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ABSTRACT
The remarkable success of cancer immunotherapies has 
provided new hope to cancer patients. Unfortunately, a 
significant proportion of patients remain unable to respond 
to immunotherapy or maintain durable clinical responses. 
The lack of objective responses likely results from 
profound immune dysfunction often observed in patients 
with cancer. There is substantial evidence that exercise 
and physical activity can reduce incidence and improve 
outcomes in cancer patients. As the immune system is 
highly responsive to exercise, one potential avenue to 
improve immune function is through exercise and physical 
activity. A single event of dynamic exercise results in the 
substantial mobilization of leukocytes with increased 
functional capacities into the circulation. Chronic, or long-
term, exercise leads to higher physical fitness in terms of 
greater cardiorespiratory function and/or muscle strength 
and endurance. High aerobic capacity, as measured by 
maximal oxygen uptake, has been associated with the 
reduction of dysfunctional T cells and improvements in 
the abundance of some T cell populations. To be sure, 
however, the mechanisms of exercise-mediated immune 
changes are both extensive and diverse. Here, we 
examine the evidence and theorize how acute and chronic 
exercise could be used to improve responses to cancer 
immunotherapies including immune checkpoint inhibitors, 
dendritic cell vaccines, natural killer cell therapies, and 
adoptive T cell therapies such as chimeric antigen receptor 
(CAR) T cells. Although the parameters of optimal exercise 
to yield defined outcomes remain to be determined, the 
available current data provide a compelling justification for 
additional human studies and clinical trials investigating 
the adjuvant use of exercise in immuno-oncology.

INTRODUCTION
The promise of cancer immunotherapy is 
rapidly transforming the field of oncology. 
The accumulation of vast experimental data 
derived from animal models and from clinical 
trials demonstrates that there are multiple 
aspects to generate successful durable clin-
ical responses in patients receiving immu-
notherapy: the specificity, magnitude, 
and diversity of the immune response all 
contribute to the formation of immunolog-
ical memory. One of the major obstacles to 
successful responses to immunotherapy is 

that systemic immunity in cancer patients is 
often impaired as a result of multiple diverse 
mechanisms. Emerging evidence suggests 
that optimal systemic immunity is critical 
for longer overall survival of patients with 
cancer and durable clinical responses to 
immunotherapy.1–3

A large body of evidence suggests that 
exercise and physical activity improves the 
overall health of patients with cancer and may 
prolong survival.4–7 Physical activity is defined 
as any bodily movement produced by skeletal 
muscles or that requires contraction of your 
muscles and energy expenditure.8 Exercise is 
a form of physical activity that involves repeti-
tive bodily movement done in a planned and 
structured manner with the goal of improving 
or maintaining one or more components 
of physical health or fitness.9 Since there is 
such a strong association between exercise 
and improved outcomes in cancer patients, 
we suggest that a complementary approach 
to improving responses to immunother-
apies is to strengthen systemic immunity 
and patient immune responses via exercise 
thereby allowing a more potent therapeutic 
response. There have been numerous studies 
recently published that reveal some provoca-
tive data on how exercise influences immune 
cell populations and their function. As such, 
the purpose of this review is to appraise the 
literature and present the scientific premise 
by which physical activity and exercise has the 
potential to restore and optimize the immune 
system’s responses to cancer immunotherapy. 
Additionally, we will assess the strategy of 
utilizing exercise regimens to improve 
outcomes in patients receiving cancer immu-
notherapy. While we will focus primarily on 
human data, animal models will be discussed 
to shed light on potential mechanisms and 
to provide guidance on future investigations 
where there are gaps in the literature in 
human studies.

