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Abstract

In this study, we present deep learning-based approaches to automatic segmentation

and applicator reconstruction with high accuracy and efficiency in the planning com-

puted tomography (CT) for cervical cancer brachytherapy (BT). A novel three-dimen-

sional (3D) convolutional neural network (CNN) architecture was proposed and

referred to as DSD-UNET. The dataset of 91 patients received CT-based BT of cervical

cancer was used to train and test DSD-UNET model for auto-segmentation of high-risk

clinical target volume (HR-CTV) and organs at risk (OARs). Automatic applicator recon-

struction was achieved with DSD-UNET-based segmentation of applicator compo-

nents followed by 3D skeletonization and polynomial curve fitting. Digitization of the

channel paths for tandem and ovoid applicator in the planning CT was evaluated utiliz-

ing the data from 32 patients. Dice similarity coefficient (DSC), Jaccard Index (JI), and

Hausdorff distance (HD) were used to quantitatively evaluate the accuracy. The seg-

mentation performance of DSD-UNET was compared with that of 3D U-Net. Results

showed that DSD-UNET method outperformed 3D U-Net on segmentations of all the

structures. The mean DSC values of DSD-UNET method were 86.9%, 82.9%, and

82.1% for bladder, HR-CTV, and rectum, respectively. For the performance of auto-

matic applicator reconstruction, outstanding segmentation accuracy was first achieved

for the intrauterine and ovoid tubes (average DSC value of 92.1%, average HD value of

2.3 mm). Finally, HDs between the channel paths determined automatically and manu-

ally were 0.88 � 0.12 mm, 0.95 � 0.16 mm, and 0.96 � 0.15 mm for the intrauterine,

left ovoid, and right ovoid tubes, respectively. The proposed DSD-UNET method out-

performed the 3D U-Net and could segment HR-CTV, bladder, and rectum with rela-

tively good accuracy. Accurate digitization of the channel paths could be achieved with

the DSD-UNET-based method. The proposed approaches could be useful to improve

the efficiency and consistency of treatment planning for cervical cancer BT.
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1 | INTRODUCTION

Brachytherapy (BT) following external beam radiation therapy (EBRT)

and concurrent chemotherapy is the standard of care for patients

with locally advanced cervical cancer.1,2 Brachytherapy is an essen-

tial part of the curative intent therapy and closely associated with

improvements in clinical outcomes.3–5 Three-dimensional (3D) image-

based BT allows individual treatment planning based on the volumet-

ric image of patient and is considered as a significant technical

advancement and widely adopted for the treatment of cervical can-

cer.6 The application of 3D image-based BT enables the practitioner

to prescribe dose to the target volume as well as determine and

potentially limit dose to the organs at risk (OARs), which is more

advantageous than the conventional two-dimensional (2D) image-

based approach. Numerous studies demonstrate improved treatment

plan quality and clinical outcomes of 3D image-based BT for cervical

cancer.7–10 Magnetic resonance imaging (MRI) is the preferred imag-

ing modality for treatment planning of cervical cancer BT due to its

superior soft tissue visualization relative to computed tomography

(CT). However, there are many obstacles for routinely performing

the MRI-based BT in many radiation oncology departments, including

limited availability, high cost, and long scanning time. Therefore, CT-

based BT of cervical cancer is widely used in treatment centers

worldwide, especially in the developing countries.

