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Abstract: Seaweeds are a good source of bioactive lipids and are known for their nutritional benefits,
making them a valuable food source. Despite their dietary significance and nutritional importance,
there are limited reports on comprehensive lipidome analysis of lipids with antioxidant properties.
Therefore, this study aimed to compare the lipid profiles of five commonly consumed Japanese
dietary seaweeds using non-targeted liquid chromatography/mass spectrometry (LC/MS). A total,
of 304 molecular species from four major lipid classes were detected and characterized by MS/MS
analysis. Multivariate statistical analysis revealed distinct lipid molecular compositions in kombu
and sea mustard compared to hijiki, mozuku, and laver seaweeds. Kombu has been shown to
contain large amounts of antioxidants, such as polyunsaturated fatty acids (PUFAs), and a high
health promotion index compared to other seaweeds. Hierarchical cluster correlations indicated the
predominance of glycerophospholipids (GPs) and glycerolipids (GLs) in sea mustard and kombu. As
a result, dietary seaweeds have great potential as antioxidants and health-promoting foods for human
consumption due to their high levels of PUFA-rich GPs and GLs. Unsaturated triacylglycerols are
predominant in hijiki, whereas other health-beneficial lipids, such as monogalactosyldiacylglycerol
and sulfoquinovosyl diacylglycerols, are predominant in sea mustard. This study provides a detailed
characterization of lipids and their comparative fingerprints in seaweeds, demonstrating the potential
use of dietary seaweeds in biotechnological and industrial applications involving the development of
functional food products.

Keywords: seaweed; lipidomics; PUFAs; antioxidants; nutritional indices; liquid chromatography;
mass spectrometry

1. Introduction

Seaweeds have been used for centuries as a food source and in traditional medicines
in East Asian countries [1,2]. In addition to their taste, they are also regarded as valuable
sources of nutrition and health. The nutritional components of seaweed vary depending
on various factors, including species, geographical location, temperature, season, salinity,
light intensity, and interactions among these factors [3–6]. In general, they contain proteins,
amino acids, carbohydrates, antioxidants, minerals, dietary fibers, vitamins, and lipids [7–9].
The use of seaweeds in the development of functional foods and nutrient extraction is
widespread. Research on lifestyle-related diseases, such as cardiovascular disease (CVD)
in the Japanese population, found that seaweed intake might reduce the risk of CVD and
contribute to longevity [10]. A study by Murai et al. shows a comprehensive review based
on the associations between seaweed intake and diabetes, weight reduction, blood pressure,
cancer, and related factors in humans [10].
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In recent years, foods enriched with seaweeds and seaweed extracts have drawn
considerable interest because of their improved quality and several health benefits owing
to their bioactive components, such as polyphenols, minerals, metals, and lipids. A high
content of ω-3 polyunsaturated fatty acids (PUFAs) has been reported in seaweeds [11,12].
PUFAs play a crucial role in preventing type 2 diabetes, obesity, cardiovascular diseases,
and cancer, and exhibit antimicrobial, antiviral, anti-inflammatory, and antitumoral proper-
ties [13–16]. PUFAs have been reported to be potential antioxidants. Hence, they are widely
used in the development of food products with enhanced shelf life and quality [17,18].
Nevertheless, seaweeds also have complex lipids, such as glycerolipids (GLs), glycerophos-
pholipids (GPs), and sterols [19,20], and display unique features, such as esterification with
ω-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
which are not found in terrestrial plants. GPs and GLs play structural roles in biological
systems, including the formation of cytoplasmatic and chloroplast membranes [21]. Marine
GPs have better bioavailability, resistance to oxidation, and a higher ω-3 PUFA content
than lipids from other sources [22]. Moreover, they are better at delivering dietary ω-3
PUFA than terrestrial GPs, as already shown in several comparative studies [22–24].

