the hydrogen bonding pattern of the
adjacent base pairs, the amount of stacking between the
loop nucleotides and between the loop nucleotides and
the nearest neighbors, sugar puckers, dynamics, helix
distortion, and available functional groups situated in
the grooves would provide more insight to help answer
these questions. Perhaps a more extensive PDB search
and comparison that investigates a much larger number
of tandem mismatches and more structural features would
help in understanding structure-stability relationships and
nature’s preference for certain loop tandem mismatch
sequences.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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