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Abstract: Early intestinal resection in patients with Crohn’s disease (CD) is necessary due to a
severe and complicating disease course. Herein, we aim to predict which patients with CD need
early intestinal resection within 3 years of diagnosis, according to a tree-based machine learning
technique. The single-nucleotide polymorphism (SNP) genotype data for 337 CD patients recruited
from 15 hospitals were typed using the Korea Biobank Array. For external validation, an additional
126 CD patients were genotyped. The predictive model was trained using the 102 candidate SNPs
and seven sets of clinical information (age, sex, cigarette smoking, disease location, disease behavior,
upper gastrointestinal involvement, and perianal disease) by employing a tree-based machine
learning method (CatBoost). The importance of each feature was measured using the Shapley
Additive Explanations (SHAP) model. The final model comprised two clinical parameters (age
and disease behavior) and four SNPs (rs28785174, rs60532570, rs13056955, and rs7660164). The
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combined clinical–genetic model predicted early surgery more accurately than a clinical-only model
in both internal (area under the receiver operating characteristic (AUROC), 0.878 vs. 0.782; n = 51;
p < 0.001) and external validation (AUROC, 0.836 vs. 0.805; n = 126; p < 0.001). Identification of
genetic polymorphisms and clinical features enhanced the prediction of early intestinal resection in
patients with CD.

Keywords: Crohn’s disease; machine learning; genetic variation; prognosis; surgery

1. Introduction

Crohn’s disease (CD) is one of the main forms of inflammatory bowel disease (IBD),
and it is characterized by chronic, relapsing inflammation of the entire gastrointestinal
tract. CD can occur as a result of interactions among multiple factors, including genetic
predisposition, immunologic dysregulation, alterations in gut microbiome, and environ-
mental factors [1]. Previous studies discovered over 140 genetic mutations related to CD
including single-nucleotide polymorphisms (SNPs) within Nucleotide-binding oligomer-
ization domain-containing protein 2 (NOD2), Interleukin-23 receptor (IL23R), Janus kinase
2 (JAK2), Autophagy related 16 like 1 (ATG16L1), Immunity-related GTPase family M
(IRGM), and Signal transducer and activator of transcription 3 (STAT3) [2–5].

CD occurs mainly at a young age, causing various complications ultimately reducing
the patient’s quality of life. Many complications arising from the disease courses of CD
may require intestinal resection. Early intestinal resection is required in complicated CD,
which does not improve with medical treatment. In a previous study, early surgery in CD
was defined as major surgery within 3 years of diagnosis [6]. The need for early intestinal
resection after diagnosis of CD results in a poor prognosis [7,8]. Due to the complexity of
the disease process in each CD patient, personalized treatment is required. However, it is
difficult to predict disease course and select patients who are at high risk of early intestinal
resection. Therefore, it is important to predict and screen CD patients with a high risk of
early intestinal resection, because disease exacerbation can be prevented by intensified
therapy, such as an early combination therapy with biologics [9,10].

Previous studies reported several clinical and genetic factors related to the risk of
early intestinal resection in patients with CD. Response to biologics and a complicated
disease course are risk factors for early intestinal resection in CD [11]. Age at diagnosis,
disease behavior, jejunum involvement, and perianal disease are associated with a poor
prognosis of CD [7]. Previous studies have suggested that bowel wall thickening, according
to an abdominal ultrasound, is associated with a 1-year risk of surgery in patients with
CD [12,13]. Clinical prediction models have been suggested for surgery and complications
in CD using clinical trial data; however, their prediction power is low [14]. In order to
minimize the diversity and judgment of the clinical characteristics of Crohn’s disease,
which may vary from institution to institution, it is necessary to develop a predictive model
with the addition of genetic data. To the best of our knowledge, a risk scoring system or
predictive model for early surgery in CD using genetic factors has not been previously
reported. Here, we suggest a prediction model for early intestinal resection within 3 years
of diagnosis of CD, according to clinical and genetic data of patients with CD using machine
learning. For machine learning, we employed CatBoost, an ensemble tree-based algorithm
that can conveniently handle both categorical and numerical features [15,16].