http://bmjopen.bmj.com/
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EXERCISE AS MEDICINE
The use of exercise as a medicine requires an under-
standing of the appropriate dose of exercise to achieve 
the desired effect. On an individual basis, the optimal 
health effects of physical activity and exercise are depen-
dent on their appropriate dose in relation to their phys-
ical fitness.10 Exercise can be performed in three general 
categories: acute exercise, exercise training, and chronic 
exercise. Acute exercise encompasses single defined 
events with repetitions over a short period of time. 
Exercise training (high intensity interval training, for 
example) typically involves consistent frequent events 
over the course of many weeks to months. Chronic exer-
cise describes consistent and frequent exercise over a 
long period of time (generally over a year). While phys-
ical activity and exercise are often used interchangeably, 
these terms are used to reflect activities related to fitness. 
The term physical fitness relates to ‘a set of attributes 
that people have or achieve that relates to the ability to 
perform physical activity’ as defined by the US Depart-
ment of Health and Human Services. Physical fitness has 
multiple components: cardiorespiratory fitness, muscular 
strength, muscular endurance, body composition and 
flexibility. The exercise dose is highly dependent on the 
FITT principles (Frequency, Intensity, Time, and Type) 
and these aspects of exercise must be considered for is 
crucial for generating desired outcomes.11 The hetero-
geneous and inconsistent results that are often observed 
when exercise is used as medicine results from the vari-
ability of the FITT principles applied to the study design. 
This variability is perhaps one of the most significant 
problems in the exercise field and prevents simplifying 
the recommended amounts of exercise that are associ-
ated with physiological benefits. Fortunately, this need has 
been recognized as we and other groups in the field have 
published studies to optimize and standardize methods to 
better define the exercise dose in a given study.12–15

Since there are different components of exercise and 
fitness, the parameters to be measured should be appro-
priate for assessing the desired outcome. Several param-
eters have been used in the exercise setting and include 
measurements of heart rate, blood pressure, body mass 
index (BMI), lean body mass, work expenditure, forced 
expiratory volume/capacity, and maximal oxygen uptake 
(VO2max). VO2max is the gold standard for evaluating 
aerobic capacity/cardiorespiratory fitness and can be 
objectively measured during a graded cardiopulmonary 
exercise test with respiratory gas exchange.16 VO2max 
is considered the best indicator of cardiorespiratory 
fitness and the strongest independent predictor of future 
survival.17 High VO2max values are the result of higher 
cardiac outputs, better blood flow, better oxygen delivery, 
and improved mitochondrial function and volume.18 19 
The assessment of physical activity can also be performed 
by questionnaires or surveys. Information gathered from 
these questions can be used to assess energy expenditure 
in the form of metabolic equivalent tasks.20 The incorpo-
ration of these measurements is then used to define the 

total exercise dose/amount/load during a given time. 
Depending on the study design, investigators may wish to 
define an acute dose that all subjects perform in a partic-
ular study or perform an assessment of a lifetime dose for 
correlative associations. For a further in depth discussion 
of the comparisons of different methodologies to quan-
tify the exercise dose and how to put these concepts into 
clinical practice, we would refer the reader to an excel-
lent review by Wasfy and Baggish.21

THE IMMUNE SYSTEM IS HIGHLY RESPONSIVE TO EXERCISE
Exercise improves immune function in part by mitigating 
the detrimental effects of immune dysfunction caused 
by both aging (immunosenescence and inflammaging), 
and obesity (both inflammatory and immunosuppressive 
mechanisms).22–27 However, exercise also induces substan-
tial changes to both the innate and adaptive immune 
responses. Before these mechanisms are discussed, 
however, it is important to appreciate the nexus between 
skeletal muscle and the immune system.

