
Frontiers in Oncology | www.frontiersin.org

Edited by:
Amit Sethi,

Indian Institute of Technology
Bombay, India

Reviewed by:
Swapnil Ulhas Rane,

Research and Education in
Cancer, India
Tanuja Shet,

Tata Memorial Hospital, India

*Correspondence:
Eric Y. Chuang

chuangey@ntu.edu.tw
Ling-Ming Tseng

lmtseng@vghtpe.gov.tw

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Breast Cancer,
a section of the journal
Frontiers in Oncology

Received: 30 June 2021
Accepted: 29 September 2021

Published: 21 October 2021

Citation:
Phan NN, Hsu C-Y, Huang C-C,

Tseng L-M and Chuang EY (2021)
Prediction of Breast Cancer
Recurrence Using a Deep

Convolutional Neural Network Without
Region-of-Interest Labeling.
Front. Oncol. 11:734015.

doi: 10.3389/fonc.2021.734015

ORIGINAL RESEARCH
published: 21 October 2021

doi: 10.3389/fonc.2021.734015
Prediction of Breast Cancer
Recurrence Using a Deep
Convolutional Neural Network
Without Region-of-Interest Labeling
Nam Nhut Phan1,2,3†, Chih-Yi Hsu4,5,6†, Chi-Cheng Huang7,8, Ling-Ming Tseng5,7*
and Eric Y. Chuang2,3,9*

1 Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica,
Taipei, Taiwan, 2 Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan,
3 Bioinformatics and Biostatistics Core, Centre of Genomic and Precision Medicine, National Taiwan University,
Taipei, Taiwan, 4 Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,
5 School of Medicine, National Yang-Ming University, Taipei, Taiwan, 6 College of Nursing, National Taipei University of
Nursing and Health Sciences, Taipei, Taiwan, 7 Comprehensive Breast Health Center, Taipei Veterans General Hospital,
Taipei, Taiwan, 8 Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University,
Taipei, Taiwan, 9 Master Program for Biomedical Engineering, China Medical University, Taichung, Taiwan

Purpose: The present study aimed to assign a risk score for breast cancer recurrence
based on pathological whole slide images (WSIs) using a deep learning model.

Methods: A total of 233 WSIs from 138 breast cancer patients were assigned either a
low-risk or a high-risk score based on a 70-gene signature. These images were
processed into patches of 512x512 pixels by the PyHIST tool and underwent color
normalization using the Macenko method. Afterward, out of focus and pixelated patches
were removed using the Laplacian algorithm. Finally, the remaining patches (n=294,562)
were split into 3 parts for model training (50%), validation (7%) and testing (43%). We used
6 pretrained models for transfer learning and evaluated their performance using accuracy,
precision, recall, F1 score, confusion matrix, and AUC. Additionally, to demonstrate the
robustness of the final model and its generalization capacity, the testing set was used for
model evaluation. Finally, the GRAD-CAM algorithm was used for model visualization.

Results: Six models, namely VGG16, ResNet50, ResNet101, Inception_ResNet,
EfficientB5, and Xception, achieved high performance in the validation set with an
overall accuracy of 0.84, 0.85, 0.83, 0.84, 0.87, and 0.91, respectively. We selected
Xception for assessment of the testing set, and this model achieved an overall accuracy of
0.87 with a patch-wise approach and 0.90 and 1.00 with a patient-wise approach for
high-risk and low-risk groups, respectively.