2. Materials and Methods
2.1. Study Population

Patients with CD were included from 15 tertiary hospitals in South Korea that partici-
pated in the multicenter, retrospective case-control study (IMPACT study: identification of
the mechanism of the occurrence and progression of Crohn’s disease through integrated
analysis on both genetic and environmental factors). Diagnosis of CD was based on com-
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prehensive analysis of the clinical manifestation, endoscopic findings, histopathological
findings, radiologic images, and serologic markers. Clinical information, including age,
sex, cigarette smoking, family history of IBD, disease location, and behavior at diagnosis,
categorized according to the Montreal classification, was analyzed [17]. Blood samples
for genetic analysis were obtained from all patients enrolled in this study. We initially
enrolled patients with CD with both clinical and genotype data from May 2017 to May
2020. Furthermore, we excluded patients who were diagnosed within the last 3 years.

2.2. Genotyping

CD patients enrolled in this study were genotyped using the Korea Biobank Array [18],
which is available for genetic studies in the Korean population and contains 833,000 SNPs.
For the genome-wide association study (GWAS), we conducted sample quality control
(QC) and data imputation to increase the statistical significance in geno/phenotype and
case/control analysis [19–21]. Sample QC filtered out abnormal samples through call
rate, heterozygote, and relative relationship tests provided by PLINK, which is a tool
set for whole-genome data analysis [22]. An additional principal component analysis
was conducted, and outliers were filtered. Markers with minor allele frequency less
than 1%, Hardy Weinberg equilibrium p-value <1 × 10−5, and 0.1% missing SNPs were
removed. Following this process, 544 samples and 625,238 SNPs remained. Additionally,
we conducted an imputation process to complete the information regarding SNPs. To
increase the accuracy and stability of imputation, the Korea Biobank Array genotype data
of 27,545 normal individuals generated by the Korea National Institute of Health were
added. Using a Michigan imputation server and corresponding parameters, we yielded a
genotype set of 6,228,601 SNPs.

We aimed to identify candidate SNPs using the GWAS as a prescreening method. For
the case/control GWAS, the commonly used single-scan method was employed. Each SNP
was scanned sequentially, using the null hypothesis of no association. PLINK supports
five different genetic models (allelic, dominant, recessive, genotypic, and trend) to test the
SNPs associated with the phenotype. Candidate SNPs were selected via five independent
tests with a threshold p-value <2 × 10−6. The threshold p-value was set higher than
the genome-wide significance (5 × 10−8) to see a combination of SNPs by securing the
genotype diversity. The SNP genotype was encoded as a categorical variable regardless of
its genetic origin.

2.3. Machine Learning for a Prediction Model

We combined the genotype and clinical information of candidate SNPs, obtained
from GWAS, for machine learning analysis using the CatBoost algorithm [23]. Since it is
a tree-based model, data normalization is not necessary and categorical variables do not
need to be preprocessed [15]. CatBoost is a model that considers the correlation of features
and performs well with data containing categorical variables. CatBoost was used via the
Python package.

The contribution of each feature to the model prediction was assessed using the
Shapley Additive Explanations (SHAP) approach, which ensures high local accuracy,
stability against missing data, and consistency in feature impact [24]. The SHAP values
were calculated using TreeSHAP [25]. To avoid overfitting issues, the features with the
lowest SHAP values were successively eliminated, while the area under the receiver
operating characteristic (AUROC) at each step was not lower by 0.05 than the fivefold
cross-validation (CV) AUROC of the initial model.