The myokine connection
Muscle has been recognized as a major secretory organ28 
as over 300 proteins have been identified to be secreted 
from resting muscle.29 As nearly half of the human body 
mass is composed of muscle, the muscle releases a substan-
tial amount of proteins that regulate many physiological 
processes. Many of these proteins have been defined as 
myokines, or muscle-derived cytokines. In addition to 
supporting glucose metabolism and myogenic growth, 
these myokines mediate beneficial functions on the 
immune system. The most prominent myokines relevant 
to supporting both muscle and immune health are inter-
leukin 4 (IL-4), IL-6, IL-7, IL-8, and IL-15.28 IL-6 released 
from contracting muscles rises exponentially with 
increasing intensity and duration of exercise to nearly 100 
times the baseline plasma levels in peripheral blood.30 31 
While IL-6 has both prominent proinflammatory and anti-
inflammatory properties, in the context of exercise, the 
induction of IL-6 produces an anti-inflammatory effect, 
without the preceding increase in tumor necrosis factor 
α (TNFα) levels observed in proinflammatory conditions, 
and functions to stimulate gluconeogenesis.32 Circulating 
anti-inflammatory cytokines like IL-1 receptor antago-
nist and IL-10 are amplified with concurrent declines 
in TNF-α because of exercise-mediated IL-6 release.33 
Chronic exercise also appears to reduce resting levels of 
IL-6 in circulation.32

IL-15 and IL-7, two cytokines critical for maintaining T 
cell homeostasis, are also highly expressed and secreted 
by exercising skeletal muscle.34 35 Vigorous acute exer-
cise leads to a strong induction of both mRNA levels and 
circulating plasma levels of these cytokines.35–37 IL-7 and 
IL-15 are critical T cell homeostatic cytokines that coor-
dinate to replenish naïve and memory cell populations. 
IL-7 provides survival and proliferative signals for recent 
thymic emigrants (RTE) and naïve T cells but also supports 
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the generation and persistence of memory cells following 
antigen exposure.38 39 IL-15 appears to primarily support 
the expansion of memory T cells and CD8+ memory T 
cells are particularly sensitive to IL-15. Muscle-specific 
ablation of IL-15 in mice led to reduced total CD8 +T cells 
which exhibited higher markers of exhaustion including 
Programmed cell death protein (PD-1), CD244, LAG-3 
and TIGIT.40 Wallace et al found that IL-15 and IL-7 were 
both capable of promoting cell survival through upregu-
lating antiapoptotic mechanisms and telomerase activity 
to preserve telomere length. The cytokines also stimu-
lated proliferation without inducing differentiation of 
T cells by phenotypic change or acquisition of effector 
function.41 In support of the coordination between these 
two cytokines, Cieri et al found that IL-7 promotes the 
induction of a self-renewing, stem-cell like memory CD8+ 
T cell subset (Tscm) and IL-15 subsequently was required 
for the expansion of these specialized memory subsets.42 
IL-15 is also critical for proper proliferation and differ-
entiation of natural killer (NK) cells.43 The connection 
of muscle-derived cytokines and immune effector cell 
homeostasis is an area ripe for further investigation as it 
has been proposed that the diminished secretory output 
of these cytokines as a result of aging-related sarcopenia 
is a critical mechanism for the development of immune 
senescence.44 Overall, it is apparent that the induction 
of muscle-derived cytokines supports healthy immune 
effector cell populations by maintaining a proper balance 
of pro-inflammatory and anti-inflammatory mediators 
and by supporting appropriate homeostatic mechanisms.

Acute exercise: increased mobilization of leucocytes
In response to acute dynamic exercise (eg, running, 
cycling, rowing), there is a robust and almost instanta-
neous mobilization of leukocytes to the blood compart-
ment. While granulocytes account for a large proportion 
of the mobilized cells, both the granulocyte to lympho-
cyte and monocyte to lymphocyte ratios are reduced indi-
cating that exercise preferentially recruits lymphocytes to 
the bloodstream.45 There is also a preferential mobiliza-
tion of lymphocyte subsets in the order of greatest magni-
tude of relative change—NK-cells, gamma delta (γδ) 
T-cells, CD8+ T cells, CD4+ T cells and B-cells.45–47 Within 
these subsets, there also appears to be a preferential 
mobilization of those cell types with phenotypic charac-
teristics of high differentiation and migration potential.45 
Lymphocytes also display rapid egress kinetics with 
NK-cells in particular, despite increasing threefold to five-
fold during the exercise, reverting to near resting levels 
within just a few minutes after exercise cessation.47 In the 
early phase of exercise recovery (eg, 1 hour after exercise 
cessation), blood T-cells exhibit an activated cytokine-
secreting profile and NK-cells are better equipped to kill 
certain hematologic cancer cell lines in vitro.48–50 Simi-
larly, γδ T-cells mobilized with exercise expand more 
readily when stimulated with bisphosphonate antigens 
resulting in phenotypic shifts that promote increased 
cytotoxicity against a range of hematologic tumor cell 