Segmentation of the target volumes and OARs is an essential

step in the treatment planning of 3D image-based BT. The delin-

eation task is usually carried out by the radiation oncologist accord-

ing to the recommended guidelines. However, manual delineation of

the target volumes and OARs is time-consuming and prone to large

inter- and intraobserver variation. Thus, accurate segmentation with

high efficiency and consistency is highly desired and useful for treat-

ment planning of 3D image-based BT. The commonly used auto-

matic segmentation method in clinical practice is an atlas-based

technique, which is employed by many commercial software

tools.11–14 To achieve automatic segmentation, atlas-based methods

rely on deformable image registration between the image to be seg-

mented and the reference image, referred to as atlas, in which

regions of interest are already segmented. The segmentation of cor-

responding structures in a new test image is obtained by finding the

optimal transformation between the atlas and test image.15,16 There-

fore, the segmentation result strongly depends on the applied regis-

tration algorithm. The choice of a suitable and robust algorithm has

a substantial effect on the result, especially in the presence of image

noise and interference arising from contrast changes.17,18 Apart from

registration algorithm, the atlas itself plays a crucial role in atlas-

based segmentation. When performing atlas-based automatic seg-

mentation using a single atlas, accurate segmentation result cannot

be guaranteed if the selected reference image is not representative

or the morphology of anatomical structures is not similar enough

between the atlas and test image.19 To reduce the uncertainties of

single atlas segmentation, multiple atlases are selected from a data-

base to register the test image, and the final segmentation result

based on the multiple registrations is obtained with voting

schemes.20,21 Although multiatlas automatic segmentations improve

the robustness of the segmentation results as compared to single

atlas-based ones, they are prone to topological errors and require

more computational time.16,22

Applicator reconstruction is the process of localizing the radia-

tion source paths defined by the applicator channels in the planning

images. It is another critical step during the procedure of BT treat-

ment planning. The potential dwell positions are placed on the digi-

tized applicator channels and corresponding dwell times are

determined to meet the dosimetric objectives. Applicator reconstruc-

tion accuracy has a significant impact on the dosimetric result of the

treatment plan due to the steep dose gradients of BT treatment. A

small uncertainty in the digitization of applicator channels would

translate into a relatively large dosimetric uncertainty.23–25 In gen-

eral, applicator reconstruction is performed manually by the medical

physicist. The digitization process is subjective and time-consuming.

Thus there is a strong need to achieve fully automatic applicator

reconstruction in 3D image-based BT to ensure treatment planning

accuracy and efficiency. The applicator library integrated in the treat-

ment planning system is the clinically available tool for automatic

applicator digitization, which can significantly reduce the reconstruc-

tion uncertainty and improve efficiency. It allows channel digitization

based on the manual registration of virtual applicator model with

predefined source paths to its appearance in the planning images.

However, the applicator library-based reconstruction method is not

fully automatic due to the manual alignment of applicator model.

Moreover, applications of this method are limited to only those

applicators included in the library. Electromagnetic tracking tech-

nique has been recently utilized for catheter digitization in BT.26,27

Although this method has highly accurate digitization result, addi-

tional hardware and complex procedure may hamper its widespread

application.

In recent years, convolutional neural networks (CNNs) as a kind of

deep learning algorithm have been successfully applied to automatic

segmentation in medical images.28–31 Outstanding segmentation per-

formance has been achieved with various architectures of CNNs.

Automatic segmentation method based on CNNs is also introduced to

radiotherapy treatment planning.32 Automatic delineation of target

volumes and OARs in EBRT treatment planning for head and neck,33,34

breast,35 and rectum36 cancer have been reported. To the best of our

knowledge, there are no reports on automatic segmentation for cervi-

cal cancer BT with any CNNs. In addition, most of the CNNs utilized in

the previous studies take 2D CT/MRI slices as input, thus the 3D spa-

tial and contextual information of the whole volume cannot be utilized

effectively by the networks.

In this work, we propose a novel 3D CNN architecture that is

based on the popular 3D U-Net architecture30 with incorporation of

residual connection, dilated convolution and deep supervision

(henceforth referred to as DSD-UNET). The proposed network is

trained and evaluated for automatic segmentation of high-risk clinical

target volume (HR-CTV) and OARs in the planning CT of cervical

cancer BT. Performance of the DSD-UNET is then compared with

that of the conventional 3D U-Net. Moreover we present an
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automatic applicator reconstruction method based on the DSD-

UNET. The reconstruction process consists of two steps. First, the

DSD-UNET is exploited to segment all the parts of the applicator in

the planning CT images. Second, segmentation of the applicator

tubes is postprocessed with skeletonization and polynomial curve fit-

ting to obtain the applicator channel paths. The feasibility and accu-

racy of the proposed approach are evaluated.