Conclusions: Our study demonstrated the feasibility and high performance of artificial
intelligence models trained without region-of-interest labeling for predicting cancer
recurrence based on a 70-gene signature risk score.
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INTRODUCTION

Breast cancer is one of the most common cancer types found in
women worldwide (1). Although the overall survival rate of
breast cancer has improved in the last decade, prognostication
regarding the risk of recurrence and potential biomarkers for
assisting clinical treatment decision have also been the focus of
ongoing research (2). Thus, there are numerous studies reporting
novel biomarkers and subtyping breast cancer according to
recurrence risk (3, 4). The standard method for breast cancer
classification uses immunohistochemistry (IHC) markers such as
progesterone receptor (PR), human epidermal growth factor
receptor II (HER2), and estrogen receptor (ER) together with
Ki67 (5, 6). Other gene expression-based approaches such as
PAM50, TargetPrint, MammaPrint, and BluePrint are also
available options (7–9). However, these subtyping methods
require analyzing mRNA expression levels using microarray
platforms and clustering certain pre-selected genes for
designating subtypes. Each method has its own advantages in
assisting clinical treatment decisions. However, these methods
are time-consuming and costly.

The MammaPrint and BluePrint tests are established assays
for predicting high and low recurrence risk and subtyping breast
cancer into basal, HER2, and luminal (9). In the WGS-PRIMe
study, Mammaprint and BluePrint tests had high impact in
assisting physicians making their treatment recommendations
for early-stage luminal breast cancer patients, with over 92%
adherence to the Mammaprint risk assessment for both low- and
high-risk patients (10). In addition to this study, the IMPACt
and MINDACT studies shown high concordance between
treatment decisions and Mammaprint risk score for
determining the necessity of adjuvant chemotherapy (over 88%
for low-risk patients and over 78% for high-risk patients) (11–
13). This evidence proves the power and impact of this genetic
test in guiding clinical treatment decisions.

In recent years, numerous studies using artificial intelligence
(AI) tools for various biological problems have been documented
(14–17). There are two subdomains of AI, namely machine
learning and deep learning, which use different approaches for
feature selection during model training (18). While the machine
learning approach requires domain knowledge to select
significant features, deep learning is equipped with auto-feature
extraction capability to learn the differences between groups for
prediction and classification tasks without prior knowledge (18).
The applications of machine learning and deep learning have
been shown to have enormous impact in biomedical research
(19, 20). Over the past few years, deep learning methods have
matured and are now well-recognized in many biomedical fields
of study (21, 22). The majority of these studies used biomedical
images such as pathological (23), radiological (24, 25), and digital
slide images (26) to train a convolutional neural network (CNN).
Deep learning methods can also use other data types, such as
DNA and RNA sequencing data and proteomics data, in either
Abbreviation: Res50, ResNet50 model; Res101, ResNet101 model; EB5,
EfficientNetB5model; In_Res, Inception_ResnetV2model; X_Cept, Xceptionmodel.
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raw or processed format, to train a CNN (15, 27–29).
Furthermore, the dream of using pathological images with
deep learning to predict patient outcomes has been fulfilled
recently (30). Leveraging the plethora of biological data could
facilitate both the CNN training process and independent
validation, which will in turn boost model performance even
higher than the domain-expert level.

To continue the trend of integrating clinical and genetic data
with AI, as well as assist physicians in making treatment
recommendations, we tasked a deep neural network with
predicting high and low risk of recurrence from pathological
images of breast cancer patients. In addition, we also developed a
novel deep learning pipeline using whole slide images (WSIs) as
the only data source, without any input from pathologists for
tumor region labeling.
MATERIALS AND METHODS

The workflow of our study is depicted in Figure 1. The WSIs
underwent image segmentation for patch selection using the
Otsu algorithm (31). Next, selected patches of 512x512 pixels
were generated. These small patches then underwent
normalization for hematoxylin and eosin staining using the
Macenko method (32) and a Python script from (https://
github.com/schaugf/HEnorm_python) with appropriate
modifications. Next, blurry and pixelated images were removed
using the Laplacian algorithm. The retained images were used for
model training, validation, and testing. Finally, to visualize how
different models learn to distinguish samples with low-risk and
high-risk 70-gene signature scores, we used gradient-weighted
class activation mapping (GRAD-CAM) to create the activated
heatmap for each image.