lines including those derived from leukemia, lymphoma 
and multiple myeloma.51 The release of cytokines cate-
cholamines and other hormones are largely involved in 
the mobilization, priming and/or redistribution of acti-
vated effector lymphocytes in response to acute exercise 
and several groups, including ours, have suggested that 
this acute stress response should be harnessed for ther-
apeutic purposes such as boosting immune responses to 
vaccination or obtaining more potent immune cell prod-
ucts from the blood for cellular therapy.52–54

Acute exercise: increased immune surveillance
Since exercise redeploys massive numbers of lympho-
cytes with each bout, acute exercise has been purported 
to increase immune surveillance due to the frequent 
mobilization and redistribution of effector lymphocytes. 
This idea was best demonstrated by Pedersen et al who 
reported that voluntary wheel running reduced tumor 
incidence and growth by ~60% across five different 
murine tumor models via mechanisms that are depen-
dent on the catecholamine-induced mobilization and 
redistribution of NK-cells.55 Greater numbers of NK-cells 
were found in the tumors of exercised mice compared 
with controls, but not when mice were administered 
propranolol (non-selective beta-blocker) to prevent 
catecholamine-mediated NK-cell mobilization. Further, 
the exercise effects were replicated in non-exercised mice 
injected with daily doses of epinephrine underscoring 
the importance of catecholamines in facilitating immune 
cell mobilization and redistribution. The idea that each 
exercise bout contributes to improvements in antitumor 
immune surveillance is bolstered by a previous study 
from our group that T-cells mobilized into the blood 
with acute exercise are more responsive to ex vivo stim-
ulation with autologous antigen presenting cells pulsed 
with tumor associated antigens such as the Wilms Tumor 
antigen (WT1), preferentially expressed antigen in mela-
noma (PRAME), and melanoma-associated antigen 4 
(MAGE-A4).56 As such, the beneficial effects of chronic 
exercise may be due to the fact that immune cells are 
mobilized and redeployed with every exercise bout, 
thus improving immune surveillance without necessarily 
altering immune competency at the basal (ie, individual 
cell) level. Indeed, despite exercise-mobilized NK-cells 
being shown to play an important role in the antitumor 
effects of exercise,55 exercise training interventions in 
humans often results in little to no changes in NK-cell 
activity in vitro,57–59 although we did report recently that 
changes in NK-cell function might be more marked in 
those that show the greatest changes in aerobic fitness 
following the intervention.59 We should note here that 
most studies to date have described the effects of exer-
cise training on ‘static’ endpoints of immune function 
using standardized in vitro based assays (eg, NK-cell cyto-
toxicity or T-cell proliferation using cells obtained from 
resting blood). We contend that immune system adapta-
tions to exercise training might be better observed using 
‘dynamic’ endpoints such as the number of NK-cells and 
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T-cells that can be mobilized with exercise, and/or the 
ability of these cells to traffic toward and infiltrate tumors 
in xenogeneic mouse models.