Despite the great significance of seaweeds, they remain largely ignored, likely be-
cause of their low lipid content, high structural diversity, and complexity in analysis.
Most previous studies on seaweed bioactive lipids focus on assays of total lipid extracts
or enriched fractions. Only a limited number of studies focus on the identification and
characterization of complex lipids at the molecular species level. Efforts have been made to
profile lipids in seaweeds using techniques, such as gas chromatography/mass spectrome-
try [25], high-performance liquid chromatography [26], and nuclear magnetic resonance
spectroscopy [27]. However, these techniques are time-consuming and provide limited
knowledge about seaweed lipidomes. The lipidomics approach using the liquid chromatog-
raphy/mass spectrometry (LC/MS) technique has received considerable attention because
of its high sensitivity and comprehensive lipidomics. In this study, we aimed to obtain the
lipid profiles of five commonly consumed Japanese dietary seaweed using a non-targeted
lipidomics approach based on linear ion quadrupole-orbitrap mass spectrometry. Lipids
with antioxidant properties and total lipid signatures were correlated and compared among
these five species. Furthermore, the nutritional indices for each species were assessed based
on their free-fatty acid levels and their lipid contents.

2. Materials and Methods
2.1. Materials

Five seaweed species, including brown (Hijiki (Sargassum fusiforme), Kombu
(Saccharina japonica), Okinawa Mozuku (Cladosiphon okamuranus)), sea mustard
(Undaria pinnatifida), wakame in Japanese), and a green Laver ((Ulva lactuca), nori in
Japanese) types were purchased from different supermarkets in Sapporo, Hokkaido, Japan.
All were commercially available and purchased in dried conditions, except for mozuku.
Mozuku was dried at room temperature and crushed in a mixer. Crushed seaweeds were
used directly for lipid extraction after weighing. The LC/MS grade methanol, isopropanol,
and chloroform were purchased from Wako Pure Chemical Industries, Ltd., (Osaka, Japan).
The mobile-phase additive ammonium acetate was purchased from Sigma-Aldrich (St.
Louis, MO, USA). The EquiSPLASH Lipidomix quantitative standard for mass spectrom-
etry and oleic acid-d9 were obtained from Avanti Polar Lipids (Ablabaster, AL, USA).
The internal standard mixture was prepared using methanol by mixing the EquiSPLASH
Lipidomix of 10 ng of each of the following: phosphatidylcholine (PC) (15:0-18:1(d7)),
phosphatidylethanolamine (PE) (15:0-18:1(d7)), phosphatidyl-glycerol (PG) (15:0-18:1(d7)),
phosphatidylserine (PS) (15:0-18:1(d7)), phosphatidylin-ositol (PI) (15:0-18:1(d7)), lysophos-
phatidylethanolamine (LPE) (18:1(d7)), lysophosphatidylcholine (LPC) (18:1(d7)), sphin-
gomyelin (SM) (d18:1/18:0(d9)), ceramide (Cer) (d18:1/15:0 (d7)), triacylglycerol (TAG)
(15:0-18:1(d7)-15:0), diacylglycerol (DAG) (15:0-18:1(d7)), cholesterol ester (18:1(d7)), and
monoacylglycerol (MAG) (18:1(d7)) and 100 ng of oleic acid (d9).
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2.2. Homogenization and Lipid Extraction

Five to six ceramic beads were added to a 2 mL Eppendorf tube preloaded with 100 mg
dry seaweed (n = 3 each). The samples were homogenized using the Fisher Scientific Bead
mill 4 (Fisherbrand, Tokyo, Japan) homogenizer for 2 × 30 s, followed by the addition of
1 mL of methanol, and subsequently, homogenization was repeated for one more cycle.
The Bligh-dyer method was used for total lipid extraction in each seaweed sample using
a single-phase, with minor modifications [28]. For every 100 µL of homogenized extract
sample, 50% v/v of the internal standard mixture was added to a 1.5 mL Eppendorf tube
and vortexed at 3500 rpm for 30 s. Subsequently, 100 µL of chloroform was added to the
mixture, vortexed at 3500 rpm for 5 min and maintained at room temperature for 2 h.
Finally, 20 µL of Milli-Q (ultrapure) water was added to the mixture, vortexed at 3500 rpm
for 30 s, and centrifuged at 1500 rpm at 4 ◦C for 10 min. The supernatant was transferred to
a new Eppendorf tube followed by vacuum drying.