Samples
A total of 233 WSIs from 138 breast cancer cases from Taipei
Veterans General Hospital were used for model training,
validation, and testing. Tumor sections from each patient were
obtained and prepare for hematoxylin and eosin staining.
Afterward, the stained slides were scanned with an Ultra-Fast
Scanner (Philips, USA) to provide the digital slides in TIFF
format. These WSIs were then used for generating patches. The
same slide which performs 70 gene signature was scanned for our
study. The patients’ demographics and other information such as
age, nottingham grade, estrogen receptor status, progesterone
receptor status, HER2 status, and TNM stage are shown
in Table 1.

Patch Generation
Patches from each WSI were prepared with PyHIST (33), which
is a Python-based tool allowing us to select the patch at designed
dimensions. We set 512x512 pixels as our patch size, and these
patches were obtained at the highest magnification level (20x).
Mask down-sampling and tile crossed image down-sampling
were set as the defaults. The Otsu algorithm was used as the tile
generation method. We set the tissue content threshold at 0.85 to
October 2021 | Volume 11 | Article 734015
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select patches composed of at least 85% tissue. A total of 294,562
patches were generated from 233 WSIs, 57% of which
(n=169,161) were used for model training and fine tuning. The
patches were divided into a training set consisting of 160,000
patches (n= 39 (100,000 patches) for low-risk group, n = 30
(60,000 patches) for high risk group) and a validation set with
9161 patches. The other 43% of the patches (n=125,401), of
which 54,122 and 71,279 came from 20 high-risk patients and 35
low-risk patients, respectively, were used for independent testing
of the model performance.

Removal of Blurry and Pixelated Images
The WSIs had blurry regions that were locally out of focus. To
overcome this problem, we used the Laplacian algorithm for
detecting blurry images based on variance thresholding. The
Frontiers in Oncology | www.frontiersin.org 3
kernel size of the Laplacian operator was 13x13 pixels, which was
obtained by a trial-and-error approach from 3x3 pixels to 15x15
pixels. The variance threshold was set at >1e15 and <1e14. These
steps were done with a custom Python script using the OpenCV
library (34). After blurry and pixelated images were removed, we
double-checked the whole dataset manually to make sure this
threshold could remove all of these images.

Model Training
To speed up the training process, we applied transfer learning
using weights from 6 pre-trained models, namely VGG16, Res50,
Res101, In_Res, X_Cept, and EB5. These models have achieved
high accuracy with the ImageNet dataset (35), which is used as a
common model performance benchmark. The purpose of using
multiple trained models’ architecture was to take advantage of
October 2021 | Volume 11 | Article 734015
)

TABLE 1 | The patients’ demographic information of the cohort dataset.

Training-High
Risk

Training-Low
Risk

Validation-High
Risk

Validation-Low
Risk

Testing-High
Risk

Testing-Low
Risk

Total
n = 138

n = 30 n = 39 n = 6 n = 8 n = 20 n = 35

Age, median (range) 53 (39, 86) 54 (35, 72) 63 (40, 72) 59 (35, 69) 54 (27, 76) 51 (41, 78) 53 (27, 86
Nottingham grade
1 3 (10%) 4 (10%) 0 (0%) 3 (37.5%) 3 (15%) 12 (34%) 25 (18%)
2 22 (73%) 34 (87%) 1 (17%) 5 (62.5%) 15 (75%) 23 (66%) 100 (73%)
3 5 (17%) 1 (3%) 5 (83%) 0 (0%) 2 (10%) 0 (0%) 13 (9%)

Estrogen receptor + 30 (100%) 39 (100%) 6 (100%) 8 (100%) 20 (100%) 35 (100%) 138
(100%)

Progesterone
receptor
+ 21 (70%) 37 (95%) 4 (67%) 7 (87.5%) 18 (90%) 30 (86%) 117 (85%)
– 9 (30%) 2 (5%) 2 (33%) 1 (12.5%) 2 (10%) 5 (14%) 21 (15%)

HER2 – 30 (100%) 39 (100%) 6 (100%) 8 (100%) 20 (100%) 35 (100%) 138
(100%)