Chronic exercise: preserving functional T cells
Chronic exercise appears to mitigate the detrimental 
effects on T cells that are caused by a variety of conditions 
like obesity, aging, and chronic infection. Table 1 lists the 
phenotypes that can be positively influenced by chronic 
exercise and phenotypes that have been shown to be 
correlated with high cardiorespiratory fitness (VO2max). 
In terms of improving responses to cancer immuno-
therapy, we hypothesize that chronic exercise could 
improve antitumor responses in multiple ways. First, 
chronic exercise is associated with lower proportions of 
senescent T cells and increased proportions of naïve T cells 

that are needed for optimal immune responses. In a study 
of over 100 healthy males aged 18–61, our group found a 
strong association between aerobic fitness (VO2max) and 
reduced populations of senescent CD8+KLRG1+CD28-, 
CD4+KLRG1+CD57+, and CD8+KLRG1+CD57+ T cells.60 
The loss of CD28 and CD27 and/or the appearance of 
KLRG1 and CD57 on T cells are indicators of highly differ-
entiated senescent T cells resulting from chronic antigen 
stimulation and are a classic feature of the aging immune 
system.60–63 T cell senescence is characterized by telo-
mere shortening, impaired IL-2 release, and prolonged 
DNA damage responses leading to cell cycle arrest.61 
IL-2 regulates homeostatic maintenance of regulatory T 
cells and differentiation of antigen-activated T cells into 
effector subsets.64 Interestingly, the proliferative defect of 

Table 1  T cell phenotypes associated with physical conditions and improved by chronic exercise or exercise training

T cell phenotype

Associated 
with obesity 
and/or 
physical 
inactivity

Associated 
with aging

Associated 
with chronic 
infection (ie, 
CMV)

Associated 
with physical 
fitness 
(VO2max) References

CD3+ T cells  �  ↓  �   �  71

CD8+ T cells ↑  �   �   �  46

CD4/CD8 ratio ↓  �  ↓  �  46

γδ T cells  �  ↓ ↑ ↑ 46 149

Naïve T cells  �   �   �   �

CD4+CD45RA+ ↓ ↓  �  ↑ 71 72 150

CD8+CD45RA+CD27+CCR7+CD62L+ also 
KLRG-CD28+

 �  ↓ ↓ ↑ 46 71

Memory T cells  �   �   �   �

CD4+CD45RO+ Memory ↑ ↑  �   �  46 71 72

CD8+CD45RO+ Memory T cells  �  ↑  �   �  71

Central memory T cells  �   �   �   �

CD4+CD45RA–CCR7+ and CD8+CD45RA–

CCR7+
↑ ↑  �   �  46 71 150

Effector memory T cells  �   �   �   �

CD4+CD45RA–CCR7– and CD8+CD45RA–

CCR7–
↓ ↑  �   �  46 71 150

Effector T cells  �   �   �   �

CD4+CD45RA+CCR7– and 
CD8+CD45RA+CCR7–

 �  ↑  �   �  71

Regulatory/immuno-suppressive T 
cells

 �   �   �   �

CD4+CD25+Foxp3+ or CD127lo Regulatory 
T cells

↑ ↑  �   �  46 71

CD4+CD28–CD57+KLRG1+ and 
CD8+CD28-CD57+ KLRG1+ Senescent T 
cells

 �  ↑ ↑ ↓ 60 71

CD4+PD-1+ ↑  �   �   �  46

↑indicates condition increases phenotype and ↓ indicates condition decreases phenotype.
*Indicates phenotype was not improved on in exercise by Duggal et al.71

CMV, cytomegalovirus; EMRA, effector memory RA +cells; PBMC, peripheral blood mononuclear cells; VO2max, maximal oxygen uptake.
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senescent cells may not be overcome by IL-2 or IL-15,65 
but IL-7 has been shown to prevent CD27 and CD28 loss, 
improve proliferation, and restore IL-2 production to T 
cells cultured in the presence of tumor cells.66 The results 
from our Spielman et al study reveal that high cardiore-
spiratory fitness is associated with declines in the accu-
mulation of defective T cells that have lost their ability to 
mediate antitumor responses.