2 | MATERIALS AND METHODS

2.A | Data acquisition

A total of 91 patients with cervical cancer who underwent CT-based

BT were included in this study. All the enrolled patients received

intracavitary high-dose-rate BT using Fletcher Williamson tandem

and ovoid applicator (Elekta AB, Stockholm, Sweden). Planning CT

data were acquired on Brilliance CT Big Bore (Philips Healthcare,

Best, the Netherlands) system set on helical scan mode. CT images

were reconstructed using a matrix size of 512 × 512 and thickness

of 2 mm. The average in-plane resolution of the CT slices is

1.11 mm (min–max range 0.97 to 1.22 mm). Only the planning CT

volumes of involved patients for the first BT treatment fraction were

collected for this study. The dataset for automatic segmentation

study consisted of 91 CT volumes. Radiation oncologists contoured

the HR-CTV and OARs including small intestine, sigmoid, rectum,

and bladder based on recommended guidelines for CT-based BT of

cervical cancer.37 Thirty-two CT volumes randomly selected from

the dataset for auto-segmentation study were used to evaluate the

automatic applicator reconstruction method. All parts of the tandem

and ovoid applicator were carefully segmented in the planning CT

images by the experienced medical physicists, including tandem tube,

left ovoid tube, right ovoid tube, left ovoid, right ovoid, and cervical

stopper. These manual segmentations were defined as ground-truth

(GT) segmentations and the voxels that belonged to the GT segmen-

tations were marked and labeled.

2.B | Preprocessing of images

For the segmentation of HR-CTV and OARs, the original planning

CT volumes were first cropped in each dimension to discard the

regions depicting empty space or without labeled structures. Then

the cropped CT volumes were resized with a linear interpolation to

an identical size of 128 × 128 × 64 voxels. With the cropping and

interpolating processes, the average in-plane resolution of the

obtained CT volumes is 2.89 × 2.78 mm2, the average interslice res-

olution is 2.06 mm. To enhance the image contrast of the planning

CT volumes, contrast limited adaptive histogram equalization

(CLAHE) algorithm was employed to preprocess the images fed to

the CNN. With the CLAHE method, the shape, texture, and bound-

ary of anatomical structures in the CT images became more distin-

guishable, the image quality was highly improved. Figure 1 shows

the image enhancement using CLAHE algorithm. In order to preserve

the original information, we kept the original CT images with the

processed images using CLAHE method to compose a dual-channel

input to the proposed DSD-UNET.

As the first step of proposed method for automatic applicator

reconstruction, all parts of the applicator were segmented in plan-

ning CT images utilizing the DSD-UNET. Due to the relatively small

size of the applicator components, a fixed-size volume of interest

(128 × 128 × 80 voxels) which centered the segmented applicator

was first cropped from the original planning CT volume. Then linear

interpolation along the superior–inferior direction was applied to

obtain a 128 × 128 × 64 CT volume with the interslice resolution of

2.5 mm. The in-plane resolution of the resulting CT volume is identi-

cal with that of the original CT volume.

2.C | Architecture of DSD-UNET

The proposed novel DSD-UNET architecture was inspired by the pop-

ular 3D U-Net architecture. Figure 2 illustrates the detailed architec-

ture of DSD-UNET. Like the U-Net, our network consisted of a

contracting path and an expanding path with different stages that

operate at different spatial resolutions. In order to solve the problem

of vanishing gradients and accelerate the learning convergence, the

residual block which consisted of two 3 × 3 × 3 convolutional layers

and a spatial dropout layer in between was applied at each stage in the

contracting path. The residual block was followed by a 3 × 3 × 3 con-

volution with a stride of 2 for downsampling. Each stage in the

expanding path consisted of a 3 × 3 × 3 deconvolution with a stride

of 2 for upsampling, followed by a concatenation with the feature

maps from the corresponding stage in the contracting path, and then

two convolutional layers with kernel sizes of 3 × 3 × 3 and 1 × 1 × 1

respectively. The segmentation layer which was a 1 × 1 × 1 convolu-

tion layer with filters equal to the segmentation classes was employed

at the end of each stage in the expanding path. The number of feature

channels was doubled at each stage in the contracting path and was

halved at each stage in the expanding path.

Moreover, we deployed a dilated convolution module between the

contracting and expanding paths, which parallel employed four dilated

convolution layers with dilated factors of 1, 2, 3, and 4, respectively.

With implementation of the dilated convolution module, multiscale

high-level features could be learned and aggregated to achieve more

accurate and robust segmentation. Deep supervision was also

employed in our network by integrating the segmentation layers at dif-

ferent stages of the expanding path and combining them via element-

wise summation to form the final output. At last we applied sigmoid

activation to this final output layer to obtain the voxel-wise probabili-

ties for each segmentation class. Instance normalizations38 followed

with LeakyReLU nonlinearities were applied to all the convolutional

layers through the network, except for the segmentation layers.