TNM Stage
Stage I 20 (67%) 14 (36%) 5 (83%) 4 (50%) 13 (65%) 18 (51%) 74 (54%)
Stage II 10 (33%) 25 (64%) 1 (17%) 4 (50%) 7 (35%) 17 (49%) 64 (46%)
FIGURE 1 | Overall schematic workflow. The whole slide images (WSI) were used to generate smaller patches of 512x512 pixels. These small patches then
underwent normalization for hematoxylin and eosin staining. Next, blurry and pixelated images were removed using the Laplacian algorithm. The retained images
were used for model training, validation, and testing. Finally, to illustrate how different models learn to distinguish low-risk and high-risk samples, we used gradient-
weighted class activation to create a heatmap for each image.
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the high-performance architecture of these models as well as to
compare their performance in pathological image classification.

The original patch size of 512x512 pixels was rescaled to
128x128 pixels for model input. The architecture from the pre-
trained models was kept as it was; however, we used 2 fully
connected layer with 1,024 neurons, and 256 neurons to reduce
computational load. The second fully connected layer was
connected to another hidden layer with one neuron to output
the model prediction value. The thresholds of 0.3, 0.5, and 0.7
were applied for sigmoid function. Depending on the selected
threshold, the model prediction, for a class with score < 0.3, <0.5
or <0.7 was high-risk group, else low-risk group.

We used adaptive moment estimation (Adam) as the
optimizer with a learning rate of 1e-5, together with a decay
rate of 1e-5/50 for 50 epochs at a batch size of 64. The rectifier
linear unit (relu) was used as the activation function in the
hidden layers, whereas sigmoid activation was used in the dense
output layer.

Model Prediction Visualization
We used gradient weighted class activation mapping (GRAD-
CAM) to illustrate the model prediction visualization. The
overall idea of GRAD-CAM is to use the final convolutional
layer of the model to extract information on how the model
made its decision for the final output class (36). After we trained
our model with the WSIs data and obtained the final optimal
weight file, we used this weight to obtain the GRAD-CAM
visualization with the last convolutional layer in our model.
RESULTS

Model Training and Validation
The results from our model training with the VGG16, Res50,
Res101, EB5, In_Res, and X_Cept pretrained models achieved
83%, 85%, 83%, 87%, 85%, and 91% accuracy, respectively. These
results were generated with the validation set, which proved the
model was not overfit to the training and validation sets. Apart
from the accuracy metric, other model evaluation metrics were
also calculated, such as the weighted precision (Figure 2A),
weighted recall (Figure 2B), and weighted F1 score (Figure 2C).
The precision metric is the ratio of true positives to the sum of
true positives and false positives from the model prediction,
whereas recall is the ratio of true positives to the sum of true
positives and false negatives from the model prediction. The F1
score is the harmonic average of precision and recall. In our
study, the lowest precision, recall, and F1 score at 83% came from
Res101 model and the highest at 91% was from the X_Cept
model (Figure 2).

Figures 3A–F displays the normalized confusion matrix of
each model. A confusion matrix shows the true labels and
predicted labels of each class as well as the percentage of true
positive, false positive, true negative, and false negative
predictions. The darker blue color indicates a higher correct
prediction of each class. The lowest-performing model was
Res101 and the highest-performing model was X_Cept. For
Frontiers in Oncology | www.frontiersin.org 4
instance, Res101 had 15% false positive and 19% false negative
predictions, while the X_Cept model had only 8% false positives
and 12% false negatives when predicting high and low risk breast
cancer patients.

To further visualize the true positive rate and false positive
rate of each model on the validation set, we also plotted the
receiver operating characteristic (ROC) curve of each model
(Figures 4A–F). The highest area under the curve (AUC) was
0.90, which belonged to the X_Cept model, whereas the lowest
belonged to Res101 (AUC=0.83). The In_Res, and VGG16
models had the same AUC of 0.84, whereas Res50 and EB5
had an AUC of 0.85 and 0.87, respectively.