Moreover, our group assessed the abundance and 
distribution of over 30 T cell phenotypes in sedentary 
and active men in baseline samples and in response to 
two types of acute exercise (an incremental maximal 
cycling test until exhaustion and an endurance cycling 
test of 45 min at 60% of maximum workload).46 We found 
numerous T cell phenotypes associated with obesity/
lean body mass (Tregs positively correlated with percent 
body fat) and physical inactivity (elevated CD4+ memory 
cells and PD-1+ cells in sedentary individuals) from base-
line samples. In addition, we identified two phenotypes 
that significantly correlated with VO2max; γδ T cells as a 
percentage of CD3 +T cells, and naïve (CD45RA+CD27+C-
D62L+CCR7+) cells as a percentage of total CD8 +T cells. 
γδ T cells are very responsive to IL-15. On IL-15 expo-
sure, these cells are rapidly activated via upregulation of 
CD69, HLA-DR, and CD56 expression, secrete high levels 
of IFNγ, become highly proliferative, and demonstrate 
increased cytotoxicity against tumor cells.67 68 CD4−CD8− 
T cells (or double negative T cells), of which γδ T cells 
comprise a large proportion of these cells, have also been 
shown to be responsive to IL-15, whereby IL-15 strongly 
induced their tumoricidal activity through upregulation 
of effector molecules including NKG2D, DNAM-1, and 
NKp30 as well as intracellular perforin and granzyme B.69 
Naïve CD8+ T-cells with a CD45RA+CD27+CD62L+CCR7+ 
phenotype contain a population of long-lived human 
memory stem-like T cells (Tscm) characterized by addi-
tional cell surface markers including the IL-7 recep-
tor-α (CD127), CD95, IL-2Rβ (IL-2 and IL-15 receptor), 
CXCR3, and LFA-1(70). These cells, which have a naïve 
cell surface phenotype but have functional attributes of 
memory cells, have enhanced capacity for self-renewal 
and a multipotent ability to derive central memory, 
effector memory and effector T cells. In a humanized 
mouse model, Tscm cells demonstrated superior antitumor 
activity over other central and effector memory subsets.70 
Other groups have looked at the influence of chronic 
exercise on T cell subsets. Duggal et al found higher naïve 
CD4+, CD8+ T cells, and RTE with lower frequencies of 
effector memory CD45RA+ subsets in old, highly active 
cyclists compared with aged matched control groups.71 
Additionally, they found that serum IL-7 and IL-15 levels 
were higher in older cyclists than both inactive old and 
young individuals. The percentage of naïve CD4+ T cells 
levels were also correlated to IL-15 serum levels in the 
active cyclists.72 In contrast to the effects of chronic exer-
cise on these myokines, it appears that acute and short-
term training regimens have had inconsistent impacts on 
changes in myokine levels. A recent longitudinal study in 

postmenopausal obese women found increased serum 
levels of the myokines IL-6 and IL-15 after 12 weeks of 
both aerobic and resistance exercise training.73 In 
contrast, we did not find changes in serum IL-7 or IL-15 
in response to 12 weeks of high intensity interval training 
or moderate intensity continuous training in women at 
high risk of breast cancer, although we acknowledge this 
study is limited by its small sample size and focus only 
on aerobic training.59 Taken together, chronic exercise 
appears to reshape the T cell repertoire by reducing 
dysfunctional T cells and preserves and/or enhances 
naïve T cell populations that have high potential to 
generate immune responses leading to more efficient 
development of immunological memory. However, more 
longitudinal studies are needed to examine the effects of 
exercise training (both aerobic and resistance training) 
on serum myokine levels and their relationship with 
exercise-induced modulation of the T-cell compartment.

POTENTIAL MECHANISMS BY WHICH EXERCISE COULD 
ENHANCE IMMUNOTHERAPY
The eradication of tumors by the immune system requires 
a sequential and coordinated immune response. This 
repetitive series of steps has been termed the Cancer-
Immunity Cycle and is described in more detail by Chen 
and Mellman.74 Successful immunotherapy in patients 
with cancer requires an intervention to either initiate or 
boost this process. Although the interactions of dendritic 
cells and T cells are the most substantial mediators of anti-
tumor responses, other cell types like NK cells are often 
critical in maintaining tumor control. In animal models, 
exercise has been shown to have direct antitumor effects 
on cancer cells via the regulation of the tumor microenvi-
ronment (TME) by altering oxygen tension and reduced 
nutrient availability to slow tumor growth (reviewed by 
Zhang et al75). These changes may suggest one possible 
mechanism whereby exercise may improve responses to 
immunotherapy. In this next section, however, we will 
specifically outline (with a summary in table  2) yet to 
be established, although certainly testable, mechanisms 
by which exercise can augment responses to four major 
types of immunotherapy.