2.D | Model training

The proposed DSD-UNET architecture was implemented in Keras

framework with Tensorflow as the backend. Training was performed

using the Adam39 optimizer with an initial learning rate of 0.0005
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and a decay rate of 0.5 once the learning stagnated for more than

20 epochs. The proposed network architecture was trained with

batch size of 2 and maximum 200 epochs. The model with the high-

est performance was selected. Dice similarity coefficient (DSC) was

employed as an accuracy measure of the segmentation. So we for-

mulated a multiclass dice loss function for the model training:

LossD ¼� 2
NK

∑k∈K

∑i∈ Iu
k
i v

k
i

∑i∈ Iu
k
i þ∑i∈ Iv

k
i

(1)

where uki represents the sigmoid activation value of the voxel i from

the output filter for segmentation class k, vki represents the

corresponding one hot encoding of the GT segmentation map. I indi-

cates the set of voxels in the output filter and K indicates the set of

segmentation classes. NK is the total number of segmentation

classes.

In order to prevent overfitting when training the networks with

limited data, data augmentation techniques including random rota-

tions (≤10°), random scaling (≤15%), and mirroring (along left–right
direction only) were applied on the fly during the training process.

Due to the unavailability of sufficient GPU resource, all computa-

tions in this study were undertaken on a workstation with an Intel

Xeon E5-2620 v3 CPU (2.4 GHz, 6 cores) and 32 GB RAM.

F I G . 1 . Computed tomography (CT)
image enhancement using CLAHE
algorithm. (a) Shows the original CT
images. (b) Shows the enhanced CT images

F I G . 2 . Schematic representation of the proposed DSD-UNET architecture
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2.E | Evaluation metrics

When the training process was finished, performance of the model

was assessed with the testing data only. The DSC, Jaccard Index (JI),

and Hausdorff distance40 (HD) were used as the evaluation metrics

of segmentation accuracy in this study. The DSC is defined as

DSC P,Tð Þ¼2�P∩T
PþT

(2)

and the JI is defined as

JI P,Tð Þ¼P∩T
P∪T

(3)

where P and T correspond to the predicted segmentation of the

model and the GT segmentation, respectively, P∩T and P∪T repre-

sent the intersection and union of predicted segmentation and GT

segmentation, respectively. HD is computed as

HD A,Bð Þ¼ max D A,Bð Þ,D B,Að Þð Þ (4)

with D defined as

D A,Bð Þ¼maxa∈Aminb∈Bd a,bð Þ (5)

where d a,bð Þ is the Euclidean distance between two points, A and B

indicate the measured point sets, which are defined as the voxel sets

for evaluation of segmentation result. The HD measures the largest

degree of mismatch between two voxel sets in the volumetric image.

Thus spatial discrepancy between the automatic segmentation and

GT segmentation can be quantified with this metric. In addition, the

HD was used to evaluate the proposed approach of automatic appli-

cator reconstruction. It was calculated with the points in the channel

paths that determined by the developed method and manual opera-

tion.

2.F | Experiments

The proposed DSD-UNET architecture was exploited to complete

two segmentation tasks. The first one was automatic segmentation

of the HR-CTV and OARs, another one was automatic segmentation

of all parts of the applicator to finally achieve the applicator recon-

struction with postprocessing. Models for the different segmentation

tasks were trained and tested separately. For the segmentation of

anatomical structures, the dataset was composed of 91 patient

cases. It was randomly divided into a subset of 73 cases (80% of the

data) for training and a subset of 18 cases (20% of the data) for test-

ing. The evaluation metrics including DSC, JI, and HD were calcu-

lated on the testing subset. In addition, the performance of our

approach was compared with that of the 3D U-Net which was con-

sidered as the baseline for segmentation tasks in medical imaging.

To make this comparison fair, the training and testing sets for 3D U-

Net model were the same as those of DSD-UNET model. For the

segmentation of applicator components, the dataset consisted of 32

patient cases. Twenty-four cases chosen randomly were used for

model training and the remaining eight cases composed the testing

set. DSC, JI, and HD were computed on the testing subset to quan-

tify the segmentation accuracy of the trained model.

Following the automatic segmentation of applicator components

utilizing the DSD-UNET, segmented applicator tubes were first post-

processed by a 3D parallel thinning algorithm41 to extract the central

axes of these objects. This thinning algorithm proceeds by iteratively

sweeping over the volumetric image, and removing voxels on object

borders at each iteration until the volumetric image stops changing.