2.3. Analysis by LC/MS

The vacuum-dried samples were redissolved in 100 µL of methanol, vortexed at
3500 rpm for the 30 s, and centrifuged at 4 ◦C at 1500 rpm for 10 min, and then transferred
to LC/MS vials. The LC/MS conditions used in this experiment were similar to those used
in our previous reports [29,30]. In summary, the Prominence UHPLC system (Shimadzu
Corporation, Kyoto, Japan) was used for the chromatographic separation process with a
standard automatic sampler and a ternary solvent delivery system. An Atlantis T3 C18
column (2.1 × 150 mm, 3 mm, Waters, Millford, CT, USA) was used for separation at a
flow rate of 200 µL/ min. The mobile phases contained (A) Milli-Q (10 mM CH3COONH4),
(B) isopropanol, and (C) methanol. A linear gradient was augmented as follows; negative
mode: 0–1 min, 30% B, and 35% C; 1–14 min, 80% B and 10% C; 14–27 min, 85% B and 10%
C; 27–28 min, 30% B and 35% C; positive mode: 0–1 min, 6% and 90% C; 1–10 min, 83% B
and 15% C; 10–19 min, 83% B and 15% C; 19–19.5 min, 6% B and 90% C. For each run, the
column temperature was maintained at 40 ◦C, and the injection volume was 10 µL.

Mass spectrometry (MS) analysis was performed using an LTQ Orbitrap mass spec-
trometer (Thermo-Fisher Scientific Inc., San Jose, CA, USA) in positive and negative ion-
ization modes following previously established conditions [29,30]. The electron spray
ionization source was maintained at a capillary temperature of 330 ◦C, nitrogen sheath gas
flow of 50 units, and auxiliary gas flow of 20 and 30 units for the positive and negative
modes, respectively. In negative ionization mode, the source and capillary voltages were
3 kV and 10 V, respectively, whereas, in positive ionization mode, they were 4 kV and 25 V,
respectively. The MS1 scan range was set at m/z 160–1900 and 100–1750 for negative and
positive ionization modes, respectively, in Fourier transform mode with a resolving power
of 60,000 and collision energy of 35 V to obtain MS1 spectra for high-resolution masses.
Low-resolution MS2 and MS3 spectra were obtained at a collision energy of 40 V in the
ion-trap mode. The raw data were processed for alignment, peak extraction, identification,
and peak area integration using MS-DIAL software version 4.2 (Yokohama, Japan). Identifi-
cation of lipid molecular species was confirmed by high-resolution mass measurements
and respective MS/MS spectra. Relative quantification of lipid molecular species was per-
formed by considering the peak area ratios of the annotated lipids to the internal standard
and multiplying it by the added internal standard. The concentrations were normalized to
the weight of the seaweed used for extraction.

2.4. Statistical Analysis

The data were visualized in Microsoft Excel 2016, GraphPad Prism 8 software ( San
Diego, CA, USA) as the mean ± standard deviation (analysis of each sample’s triplicate).
One-way ANOVA with Tukey’s multiple comparisons test was employed (a value of
p < 0.05) and was considered to be statistically significant. Principal component and
cluster correlation analysis was performed using Metabo Analyst version 5.0 (https://
www.metaboanalyst.ca/), accessed on 9 July 2022.

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/


Antioxidants 2022, 11, 1538 4 of 14

3. Results

Untargeted lipidomic analysis of five species of dietary seaweeds has led to the
detection of more than 300 lipid molecular species from four major lipid classes; fatty acyls
(FAs), glycerophospholipids (GPs), glycerolipids (GLs), and sterols. Characterization of
lipid molecular species was confirmed by high-resolution masses, retention time behavior,
and MS/MS analysis using an inbuilt library of MS DIAL [31]. The MS/MS spectra of
representative molecular species (experimental vs reference) are shown in Figure 1.

Figure 1. MS/MS spectra of representative lipid molecular species characterized in the study.

The measurement spectra were compared with the reference spectra to confirm the
lipid structure. However, for some lipids, the reference spectra may not match exactly with
the experimental spectra owing to the influence of various instrumental factors on the ion
intensity. Therefore, it was not a necessary criterion for the ion intensity to exactly match
the reference spectra. In the experimental spectra, a weak FA 22:6 [M-H]− ion peak and
a strong [M-H-CO2]− ion peak is observed. Further loss of CO2 clearly suggests that the
lipid was a polyunsaturated fatty acid. Lipids, such as FAs (FA 22:6), phosphatidic acid (PA
(16:0/18:1)), phosphatidylglycerol (PG (16:0/20:5)), phosphatidylcholine (PC (14:0/18:1)),
phosphatidylethanolamine (PE (16:0/20:4)), phosphatidylinositol (PI (16:0/18:2)), and
sulfoquinovosyl diacylglycerol (SQDG (16:0/24:1) were detected and characterized in
the negative mode as [M-H]− or [M+CH3COO]− ions. Diacylglycerols (DG (16:0/18:1)),
triacylglycerols (TG (16:0/18:0/18:1)), monogalactosyldiacylglycerol (MGDG (16:0/18:2)),