2.4. Performance Evaluation

Combining clinical information and genotype data, after excluding patients who
were diagnosed with CD less than 3 years prior, 337 patients remained and were used
as the discovery cohort for machine learning. Of these, 46 patients (14%) had intestinal
resection within 3 years of CD diagnosis (cases), and the remaining 291 patients had
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no intestinal resection during that period (controls). The discovery set (n = 337) was
further divided into the training (n = 286) and internal validation sets (n = 51), with
random allocation (85:15). For external validation, an additional 126 patients with CD were
recruited from an independent hospital and genotyped using the same platform; 19 (15.0%)
of the 126 patients underwent intestinal resection within 3 years of diagnosis with CD
(Table S1, Supplementary Materials).

The performance of a prediction model was measured using AUROC [26]. To max-
imize the amount of data, we performed fivefold CV in the training set to identify the
optimal hyperparameters through Bayesian optimization and compared the training mod-
els through fivefold CV AUROC. XGBoost [27], Gaussian naïve Bayes, random forest [28],
and logistic regression were used for further model evaluation and comparison. We used
the Python package to run the model.

3. Results
3.1. Baseline Characteristics of Study Population

We enrolled 439 patients with both clinical and genotype data, and then excluded
patients who were diagnosed less than 3 years ago. Finally, clinical and genetic data of
337 patients were obtained. As mentioned above, 46 patients (13.6%) experienced intestinal
resection within 3 years of CD diagnosis (cases). The mean ages of early surgery group
and controls were 42.7 and 36.4 years, respectively, and the mean follow-up duration was
6.43 and 9.09 years, respectively. The early surgical group was older and had relatively
short follow-up durations; the rate of stricturing disease at diagnosis was also higher than
that of the control group. Details of baseline characteristics are shown in Table 1. Baseline
clinical characteristics for each training set and internal validation set are shown in Table S2
(Supplementary Materials).

Table 1. Baseline characteristics of the study population.

Intestinal Resection < 3 Years
p-Value

Yes (n = 46) No (n = 291)

Age, years * 42.65 ± 12.96 36.40 ± 11.77 0.001
Male (%) 37 (80.4) 206 (70.8) 0.142

Smoking (%) 0.216
Nonsmoker 32 (69.6) 227 (78.0)

Former smoker 12 (26.1) 54 (18.6)
Current smoker 2 (4.3) 10 (3.4)

Family history of IBD; yes (%) 2 (4.3) 8 (2.7) 0.902
Follow up duration, years * 6.43 ± 4.63 9.09 ± 7.60 0.022

CDAI at diagnosis * 62.87 ± 57.59 57.46 ± 81.35 0.700
Location (%) 0.070

Ileum 15 (32.6) 100 (34.4)
Colon 5 (10.9) 39 (13.4)

Ileocolon 26 (56.5) 152 (52.2)
+ Upper GI † 3 (6.5) 43 (14.8)
Behavior (%) 0.013

Non-stricturing, non-penetrating 13 (28.2) 236 (81.1)
Stricturing 8 (17.4) 29 (10.0)
Penetrating 25 (54.4) 26 (8.9)

+ Perianal disease † 8 (17.4) 96 (33.0)
Duration between diagnosis and

surgery, years * 0.38 ± 0.60 7.78 ± 3.23 <0.0001

Medication (%)
5-ASA 29 (63.0) 183 (62.9) 0.993
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Table 1. Cont.

Intestinal Resection < 3 Years
p-Value

Yes (n = 46) No (n = 291)

Steroid 23 (50.0) 161 (55.3) 0.279
Immunomodulator 28 (60.9) 190 (65.3) 0.746

Anti-Tumor necrosis factor 23 (50.0) 151 (51.9) 0.944
Other biologics 2 (4.3) 15 (5.2) 0.757

5-ASA, 5-aminosalicylate; CDAI, Crohn’s disease activity index; GI, gastrointestinal; IBD, inflammatory bowel
disease; n, number. * Represented by the mean ± standard deviation. † Upper GI involvement and perianal
disease were added as modifiers.