An octree data structure of 3 × 3 × 3 lattice points is used to check

the local connectivity and preserve the topology. When the skele-

tonizing process was finished, the voxel set that represented the

channel axis was obtained for each of the applicator tubes. Then we

fitted a 3D parametric polynomial curve of five degrees to each of

these voxel sets. With the skeletonizing and curve fitting processes,

index and digitization of the channel paths for the applicator were

achieved. The GT channel paths of the applicator were the polyno-

mial curves that had the best fit to the points manually determined

along the applicator channels by the experienced medical physicists.

To assess the accuracy of the proposed method, we used HD to

measure the agreement between channel paths determined automat-

ically and manually.

3 | RESULTS

3.A | Performance of the automatic segmentation
of HR-CTV and OARs using DSD-UNET model

Table 1 shows the quantitative evaluations of segmentation results

on the testing dataset with our network and 3D U-Net. It can be

found that the proposed DSD-UNET model outperformed the 3D U-

Net model on segmentations of all the structures. The mean DSC

values of the segmentation results with DSD-UNET model were all

bigger than 80.0% except for the sigmoid. The average DSC and JI

values of DSD-UNET were 7.0% and 9.2% higher than those of 3D

U-Net, respectively. The average HD value of DSD-UNET was

3.7 mm lower than that of 3D U-Net. Among all structures, the best

results were obtained for bladder segmentation with mean DSC and

JI values of 86.9% and 77.9%, respectively, for the DSD-UNET

model (DSC = 80.2% and JI = 68.2% for 3D U-Net). This is mainly

because the bladder has a relatively regular shape and clear bound-

ary in the planning CT images. Automatic segmentation with DSD-

UNET also achieved a good result for HR-CTV, the mean DSC and JI

values reached 82.9% and 72.2%, respectively, the mean HD value

was 8.1 mm. Segmentation of the rectum with DSD-UNET model

showed relatively good agreement with the GT segmentation, with

mean DSC and JI values of 82.1% and 71.5%, respectively, and mean

HD value of 9.2 mm. For the segmentation of the small intestine,

mean DSC value of 80.3% was obtained with the DSD-UNET model.

However, the corresponding mean HD value reached 27.8 mm,

which indicated the inferior segmentation accuracy. The most infe-

rior segmentation accuracies were observed on the segmentations of

sigmoid with both DSD-UNET and 3D U-Net models (DSC = 64.5%,

JI = 52.2% and HD = 19.6 mm for DSD-UNET, DSC = 55.2%, JI =
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42.8% and HD = 23.4 mm for 3D U-Net). Figures 3 and 4 show

the visualization results of automatic segmentations with DSD-UNET

and 3D U-Net for two representative cases. Compared with 3D U-

Net, the automatically segmented contours with DSD-UNET showed

better agreement with the GT contours in shape, volume, and loca-

tion. For better visualization, Fig. 5 shows the automatic segmenta-

tion results with DSD-UNET in the transverse, sagittal, and coronal

views for a representative case. Although the training time for DSD-

UNET model was about 150 h, the time spent on segmentation of

all the structures with the trained DSD-UNET model was about 20 s

per patient.

3.B | Performance of the proposed approach for
automatic applicator reconstruction

Segmentation results for all parts of the tandem and ovoid applicator

using the DSD-UNET model were assessed. The DSC, JI, and HD

values computed on the testing set are reported in Table 2. It is

observed that outstanding segmentation accuracies were achieved

for all parts of the applicator. The mean DSC and JI values for all

the applicator components were higher than 88.0% and 80.0%,

respectively. In particular, automatic segmentations of the intrauter-

ine tube and ovoid tubes achieved superior performances compared

with those of the other applicator components (average DSC value

of 92.1%, average JI value of 86.8%, average HD value of 2.3 mm).

The best segmentation accuracy was observed on the segmentation

of intrauterine tube (DSC = 92.6%, JI = 87.7% and HD = 1.9 mm).

Three-dimensional views of the segmentation results for intrauterine

and ovoid tubes with the DSD-UNET model are shown in Fig. 6.

The segmentations of applicator tubes with DSD-UNET model were

in good agreement with the GT.

Following the automatic segmentation, skeletonization and poly-

nomial curve fitting were conducted to obtain the channel paths of

the applicator. HDs between the channel paths determined automat-

ically and manually were 0.88 � 0.12 mm (min-max range

0.71–1.16 mm), 0.95 � 0.16 mm (0.69–1.48 mm), and

0.96 � 0.15 mm (0.75–1.34 mm) for the intrauterine, left ovoid, and

right ovoid tube, respectively. The mean HD values for all the chan-

nel paths of the applicator were <1 mm, which indicated a good

accuracy of the proposed method for automatic applicator recon-

struction. Figure 7(a) illustrates the skeletons and segmentations of

applicator tubes for an example case. The manually determined

points along the applicator channels for the same case are shown in

Fig. 7(b). The channel paths generated by the proposed method

showed good agreement with the GT paths, as shown in Fig. 7(c).