Antioxidants 2022, 11, 1538 5 of 14

digalactosyldiacylglycerol (DGDG (16:0/18:2)), diacylglyceryl-trimethylhomoserine (DGTS
(16:0/18:2)), and stigmasterol ester (SE (29:2/18:2)) were detected and characterized in the
positive mode as [M+H]+ or [M+NH4]+ ions. The exact masses and plausible fragmentation
patterns are indicated in each spectrum by the arrows.

One-way ANOVA analysis and principal component analysis (PCA) results for all
annotated lipid molecular species are summarized in Figure 2A,B. Most of the identified
lipids are statistically significant (p < 0.05) as shown in Figure 2A. The PCA shows the
differences between seaweed species based on the group lipidome changes. The loading
score plot shows the distribution of the most significant variables (i.e., lipid molecular
species) along the principal components and the groupings between the samples. PC1 and
PC2 accounted for 91.6% of the total variance of the model and most of the variance was
explained by PC1 (60.5%). The composition of lipids in all five species of seaweed shows
group-specific clustering. While hijiki, mozuku, and sea mustard have almost identical
lipid compositions, kombu and laver have different compositions among these three groups.
According to the loading plot, this group separation was mainly attributed to the large
positive or negative loadings of lipid molecular species, such as FA 18:1, FA 20:4, MGDGs.

The relative amounts of each lipid class in all the five seaweed species are shown in
Figure 2C. The number of FAs is higher in hijiki and mozuku, whereas GLs are predominant
in kombu, laver, and sea mustard. Sterols are the least abundant lipids in all the species.
Seaweeds are reported to show excellent nutritional properties owing to the abundance
of GLs in seaweeds, such as kombu, sea mustard, and laver, including high levels of fiber
in kombu, and our results are consistent with these reports [7,20,32–34]. Furthermore, the
nutritional quality of the seaweeds was assessed based on the levels of free fatty acids
using the formulas reported earlier [35,36]. The relative levels of fatty acids detected
and characterized in seaweed are summarized in Table 1. Furthermore, Figure 3 shows
a summary of indexes that can evaluate the nutritional quality of each type of seaweed.
Figure 3A shows the polyunsaturated fatty acids to saturated fatty acids ratio (P:S ratio),
which is an index normally used to evaluate the impact of diet on cardiovascular health [35].
The equation for this index is given below:

PUFA/SFA = ∑ PUFA/ ∑ SFA.

It is designed under the assumption that all the PUFAs can suppress low-density
lipoprotein cholesterol and contribute to lower levels of serum cholesterol, whereas all
SFAs lead to high levels of serum cholesterol [35]. Therefore, the higher the ratio (1–1.5,
a favorable range to reduce the cardiac risk), the more beneficial it is. The results show
that kombu has the highest P:S ratio, whereas sea mustard has the lowest P:S ratio. This
situation means that among the five species, kombu has the least risk of causing CVD,
followed by sea mustard. However, Figure 3B shows the index of atherogenicity (IA),
which reflects the atherogenic potential of FA. The formula used to calculate the IA is as
follows:

IA = [FA12 : 0 + (4 × FA14 : 0) + FA16 : 0]/ ∑ UFA.

The index indicates the relationship between the sum of SFAs and the sum of un-
saturated fatty acids (UFAs). In the equation, FA12:0, FA14:0, and FA16:0 are generally
considered pro-atherogenic, whereas UFAs are considered anti-atherogenic [35]. Thus, the
higher the index value, the higher the risk of atherogenicity. The results show that kombu
had the lowest IA ratio, while sea mustard had the highest. This means that, among the
five species, kombu has the lowest risk of atherogenicity, while sea mustard has the highest
risk. Figure 3C shows the hypocholesterolemic/hypercholesterolemic index (HHI), which
is used to calculate the effect of the FA composition on cholesterol. The formula is given
below:

HH =
(
FA18 : 1 + ∑ PUFA

)
/(FA12 : 0 + FA14 : 0 + FA16 : 0).
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Figure 2. Multivariate analysis and distribution of lipid classes characterized in five species
of seaweed. (A) One-way ANOVA analysis of all the lipid molecular species (Tukey’s HSD).
(B) Principal component analysis score plots and loading scores of the lipids characterized in the
study. (C). Comparison of the relative amount of major lipid classes determined in seaweeds. (Fatty
acyls (FAs), Glycerophospholipids (GPs), Glycerolipids (GLs), and Sterols (STs)). ns: non-siginificant
difference.
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Table 1. Relative amount (µg/g) of free fatty acids including PUFAs detected in five species of
seaweed. The data were shown as mean ± SD (n = 3). Two-way ANOVA with Tukey’s multiple
comparisons test was applied and a value of p < 0.05 is considered to be statistically significant.
The statistically significant FFAs are: FA 14:0 (ab,ac,bc,bd,be), FA 16:0 (ab,ac,ae,bc,bd,be,cd,ce,de),
FA 18:0 (ab,ac,bc,bd,be,cd,ce), FA 16:1, FA 18:2, and FA 20:0 (ab,bc,bd,be), FA 20:1 (cd,de), FA 20:4
(ab,ad,ae,bc,bd,be), FA 20:5 (ab,ad,bc,bd,be,cd,de).

Hijiki (a) Kombu (b) Mozuku (c) Laver (d) Sea Mustard (e)

Lipids
FA 12:0 2.83 ± 0.06 4.8 ± 0.4 4.2 ± 0.2 2.8 ± 0.3 2.3 ± 0.3
FA 14:0 1943 ± 73 4425 ± 245 2757 ± 16 2517 ± 110 2217 ± 156
FA 15:0 44.3 ± 5.5 194.6 ± 9.3 51.4 ± 3.3 41.04 ± 4.64 7.79 ± 0.70
FA 16:0 2665.04 ± 277.13 13,674.72 ± 479.69 3435.35 ± 189.86 2622.20 ± 171.01 1562.28 ± 170.34
FA 16:1 234.86 ± 25.50 1260.67 ± 94.40 230.76 ± 35.13 63.21 ± 7.49 41.84 ± 9.46
FA 17:0 40.90 ± 0.80 3.75 ± 0.33 64.15 ± 3.19 44.94 ± 4.50 40.57 ± 4.02
FA 17:1 12 ± 3 120 ± 2 12 ± 2 5 ± 1 2.1 ± 0.5
FA 18:0 2605 ± 71 5143 ± 401 3350 ± 107 2533 ± 127 2439 ± 274
FA 18:1 807 ± 162 30448 ± 2796 1334 ± 344 507 ± 83 155 ± 80
FA 18:2 383 ± 80 6686 ± 378 711 ± 161 253 ± 42 107 ± 39
FA 18:3 23 ± 4 187 ± 2 8.6 ± 0.5 6.5 ± 0.2 7.25 ± 0.86
FA 18:4 27.7 ± 6.3 152.17 ± 2.40 5.45 ± 0.30 3.56 ± 0.15 24.78 ± 9.59
FA 19:0 8 ± 3 41.1 ± 6.8 13 ± 6 10.9 ± 1.1 13 ± 2
FA 19:1 5.2 ± 1.6 112.06 ± 8.19 10.3 ± 4.1 41.3 ± 8.4 1.2 ± 0.2
FA 20:0 174 ± 19 1321.16 ± 102.81 265.55 ± 57.03 60.58 ± 3.66 288.70 ± 29.27
FA 20:1 385.9 ± 102.6 79.27 ± 6.67 7.5 ± 3.9 673.66 ± 88.99 2.48 ± 0.18
FA 20:2 58.7 ± 14.5 339.1 ± 15.8 8.4 ± 1.5 319.32 ± 53.52 2.06 ± 0.60
FA 20:4 1524 ± 317 14972 ± 975 1175 ± 297 859 ± 160 372 ± 74
FA 20:5 531.13 ± 125.59 6575.12 ± 459.90 771.35 ± 159.21 2441.39 ± 386.84 311.02 ± 138.65
FA 22:0 0.27 ± 0.06 0.23 ± 0.05 12.23 ± 0.96 0.20 ± 0.04 0.30 ± 0.03
FA 22:1 0.15 ± 0.06 3.6 ± 0.2 11.76 ± 0.47 87.73 ± 11.74 0.81 ± 0.04
FA 22:4 2.92 ± 0.42 10.43 ± 0.39 4.24 ± 0.91 1.68 ± 0.44 1.31 ± 0.11
FA 22:5 0.9 ± 0.4 10.45 ± 0.89 0.36 ± 0.02 14.80 ± 3.44 0.51 ± 0.15
FA 22:6 0.49 ± 0.06 0.24 ± 0.05 9.32 ± 2.61 2.98 ± 0.50 5.13 ± 1.28
FA 24:0 0.1 ± 0.01 0.12 ± 0.03 0.73 ± 0.05 2.00 ± 0.64 141.61 ± 7.16
FA 24:1 103.75 ± 28.92 5.54 ± 0.32 1.22 ± 0.29 79.22 ± 8.19 5.15 ± 0.52
FA 26:0 0.63 ± 0.03 0.63 ± 0.21 0.17 ± 0.02 0.10 ± 0.03 0.18 ± 0.06
FA 26:1 4.51 ± 1.22 18.01 ± 1.47 68.39 ± 14.32 15.59 ± 2.95 26.04 ± 1.96