3.2. Candidate SNPs

The 6,228,601 imputed SNPs were prescreened using GWAS against the training set
(37 cases and 249 controls) for inclusion in the prediction model. A total of 102 SNPs passed
the threshold of p-value of 2 × 10−6; the recessive, trend, and allelic tests gave rise to 14,
76, and 12 nonredundant SNPs, respectively. The genotypic and dominant tests did not
produce either nonredundant or significant results. As dependencies between features are
less of a concern in CatBoost, linkage disequilibrium (LD) clumping was not attempted,
unless the LD exceeded 0.85 (r2).

3.3. Selection of Clinical and SNP Features Using CatBoost and SHAP Values

The initial model was trained using CatBoost with 102 SNP genotypes as features
against the training set and the following seven clinical parameters: age, sex, cigarette
smoking, disease location, disease behavior at diagnosis, upper gastrointestinal involve-
ment, and perianal disease. The hyperparameters were tuned via Bayesian optimization
through fivefold CV of the training set, and the average fivefold CV AUROC was 0.976.
The internal validation AUROC was 0.552; the large discrepancy implied overfitting of
this model. The importance of the features was evaluated by SHAP values obtained from
TreeSHAP. A total of 20 rounds of feature selection yielded six features (Table S3, Sup-
plementary Materials). Among the seven clinical parameters, age and disease behavior
were selected, and four out of 102 SNPs remained. The impact of each variable on the
model output was evaluated by the SHAP summary plot, which showed that behavior
had the largest contribution to the prediction model, followed by age, and the four SNPs
(Figure 1). The fivefold CV AUROC of the model with these six features was 0.929 ± 0.056,
while the internal and external validation AUROCs were 0.878 and 0.835, respectively.
With the internal set prediction probability cutoff of 0.5, the sensitivity and specificity were
0.62 and 0.95, respectively. the external set prediction probability cutoff of 0.5 showed
that sensitivity and specificity were 0.84 and 0.72, respectively. In addition, the four SNPs
were independent of behavior, the most important clinical feature in the model (nonlinear
correlation with p < 0.01).

3.4. Contribution of Genotypes in Model Performance Compared to Clinical-Only Model

To evaluate whether the addition of genotypes improved the prediction performance
over clinical information alone, a new CatBoost model using only clinical information
was developed using the initial seven clinical features through a similar process, but
without feature elimination. The resulting internal and external validation AUROCs were
0.782 and 0.805, respectively, which were less than those of the combined clinical and
genetic model (Table 2, Figure 2). This clearly indicated that the addition of genotypes
into the model improved its performance. The SHAP value summary plots (Figure 1)
showed that the importance of behavior remained the highest, regardless of the addition
of genotypes. The contribution of the other five clinical features, sex, smoking, location,
upper gastrointestinal tract involvement, and perianal disease, diminished substantially
upon the addition of genotypes.
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and genetic features. (B) The model based on seven clinical features only.

Table 2. Comparison of model performance with various feature combinations.

Behavior
Only *

Clinical
Only †

Clinical +
Genotypes;

Initial
Model ‡

Clinical +
Genotypes;

Final Model
(CatBoost and

SHAP) §

Clinical features (n) 1 7 7 2
Genotypes (n) 0 0 102 4

Internal validation AUROC 0.868 0.782 0.552 0.878
External validation AUROC 0.457 0.805 0.737 0.835

All models were tuned for hyperparameters through Bayesian optimization. n, number; AUROC, area under the
receiver operating characteristic. * Behavior is a feature classified according to the Montreal classification that
directly affects the prognosis of the patient. † Performance of a prediction model using only clinical information.
‡ The result of using seven clinical features and 102 single-nucleotide polymorphisms (SNPs) obtained as a result
of genome-wide association study (GWAS) preselection. § Our model obtained as a result of feature selection.
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3.5. Comparison between Our Prediction Model and Well-Known Machine Learning Models

We also measured performance using other well-known machine learning methods
to compare the performance of the present model. For evaluation, one-hot encoding of
the categorical variable behavior was processed. The performance of our model was
the highest in both validation tests (Figure 3). In most models, if one validation set was
high, the other was low; however, our model showed balanced results in both valida-
tion sets. All the models, except logistic regression, were tuned to hyperparameters via
Bayesian optimization.
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3.6. Risk Prediction of Intestinal Resection According to the Timing of Surgery