The computational time for the proposed automatic reconstruction

approach was about 22 s per case.

4 | DISCUSSION

Delineation of the target volumes and OARs is a critical step in

radiotherapy treatment planning, which has important impact on not

only the quality of treatment plan but also the clinical outcome.

Therefore the fast and consistent auto-segmentation method is

highly desired and useful for treatment planning. Compared with

automatic segmentation approaches based on multiple atlases, the

CNN-based automatic segmentation method is inherently a better

solution that has strong generalization capability. Because it could

capture multiple features and variations by itself, then build into the

prediction model. In this study, we did not separate patients into dif-

ferent groups according to the size or shape of their body. The train-

ing and testing sets were chosen randomly. It was observed that

relatively accurate and consistent segmentation results were

obtained for all the testing cases. Computational results showed that

the proposed DSD-UNET method had strong ability of handling the

input images with large differences. Compared with atlas-based

auto-segmentation methods, another advantage of our method is

higher segmentation efficiency. The DSD-UNET architecture is an

end-to-end segmentation framework which can directly provide

voxel-wise classification in CT images. The time for segmentation of

all the structures with DSD-UNET was about 20 s per patient. For

atlas-based auto-segmentation methods, the indispensable processes

of database search and deformable image registration are usually

time-consuming. Therefore, the proposed DSD-UNET method is

more efficient and clinically attractive.

In recent years, a variety of studies concerning automatic seg-

mentation with CNNs in radiotherapy have been reported.32–36,42 To

TAB L E 1 Quantitative evaluations of the automatic segmentation results with DSD-UNET and 3D U-Net for the HR-CTV and OARs
(Mean � Standard deviation)

Metrics Models

Regions of interest

HR-CTV Bladder Small intestine Sigmoid Rectum

DSC (%) DSD-UNET 82.9 � 4.1 86.9 � 3.2 80.3 � 5.8 64.5 � 7.9 82.1 � 5.0

3D U-Net 74.2 � 6.2 80.2 � 4.1 75.1 � 6.7 55.2 � 8.6 77.1 � 6.2

JI (%) DSD-UNET 72.2 � 4.3 77.9 � 3.5 69.4 � 6.1 52.2 � 8.3 71.5 � 5.2

3D U-Net 60.2 � 6.5 68.2 � 4.6 61.9 � 6.9 42.8 � 8.8 64.3 � 6.5

HD (mm) DSD-UNET 8.1 � 2.3 12.1 � 4.0 27.8 � 10.8 19.6 � 8.7 9.2 � 4.6

3D U-Net 10.5 � 2.9 16.3 � 4.2 32.2 � 11.9 23.4 � 12.7 12.8 � 6.0
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the best of our knowledge, there were no reports on automatic seg-

mentation for CT-based BT of cervical cancer with any CNNs. This

work is the first attempt to apply CNNs for this segmentation task.

Moreover, automatic segmentation of HR-CTV and OARs in the

planning CT images for cervical cancer BT is more challenging for

three main reasons. First, the metal artifacts caused by BT applicator

degrade the image quality significantly. Second, the boundaries of

HR-CTV in the planning CT images for cervical cancer BT are hardly

visible. Segmentation of the HR-CTV depends largely on the physi-

cian’s knowledge. Third, the OARs in planning CT of cervical cancer

BT (including bladder, small intestine, sigmoid, and rectum) show

considerable changes in shape, volume, intensity, boundary, and

location between patients. Nevertheless, relatively good segmenta-

tion results for the bladder and HR-CTV were obtained with the

F I G . 3 . Segmentation results of a
representative case (testing case 5). (a)
shows the segmentation results with DSD-
UNET, (b) shows the segmentation results
with 3D U-Net. Solid lines indicate the
ground-truth segmentation, dotted and
dashed lines indicate segmentations with
DSD-UNET and 3D U-Net, respectively.
(Blue contours: Bladder, Orange contours:
Small intestine, Magenta contours:
Sigmoid, Cyan contours: rectum, red
contours: HR-CTV)
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proposed DSD-UNET method, with the mean DSC values of 86.9%

and 82.9% and the mean HD values of 12.1 and 8.1 mm, respec-

tively.