The numerator (hypercholesterolemic) represents the FAs that lead to hypocholes-
terolemia, such as PUFAs and FA18:1 (cis or trans is omitted). The denominator represents
FAs that lead to hypercholesterolemia, such as FA12:0, FA14:0, and FA16:0. This reflects
the risk of CVD [35]. Therefore, the higher the index, the healthier the diet. The results
show that kombu has the highest HH value, while sea mustard has the lowest. This means
that among the five species, kombu is the least likely to cause high cholesterol, whereas sea
mustard is the most likely.

Figure 3D shows the health-promoting index (HPI) designed to evaluate the nutritional
value of dietary fat [35]. It is based on the effect of the FA composition on CVD. The equation
is as follows:

HPI = ∑ UFA/[FA12 : 0 + (4 × FA14 : 0) + FA16 : 0].

The formula shows that this is the inverse number of IA; therefore, the higher the
index, the more beneficial the diet. It is generally used in dairy diets, however, in this
study, we used it for seaweed. The results show that kombu has the highest HPI value,
while sea mustard has the lowest. This means that among the five species, kombu is the
least likely to cause high atherogenicity, while sea mustard is the most likely, as shown in
Figure 3B. However, it should be noted that the HPI value was not the only deciding factor;
other dietary factors also need to be considered when assessing the dietary importance of
seaweeds. As shown in Figure 3E, kombu has the highest proportion of PUFAs (33.7%),
while sea mustard has the lowest proportion (10.7%). PUFAs are essential for proper body
development and normal metabolic functions. Long-chain PUFAs can act as antioxidants
by scavenging free radicals and decreasing ROS production of reactive oxygen species
in both in vitro and in vivo studies [17,37]. The health benefits effect of PUFAs (mainly
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ω-3) have been extensively reviewed in the recent literature [38], demonstrating the great
potential of kombu as a source of PUFAs.

It is important to note that not all PUFAs are classified as essential fatty acids (EFAs),
which cannot be synthesized in the human body, however, all EFAs belong to PUFAs.
EFAs have two major groups: ω-3 fatty acids and ω-6 fatty acids. ω-3 fatty acids are
well-known for their nutritional effects. Previous studies have shown that seaweeds
have proved to be a valuable source of EFAs for human nutrition [39]. Furthermore,
seaweed and its products have been considered to be important sources of PUFAs and
play a significant role in food and nutritional applications [40]. The benefits of seaweed
bioactive compounds, including PUFAs in various health and industrial sectors, including
nutraceuticals, pharmaceuticals, biomedicine, cosmetics, agriculture and animal feed, were
recently reviewed by Lomartire et al. [41]. Figures 4 and 5, describe the hierarchical cluster
correlation heatmaps of glycerolipids and sterols.

Figure 3. Nutritional indices and percentage distributions of free fatty acids. (A) Ratio of PUFA to
SFA (P:S ratio). (B) Index of atherogenicity. (C) Hypocholesterolemic/hypercholesterolemic index.
(D) Health promotion index. (E) Pie charts of percentage distributions of SFA, MUFA, and PUFAs
among five types of seaweeds.
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Figure 4. Hierarchical cluster correlation heatmap of glycerolipids and sterols. (A) Monoglycerols
(MG), monogalactosyldiacylglycerol (MGDG), and stigmasterol (SE). (B) Triacylglycerols (TGs). HK:
Hijiki, KM: Kombu, LV: Laver, MZ: Mozuku, SM: Sea mustard.