Independent Testing of Model
Performance With Test Dataset
We validated the model performance with the testing dataset,
consisting of 125,401 patches from 55 breast cancer patients (20
patients with high risk and 35 patients with low risk). We used
two approaches to evaluate the model prediction performance,
namely patch-wise and patient-wise, because in clinical practice,
each patient would have 3-5 WSIs for final risk assessment. Both
patch-wise and patient-wise methods have high confidence
(>85% accuracy), but the patient-wise method is better for
clinical use because it provides higher confidence in the model
prediction based on the 70-gene signature score in clinical
applications. We used only the X_Cept model for this
evaluation step, owing to its highest performance in the
training and validation phases. The model performance in the
independent testing set is reported in Table 2. For the patch-wise
approach, the precision, recall, and F1 score of the high-risk
group were 0.86, 0.85, and 0.85, while these metrics in the low-
risk group were 0.89, 0.89, and 0.89, respectively. Both the macro
average and the weighted average were 0.87. The patient-wise
results for each individual are displayed in Figures 5A–F. The
model accuracy was consistent across different selected
thresholds. A minor shift in the high-risk group was found
between the chosen thresholds. Sample H2 with high-risk shifted
16% of prediction probability from 0.25 to 0.41. Another sample
from low risk group (L35) also reported a 16% difference of
prediction probability from threshold 0.5 relative to 0.3 and 0.7
thresholds. However, the final prediction results for these 2
samples were still unchanged. Overall, the model accuracy was
90% and 100% for the high-risk and low-risk groups,
respectively. The overall accuracy reached 96.3% (53/55).To
decode the model learning process, we used GRAD-CAM with
the last activation layer to create a heatmap superimposed on the
original image (Figures 6A, B). This illustrates how each model
learned to distinguish differences between the low-risk and high-
risk 70-gene signature scores. VGG16, Res50, Res101, and
X_Cept were activated on the tumor part of the patches.

In_Res was activated in the tumor and peri-tumor stroma
areas. EB5 was mainly activated on peri-tumor stroma areas. The
activated areas of VGG16, Res50, Res101, and X_Cept were
highly identical, while the size of the activated area of X_Cept
was smaller than those of Res50, Res101, and VGG16. It is
readily seen that the VGG16 model’s heatmap wase highly
October 2021 | Volume 11 | Article 734015
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activated over the entire image, whereas the Res50 and Res101
models’ heatmaps were activated in the middle of the image.
These three models performed well with the last two images on
the right-hand side, which had the majority of cells distributed in
the lower and upper corners; however, the models still managed
Frontiers in Oncology | www.frontiersin.org 5
to recognize these areas as tumor cells, which demonstrated the
models’ capability and logic in distinguishing tumor and non-
tumor areas. The EB5 and In_Res models’ activation maps did
not show reasonable pathological features in the images, perhaps
because these models used a corner-based approach to determine
A B

C

FIGURE 2 | AI model performance evaluation with the validation set. Precision, recall, F1 score and confusion matrix of 6 models, namely VGG16, Res50, Res101,
EB5, In_Res, and X_Cept, were used to evaluate model performance along with the accuracy metric. (A) Precision, (B) recall, and (C) F1 score of the 6 models in
identifying the high-risk and low-risk groups. The weighted average of precision is also shown.
A B

D E F

C

FIGURE 3 | Comparison of model performance using normalized confusion matrices using the validation set. (A) VGG16, (B) Res101, (C) Res50, (D) In_Res,
(E) EB5, and (F) X_Cept. The confusion matrix displays the predicted classes on the X-axis and the true classes on the Y-axis, with the color of the diagonal
blocks illustrating the closeness of the match between the predicted and the true class. The darker the blue color of the diagonal line, the better the model
prediction accuracy.
October 2021 | Volume 11 | Article 734015
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the difference between low-risk and high-risk groups. Finally, the
X_Cept model had a clear activation pattern with clustering of
tumor cell areas for both high- and low-risk groups.
DISCUSSION