We estimated the sensitivity of the model according to the timing of surgery. In addi-
tion to the early intestinal resection within 3 years of diagnosis, the predictive performance
of the model was further analyzed by dividing the timing of surgery into within 1 year,
within 5 years, and any period after diagnosis. The probability of intestinal resection was
measured using the final model and clinical-only model. AUROC values of internal and
external validation according to the timing of surgery are shown in Table 3. The model’s
predictive performance substantially improved when evaluating the risk of undergoing
intestinal resection earlier after diagnosis, especially within 1 year. The predictive perfor-
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mance decreased as the period from diagnosis to surgery increased. The performance of the
final model was better than the clinical-only model, but the superiority of the final model
over the clinical-only model decreased as the criteria for the timing of surgery increased.
Therefore, our model showed great predictive performance of intestinal resection within
3 years, especially within 1 year of CD diagnosis.

Table 3. Comparison of model performance with various criteria of early intestinal resection.

Timing of Intestinal Resection <1 Year <3 Years <5 Years Any Period

Internal test set (case:control, n) 7:44 8:43 11:40 14:37

External test set (case:control, n) 15:111 19:107 21:105 32:94

AUROC Under 1 year Under
3 years

Under
5 years

Above
5 years

Internal test
Clinical-only 0.860 0.782 0.696 0.707

Clinical + genotype;
Final model 0.953 0.878 0.739 0.760

External test
Clinical-only 0.850 0.805 0.780 0.771

Clinical + genotype;
Final model 0.884 0.835 0.802 0.792

n, number.

We also checked the case probability of training set according to the criteria of each
period to explain how the final model learned (Figure 4). The case probabilities were results
of machine learning between 0 and 1. A higher score of the case probability denotes a
higher risk of early intestinal resection. As a result, out final model showed that a longer
duration to surgery led to a lower case probability.
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3.7. Personalized Prediction of Intestinal Resection in Each Patient

For a particular prediction, the importance of each feature was assessed using the
SHAP value framework. One of the benefits of evaluating feature importance on the basis
of the SHAP value framework is its local interpretability. Two cases of patients with CD
were examined to evaluate prediction probabilities. Firstly, for a 67-year old patient with
penetrating CD, the incidence of intestinal resection within 3 years of diagnosis calculated
by the model was approximately 86% (Figure 5). The model explained that all six features
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contributed toward the risk of intestine resection. Interestingly, in this case, age had a larger
contribution than behavior, while behavior globally contributed more than age. Secondly,
in a 14-year old CD patient without complications, the predictive probability of intestinal
resection was 16.8%. All six variables were below the risk value of intestinal resection.
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4. Discussion

The combination of CatBoost and SHAP models provided an accurate prediction of
the risk of early intestinal resection in CD patients. A total of six features were used in
the prediction model, including two clinical characteristics (behavior and age) and four
SNPs. Adding genetic variation to the prediction model improved its predictive power
compared with models that used only clinical features. Our final model showed higher
predictive power both in internal and external validation sets than other models, such as
logistic regression, random forest, XGBoost, and Gaussian naïve Bayes. Furthermore, the
visualized SHAP plot showed the importance of each factor in CatBoost and provided
individualized significance for each of the six characteristics per patient. In the future, this
model may enable a personalized treatment approach for CD patients with a high risk of
early intestinal resection and poor prognosis.