The MGDGs and SEs are relatively higher in sea mustard and laver (Figure 4A).
TGs are abundant in kombu, followed by sea mustard (Figure 4B). They are the main
components of very low-density lipoproteins and chylomicrons and act as transporters
for energy and fat from food during metabolism [42]. Since the brain is unable to use fatty
acids as energy sources, the glycerol in TGs is converted to glucose for use by the brain as
an energy source [43]. Additionally, TGs are the main constituents of human body fat. Its
energy density is twice as high as that of sugars and proteins, which means that kombu
intakes may support a lifestyle with less glucose.
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Figure 5. Hierarchical cluster correlation heatmap of glycerolipids including diacylglycerols (DG) and
its derivatives, such as sulfoquinovosyl diacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG),
and diacylglyceryl-trimethylhomoserine (DGTS). HK: Hijiki, KM: Kombu, LV: Laver, MZ: Mozuku,
SM: Sea mustard.

The results in Figure 5 show that sea mustard contains an abundant amount of lipids,
such as SQDG and DGDG, whereas mozuku contains an abundant amount of DGTS lipids.
SQDG, MGDG, and DGDG have been reported to have beneficial health properties and can
inhibit DNA polymerases, which lead to tumor growth suppression [44,45]. MGDG is an ac-
tive compound of the seaweed, Sargassum cristaefolium responsible for its anti-inflammatory
and free-radical scavenging functions [46]. DGTS serves as a central intermediate in glyc-
erolipid remodeling by maintaining EPA biosynthesis and providing the EPA acyl as a
precursor for the formation of chloroplast glycolipids. Therefore, DGTS intake might be
helpful for the biosynthesis of ω-3 FAs [47]. Our study limits the distinctions between ω-3
andω-6 because the analysis was conducted in an untargeted mode and the quantitative
results were not absolute. A hierarchical cluster correlation heatmap of the GPs is shown in
Figure 6.

Complex lipids, such as PEs, PCs, PGs, PAs, and PIs are more abundant in laver and sea
mustard than in hijiki, kombu, and mozuku seaweeds. These lipids play an important role
in the synthesis of cell membranes. PEs plays an important role in membrane fusion and
the breakdown of contractile rings during cell division [48]. PCs are the main components
of biological membranes and act as pulmonary surfactants [49]. PIs play an important role
in lipid signaling, cell signaling, and membrane trafficking [50]. PGs are glycerol-based
phospholipids, that are the main components of biological membranes [51]. PAs are anionic
phospholipids that are important for cell signaling and metabolic regulation [52]. Digestion
and absorption of dietary GPs in the small intestine have been well studied [53]. Hence, the
abundance of GPs in laver and sea mustard suggests that these two seaweeds have potential
dietary benefits associated with the reported functions. Moreover, they are good sources
of PUFAs. Despite the presence of various lipid molecular species, these lipids may easily
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deteriorate by hydrolysis and oxidation reactions, especially those which are abundant in
PUFAs. Previous studies have demonstrated the effects of storage, temporal changes, and
oxidative stability of lipids in seaweeds [54–56]. This study has some limitations because
the amount of lipids obtained was relatively not absolute, and sample replicates were small.
The indices were calculated based on free fatty acid levels and not on total fatty acids. This
study lacks experimental data on the oxidative and hydrolytic stability of lipids in seaweed.
Further, insights into the dietary effects of the presented seaweeds in animal models and
clinical trials are necessary to understand their potential health benefits.
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4. Conclusions

In conclusion, this is the first report to compare the lipid profiles of five different
types of widely consumed Japanese dietary seaweeds using an untargeted LC/MS tech-
nique. Our analysis results suggested that seaweeds were highly enriched with antioxidant
lipids, such as PUFAs, both in free form and with complex lipids, such as GPs and GLs.
Interestingly, kombu was demonstrated to have a high health promotion index and an
optimal P:S ratio, suggesting that it was a nutritionally important dietary seaweed. Sea
mustard was characterized by a relatively higher amount of glycosylated glycerolipids than
the other seaweeds. This study with lipid composition analysis and characterization of
antioxidant lipids in seaweeds suggests their importance in the development of functional
food products using industrial and biotechnological approaches.
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