Breast cancer recurrence not only negatively affects patients’
quality of life, but a majority of breast cancer patients also
undergo chemo- and radiotherapy, which have a high cost and
a high rate of side effects (37, 38). Predicting the risk of
recurrence for patients diagnosed with breast cancer in an
early stage could help in making a suitable treatment plan,
which could also prevent overtreatment of patients with highly
toxic chemotherapy. In past decades, identification of novel
prognostic biomarkers for recurrence was based on multi-
omics approaches, which required multi-step protocols and
time-consuming analyses (39). Consequently, a rapid, robust,
and highly accurate method is highly desirable. Lately, with the
emergence of AI tools, machine learning and deep learning have
shown promising results in almost every aspect of healthcare
research, and they have demonstrated their indispensable roles in
Frontiers in Oncology | www.frontiersin.org 6
assisting and facilitating physicians and researchers in their
routine duties.

In an attempt to predict breast cancer recurrence, we have
combined deep learning and pathological images into a simple,
yet comprehensive andhighlyaccurate,AIpipeline.Wedevelopeda
complete pipeline for predicting breast cancer recurrence using a
single sourceofdata, namely, pathological imageswithhighand low
risk scores provided by an established 70-gene signature. Six
different pretrained models were used for transfer learning with
pretrained weights from the ImageNet dataset. The highest model
performance using X_Cept architecture (40) and two fully
connected layer of 1024 and 256 neurons achieved an AUC of
0.90 using the validation set and an accuracy of 0.87 using the
testing dataset. Furthermore, we bypassed the necessity for region-
of-interest/tumor labeling for each WSI, which was a tedious and
laborious task for pathologists.

The benefit of the 70-gene signature risk score to breast cancer
patients has been proven in several studies with large sample size
(11, 13). The important role of this test in assisting physicians with
making treatment plans has been affirmed. Nevertheless, mRNA
expression profiling of all 70 genes in the signature is needed for
completing this test, which is costly and laborious. In addition,
TABLE 2 | Model performance in the independent test set.

Metrics Precision Recall F1-score Number of patches

High-risk 0.86 0.85 0.85 54122
Low-risk 0.89 0.89 0.89 71279
Accuracy 0.87 125401
Macro average 0.87 0.87 0.87 125401
Weighted average 0.87 0.87 0.87 125401
October 2021 | Volum
A B

D E F

C

FIGURE 4 | Receiver operating characteristic (ROC) curves of the 6 AI models using the validation set. ROC curves are shown for (A) Res101, (B) VGG16, (C) Res50,
(D) In_Res, (E) EB5, and (F) X_Cept.
e 11 | Article 734015
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discrepancies between different ethnic groups may also lead to
divergence in the expression level of certain genes (41, 42), which
may affect the risk assessment. Using pathological images as the
training data possessesmany advantages over gene expression data,
such as rapidity, straightforwardness, low cost, and reusability. On
top of that, deep learning uses a representation approach to learn
from data (43), which has been extensively proven to be superior to
human experts inmany biomedical tasks such as predicting cancer
metastasis from expression data (44), distinguishing diseased and
normal cells (45), and detection of tumor areas (46), just to name a
few. In our study, we usedWSIs for prediction that also contained
Frontiers in Oncology | www.frontiersin.org 7
adjacent tumor areas which may exhibit morphological changes in
breast cancers. These adjacent tumor areas contributed to model
buildingbecause theywere different between sampleswith low- and
high-risk 70-gene signature scores. The morphological changes
might be small in scale, but deep learning methods, especially their
CNN architecture, are designed with hundreds of filters and
different kernel sizes, which are particularly practical in detecting
these tiny alterations.