Due to the nature of CD, which chronically recurs and causes various complications in
the abdominal cavity, intestinal resection is inevitable in most CD cases during the disease
process. Pooled risk of surgery within 1, 5, and 10 years was reported as 14.3%, 27.7%,
and 38.7% of patients diagnosed with CD since 1990, respectively. Even after the year
2000, the risk of surgery within 5 years was 24.2% [29]. Predicting the risk of early surgery
allows optimal and patient-specific treatment. Several studies have suggested risk factors
or prediction models for early surgery in CD. One study suggested a combined clinical-,
endoscopic-, and sonographic-based risk matrix model for estimating the 1-year risk of
surgery [30]. In the aforementioned study, disease behavior increased the risk of surgery
independently (odds ratio (OR), 4.3; p < 0.001). Another study also investigated the risk for
CD-related 1 year surgery. Disease behavior, smoking, body mass index, C-reactive protein
(CRP), previous surgery, use of biologics, and enteral nutrition were associated with the
risk of surgery [31]. On the basis of a retrospective cohort study, the Lémann index, an
image-based measure for structural damage in CD, could help predict the risk of surgery
within 1 year in CD [32]. In general, the behavior of CD at diagnosis has been identified
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as an independent risk factor for early surgery. Particularly, in ileal CD with stricture,
prestenotic dilatation, CRP, combined penetrating behavior, exposure to biologics, and
presence of NOD2 rs2066844 risk allele are all significantly associated with an increased risk
of surgery [33]. However, no study has been performed using machine learning techniques
to develop prediction models regarding surgery risk using combined clinical and genetic
data. Our clinical-only model showed moderate AUROCs of 0.782 (internal validation)
and 0.805 (external validation), similar to previous studies.

As mentioned above, the behavioral variable representing the state of the intestine
had the greatest influence on the model. However, behavior alone exhibited highly biased
performance in the external validation (AUROC, 0.457). We assumed that the AUROC
difference in the behavior-only model between the internal and external validation sets
was due to the difference in disease duration (Table 1). This is because a longer disease
period leads to a greater likelihood that the disease behavior will develop into a stricturing
or penetrating disease. When other clinical variables were added, the bias was mitigated
substantially (AUROC, 0.805). A CatBoost model with genotypes only and without any
clinical parameters did not perform well. Albeit small by themselves, adding the genetic
factors into the model had a profound effect in terms of performance. The final model had
higher predictive power in external validation (AUROC, 0.835) than the model with only
clinical characteristics. Taken together, the prediction model that incorporates genotype
can improve the predictive power and minimize the use of clinical parameters that may
vary among hospitals.

Among the four selected SNPs, the most important SNPs, rs28785174 (OR, 4.8;
p = 1 × 10−7) and rs7660167 (OR, 4.7; p = 2 × 10−7), are located approximately 2 kb apart
from each other on chromosome 4 and exhibit strong LD (r2 = 0.83). They are located in
the intronic region of follistatin-like 5 (FSTL5), a protein-coding gene that interacts with
a metalloproteinase at the extracellular matrix level and is annotated with the calcium
ion-binding gene ontology. FSTL5 is associated with diseases such as medulloblastoma,
schizophrenia, hepatocellular carcinoma, and colorectal cancer [34–38]. In a multicenter
study conducted in Spain, FSTL5 was associated with susceptibility to bone marrow sup-
pression after thiopurine treatment in IBD patients [39]. Matrix metalloproteinase (MMP)
levels are elevated in IBD [40], and increased levels of MMP are likely to contribute toward
colonic tissue damage and recovery [41]. Intestinal fibrosis and stricture can be caused
by an excessive deposition of extracellular matrix through the suppression of MMP [42].
According to the relationship between FSTL5 and MMP, we can assume that the new SNP
associated with FSTL5 is related to the stricture behavior of CD.

The third important SNP, rs60532570 (OR, 4.4; p = 2 × 10−6), is located in the intronic
region of Growth Factor Receptor Bound Protein 10-interacting GYF protein 2 (GIGYF2)
gene on chromosome 2, and it is known to regulate the alternative splicing of GIGYF2 in
fibroblast cell lines and thyroid. GIGYF2 is a protein-coding gene involved in the regulation
of tyrosine kinase receptor signals. Diseases associated with this gene include Parkinson’s
disease (PD) [43]. There are numerous studies indicating a link between PD and CD, which
suggests that the GIGYF2 gene may be the link between the two diseases. The last SNP,
rs13056955 (OR, 6.6; p = 3 × 10−7), is located more than 50 kb away from any known RefSeq
gene on chromosome 22, and it is currently difficult to describe its biological significance.
Nevertheless, mutations in the four SNPs in the prediction model are likely to increase the
risk of early surgery within 3 years, due to a poor prognosis for CD.