We also compared the performance of DSD-UNET model with

that of the 3D U-Net. Quantitative evaluations showed that the

DSD-UNET outperformed the 3D U-Net in segmentation of all the

structures. Superior performance of the proposed DSD-UNET

method was attributed to the novel architecture of the network and

the additional input channel of preprocessed data. Specifically, a

multipath dilated convolution module was deployed in the middle of

the network to exploit the global context features that are essential

for accurate segmentation. The dilated convolution module allowed

the network to extract features in larger receptive fields without los-

ing resolution. We also employed deep supervision in the expanding

path of the network by integrating segmentation layers at different

stages to form the final output. The combination of multilevel fea-

ture maps from shallow and deep layers of the network not only

made the final segmentation more reliable but also accelerated the

F I G . 4 . Segmentation results of a
representative case (testing case 8). (a)
shows the segmentation results with DSD-
UNET, (b) shows the segmentation results
with 3D U-Net. Solid lines indicate the
ground-truth segmentation, dotted and
dashed lines indicate segmentations with
DSD-UNET and 3D U-Net, respectively.
(Blue contours: Bladder, Orange contours:
Small intestine, Magenta contours:
Sigmoid, Cyan contours: rectum, red
contours: HR-CTV)
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convergence of model training. In addition, activation function of

LeakyReLU which allows a small and nonzero gradient when the unit

is not active was used instead of conventional ReLU in our network.

The introduction of LeakyReLU increased the expressiveness of

DSD-UNET network to some extent.

Segmentation result is closely related to the quality of input

image for the automatic segmentation task. Therefore, the CLAHE

algorithm was applied in this study to preprocess the input data for

image enhancement. With the CLAHE method, the local contrast of

original CT images increased significantly, the shape and boundary

information of organs was highly improved without over-amplifica-

tion of noise. In order to preserve the original and essential informa-

tion, we kept the original CT images with the enhanced images to

compose a dual-channel input to the network. The design of dual-

channel input facilitated the network to learn more substantial and

valuable features from CT images.

In this study, the proposed DSD-UNET architecture was also

successfully exploited to segment all parts of the tandem and ovoid

applicator in the planning CT images for cervical cancer BT. Accurate

segmentation was achieved with the small training set of only 24

patients. It is demonstrated that the DSD-UNET has strong ability in

this segmentation task. Following the segmentation, channel paths

of the applicator were obtained by the 3D skeletonization and poly-

nomial curve fitting processing. To the best of our knowledge, it is

the first attempt to employ CNNs to achieve automatic applicator

reconstruction for cervical cancer BT. Different from the applicator

model assisted reconstruction method that needs manual registra-

tion, the proposed method is fully automatic without any manual

intervention. Therefore, more efficient and consistent applicator

reconstruction can be achieved with our method.

For 3D image-based BT, dose calculations are dependent on the

geometrical accuracy of the source position relative to target vol-

umes and OARs. The applicator displacements and reconstruction

uncertainties could lead to major dose deviations in target and OARs

due to the steep dose gradients of BT.23,24,43 It has been

F I G . 5 . Segmentation results with DSD-UNET model shown in transverse (a), sagittal (b) and coronal (b) views for a representative case
(testing case 8). Solid lines indicate the ground-truth and dotted lines indicate the prediction from DSD-UNET. (Blue contours: Bladder, Orange
contours: Small intestine, Magenta contours: Sigmoid, Cyan contours: rectum, red contours: HR-CTV)

TAB L E 2 Segmentation accuracy for all parts of the applicator with DSD-UNET model (Mean � Standard deviation)

Intrauterine tube Left ovoid tube Right ovoid tube Cervical stopper Left ovoid Right ovoid