The applications of AI tools for biomedical data have been
extensively evaluated recently. Hundreds of researchers use
different types of data, such as images and omics data, together
A B

FIGURE 6 | GRAD-CAM visualization of model prediction. (A) Visualization of 6 models’ prediction for the same set of images from 8 high-risk patients. (B) Visualization
of 6 models’ prediction for the same set of images from 8 low-risk patients. The activation level is shown with a gradient of red, yellow, and blue, which represents high,
moderate, and low activation of the risk class, respectively.
A

B

D

E

FC

FIGURE 5 | Model testing using the independent testing set of high-risk and low-risk patients. Panel (A–C) are from the truely high-risk patients. Panel (D–F) are from the
truely low-risk patients. Model prediction for high-risk patients with threshold 0.3 (A), 0.5 (B) and 0.7 (C) had incorrect preditions on patients H1 and H2 which is lower than
0.5. Model prediction for low-risk patients with threshold 0.3 (D), 0.5 (E) and 0.7 (F) are 100% correct on all low-risk patients. The size of the bar with color corresponding to
the correct prediction is the accuracy of the model. Blue color and orange color represent for high-risk and low-risk prediction, respectively.
October 2021 | Volume 11 | Article 734015
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with clinical information. The performance of these models
varies depending on the prediction and classification problem.
For instance, in colorectal cancer outcome prediction, a deep
learning model achieved an AUC of 0.69, whereas human experts
achieved an AUC of 0.58 (30). In another study on non-small cell
lung cancer, experts attempted to predict the mutation status of
target genes such as TP53 and KRAS using pathological images,
and the AUC ranged from 0.733 to 0.856 in the external
validation dataset (47). In addition to pathological images,
recent studies also used computed tomography scan images for
deep learning model training and achieved an AUC of 0.75 for
predicting lung cancer treatment response (48). In breast cancer
research, various studies have also used deep learning to predict
patient outcomes by integrating pathological images and
genomic data and have achieved AUCs ranging from 0.681 to
0.821 (49). Interestingly, pathological images were also used to
predict the gene expression level in a pan-cancer study, and AUC
scores ranged from 0.65 to 0.98 depending on the type and
subtype of cancer. In another large-scale study using 44,732
WSIs from 15,187 patients to predict clinical grade from
pathological images, a deep learning model achieved a state-of-
the-art AUC of 0.98 for all types of cancers. This study had the
distinction of using the reported diagnoses for image labeling
only (50). The prognostic 70-genes signature achieved 89%, 42%,
and 65% for sensitivity, specificity, and overall accuracy,
respectively (51, 52). In contrast, our best model (X_Cept
model) achieved a sensitivity of 0.89 and a specificity of 0.86
(Based on Table 2). Taken together, the feasibility and efficiency
of using pathological images and AI tools to predict clinical
information and patient outcomes have been demonstrated, and
the next step is to conduct prospective studies for evaluating
potential application in clinical practice.

With rapid advances in AI algorithms coupled with new
hardware generations and a plethora of ready-to-use healthcare
data, models can now be trained with larger datasets in a shorter
period of time. As a matter of course, expensive genomic,
transcriptomic, proteomic, and metabolomic tests for different
clinical purposes such as patient outcomes, survival analyses, and
cancer subtyping will inevitably receive assistance from faster
and better AI tools. Eventually, AI tools are expected to either
completely transform traditional healthcare approaches or create
a hybrid form. These advances will help physicians make better
and faster decisions in treatment planning that requires a
personalized medicine approach.
CONCLUSION

In the present study, we developed a high-performance,
automated deep neural network pipeline to predict risk of
breast cancer recurrence using pathological images, which
reduces the cost and time of genetic testing and obviates the
need for tumor region labeling. We also demonstrated that a
deep neural network model could learn the complex pathological
features only from images and was able to find tumor areas for
distinguishing low- and high-risk breast cancers.
Frontiers in Oncology | www.frontiersin.org 8
Limitation
One of the limitations of this study is the size of the dataset and
the study populations. Although the models can reach upto 87%
accuracy for the patch-wise approach and upto 96.3% for the
patient-wise approach, more rigorous independent validations
are required to establish their efficacy and and reliability for
future applications into bigger datasets from different study
groups of varied ethnicities. In addition, the current study has
not performed survival analysis, owing to no event in our
study cohort.
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