CatBoost has high performance when there are categorical variables within the data,
and it has the advantage of not requiring preprocessing. Moreover, well-known models,
such as XGBoost, Gaussian naïve Bayes, random forest, and logistic regression, require
preprocessing for categorical variables. Using CatBoost, we treated most of our clinical
parameters and all unordered genotypes categorically. Although the SNPs originated
from several GWAS runs of diverse genetic modes, they were incorporated into the model
simultaneously, without preprocessing. Three of the four SNPs in our final model had
trendy associations, while the other (rs13056955) had a recessive association [19]. For
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example, a patient with major homozygous or heterozygous rs13056955 showed SHAP
values similar to each other but distinct from the minor homozygotes (Figure 1). This
demonstrates that CatBoost is a powerful and flexible tool for combining clinical and
genetic factors. However, the allele found in a previous study was not significant in our
results, such as rs2066844 [33]. This study was conducted on Korean patients only and
showed relevant SNPs specific to Korea. Further research is needed due to the heterogeneity
of SNPs between ethnicities and races.

Our final model can predict the probability of early intestinal resection without a
defined cutoff. Although we did not include a period from diagnosis to intestinal resection
surgery in the learning process, the final model calculated the highest probability for
patients who operated within 1 year and as the period increased, a probability decreased
(Figure 4). This means that our final model is very specialized in predicting risk of early
intestinal resection.

While machine learning algorithms are capable of solving complex problems, such as
clinical data mining with high predictive power, it is difficult to explain how exactly the
decision processes work. For example, tree-based models, such as CatBoost and random
forest, typically generate dozens to hundreds of trees to solve the problem. However, it is
almost impossible to manually comprehend how the features are used. In this case, the
SHAP model is effective, as it summarizes the overall impact of the tree ensemble as the
relative contribution of each feature to the classification of a specific sample.

Our study has a few limitations. First, although we conducted a multicenter study,
there were shortcomings due to the small number of enrolled patients. The rate of intestinal
resection within 3 years was lower (13%) than that reported by previous studies [29–31,44].
We performed fivefold CV to overcome the small sample size and possible data imbalance
and used AUROC. We also tried to overcome it through external validation, which involved
completely different hospital data that were not used for training separately from internal
validation. Second, there may have been bias in chip array data. We used Korea Biobank
Array genotype data for our GWAS; thus, we may have problems applying this method
to other ethnicities. Accordingly, further studies using this prediction model with other
population-specific genotyping arrays are warranted. We could not rule out the effects of
early biologics or anti-Tumor necrosis factor (TNF) agents on clinical outcomes. Early use
of anti-TNF and other biologics may have a protective effect for early intestinal resection.
However, it is difficult to say that the use of anti-TNF agents affected the outcome because
most anti-TNF treatments started before surgery, and the ratio of using anti-TNF agents
also did not differ between the group that underwent intestinal resection (50.0%) and the
group that did not (51.9%).

5. Conclusions

In conclusion, this new model, which includes clinical and genetic factors using the
CatBoost machine learning technique and SHAP method, can predict the risk of early
intestinal resection within 3 years of diagnosis with CD. The prediction requires only two
clinical features (age, behavior) and four SNPs, and the importance of every feature can be
individually estimated in each patient. Therefore, this model could allow the screening
of CD patients at high risk for surgery and improve patient outcomes through proactive
treatment and active surveillance.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-0
383/10/4/633/s1. Table S1, Dataset including discovery set and external validation for machine
learning, Table S2, Baseline characteristics of the training set and internal validation set, Table S3,
Selected clinical and genetic features for a prediction model.
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