DSC (%) 92.6 � 1.3 91.9 � 2.3 91.7 � 1.8 88.3 � 3.9 88.6 � 4.1 88.9 � 3.5

JI (%) 87.7 � 1.4 86.8 � 2.5 85.9 � 2.1 80.1 � 4.4 81.2 � 4.2 81.5 � 3.9

HD (mm) 1.9 � 0.5 2.5 � 0.8 2.4 � 0.7 3.1 � 1.6 3.2 � 2.4 2.9 � 2.6

F I G . 6 . Three-dimensional views of the segmentation results of
intrauterine and ovoid tubes for three different cases. The ground-
truth and automatic segmentation results of the applicator tubes are
displayed translucently in cyan and magenta, respectively, with the
overlapped parts of the applicator tubes appearing blue
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demonstrated that either �3 mm displacement of the tandem and

ovoid applicator or a �4.5 mm applicator reconstruction uncertainty

could cause greater than 10% dosimetry change for MRI-based BT

of cervical cancer.25 In order to minimize the reconstruction uncer-

tainties and avoid accidental errors, implementation of automatic

applicator reconstruction methods with high accuracy and consis-

tency is necessary. In our study, automatic applicator reconstruction

method utilizing the DSD-UNET model has achieved relatively high

accuracy. HD values between the channel paths determined auto-

matically and manually were <1 mm for all the applicator channels.

In order to explore the feasibility and accuracy of the proposed

method, we started the study with the relatively simple case of tan-

dem and ovoid applicators. So the presented work serves as a pre-

liminary exploration and simple test. Subsequent developments and

more comprehensive evaluations are needed to extend the proposed

method to more difficult scenarios.

One of the limitations of this work is the relatively small dataset

size. This is due to the limited number of patients with cervical can-

cer that received CT-based BT in our clinic and the lack of common

dataset that is suitable for this segmentation task. To ease this prob-

lem, data augmentation strategy was applied in the model training.

Dropout was deployed in the network to reduce the risk of overfit-

ting introduced by data augmentation. However, due to the intrinsic

characteristics of deep learning method, larger dataset usually leads

to the improvements of performance and generalization. Therefore,

we plan to collect more suitable image data in the future study.

Then more accurate and reliable segmentation result could be

expected.

The most inferior segmentation performance for the DSD-UNET

model was observed on the segmentation of sigmoid, with the low-

est mean DSC value of 64.5% and higher mean HD value of

19.6 mm among all structures. With analysis of the segmentation

results for sigmoid, we have found that misclassifications of the

voxels from small intestine, sigmoid, and rectum were serious in

most of the testing cases. The lower DSC value for segmentation of

sigmoid is partly due to the misclassifications and the relatively small

volume. It is really challenging to achieve accurate segmentation at

the junction of small intestine and sigmoid as well as at the rectosig-

moid junction by the proposed DSD-UNET model. It is possible that

the features extracted by DSD-UNET are not sufficient to provide

the desired segmentation result. Further investigation is needed to

improve the accuracy of sigmoid segmentation.

For the automatic segmentation task, the original CT volume was

cropped and resized to an input volume with fixed size of

128 × 128 × 64. This preprocessing was performed due to the lim-

ited computational resource and memory capacity available. How-

ever, the downsampling usually leads to a loss of detail information

and may affect the segmentation accuracy. In the next stage of our

work, we plan to feed the CNN with patches extracted from the

original CT volume and stitch their respective outputs together to

obtain the final segmentation. With this scheme, arbitrarily large

images can be segmented without resampling and the training set

can be enlarged to some extent. Moreover, we expect to train a sin-

gle DSD-UNET model that could segment both the anatomical struc-

tures and the applicator in the planning CT images, instead of two

separated models in the current study. Therefore, the automatic seg-

mentation and applicator reconstruction could be achieved simulta-

neously to streamline the treatment planning workflow for cervical

cancer BT.

5 | CONCLUSION

In this study, we presented a deep learning-based method using

DSD-UNET architecture to automatically segment the HR-CTV and

OARs in the planning CT images for cervical cancer BT. Quantitative

F I G . 7 . Illustration of the applicator
reconstruction results for a representative
case. (a) indicates the skeletonization of
the applicator tubes for this case, the
extracted skeletons are represented with
voxel sets. (b) The manually determined
points along the applicator channels for
the same case. (c) Comparison of the
polynomial curves fitted to the skeleton
voxels (magenta) and manually determined
points (cyan)
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evaluation results show that the proposed DSD-UNET method out-

performed the 3D U-Net and could segment the HR-CTV, bladder,

and rectum with relatively good accuracy. Moreover, the DSD-UNET

was exploited to segment the applicator components in the planning

CT. Using 3D skeletonization and polynomial curve fitting, channel

paths of the applicator were obtained without any manual interven-

tion. The channel paths generated by our method show good agree-

ment with the GT. HD between the channel paths determined

automatically and manually was <1 mm. The proposed automatic

segmentation and applicator reconstruction methods could be useful

to improve the consistency and efficiency of treatment planning for

cervical cancer BT.
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