Immune checkpoint inhibitors
Immune checkpoint inhibitors comprise a class of drugs 
in the form of monoclonal antibodies that prevent 
immune regulatory proteins from turning off immune 
responses from effector cells. Drugs that target proteins 
that restrain T cell activation and/or proliferation like 
PD-1 and CTLA-4 are the two most common clinically 
used checkpoint inhibitors. Two recent studies have 
demonstrated in animal models that the combination of 
exercise during anti-PD-1 therapy slowed tumor growth 
to a greater degree than either modality alone. Wenner-
berg et al in a breast cancer model found that the incorpo-
ration of 30 min of treadmill activity 5 days/week during 
the course of PD-1 blockade/radiation therapy (RT) 
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decreased tumor-infiltrating myeloid derived suppressor 
cells (MDSCs) and increased the infiltration of CD8+ T 
cells thereby shifting the TME from immunosuppres-
sive to a TME more conducive for effector cell function. 
Tumor growth was significantly slowed in animals that 
exercised during anti-PD-1/RT compared with sedentary 
animals receiving the same anti-PD-1/RT regimen.76 In 
a patient-derived xenograft (PDX) non-small-cell lung 
cancer model, Martín-Ruiz et al also found that exer-
cise in combination with PD-1 blockade reduce tumor 
growth exhibited by diminished tumor cell proliferation 
and increase tumor necrosis.77 Interestingly, both studies 
found that exercise improved immune responses in part 
by limiting myeloid cell infiltration in the TME. In agree-
ment with another animal breast cancer model, wheel 
running after the establishment of breast cancer limited 
the accumulation of MDSCs.78 Since both polymorpho-
nuclear MDSCs, monocytic MDSCs, and other immu-
nosuppressive myeloid cells strongly negate responses 
to cancer immunotherapy,79–81 exercise may improve 
immune responses to checkpoint blockade by limiting 
the effects of these cells. It should be noted that it appears 
that inactivity and/or obesity may have an opposite effect 
on the response to checkpoint blockade. In both animal 
models and human studies, the data suggest that obese 
individuals with higher BMI actually respond better to 
checkpoint inhibition.82 83 Donnelly et al contend that 
the impact of BMI on outcomes needs to be carefully 

scrutinized as many confounding variables (including 
age, gender, stage, lactate dehydrogenase, performance 
status, and BRAF mutation status) likely contribute to 
this phenomenon.84 Although the preliminary data on 
the synergistic effect of exercise and checkpoint inhibi-
tion looks promising, the variables outlined by Donnelly 
et al will also likely influence investigations on the use of 
adjunct exercise in checkpoint blockade therapies.

Adoptive T cell therapies
The clinical use of ex vivo expanded T cells has been 
a mainstay for cancer immunotherapies for decades. 
Although it is understood that there are differences in 
the manufacturing of tumor-infiltrating T cells, virus 
specific T cells, chimeric antigen receptor T (CAR-T) 
cells, and γδ T cells for therapeutic use, it is likely that 
the effects of exercise on T cell biology can be applied to 
each of these treatment modalities. Since acute exercise 
rapidly mobilizes and increases T cell numbers in periph-
eral blood, short bouts of exercise may simply be used 
to increase the numbers of T cells collected from leuka-
pheresis procedures. This approach could potentially 
overcome manufacturing issues like the low cell numbers 
collected from lymphopenic patients, long culture times 
to produce sufficient T cells, and/or poor ex vivo expan-
sion of T cells.85–88 Acute exercise under some conditions 
can result in a biphasic response, whereby cell popula-
tions can drop below baseline levels in the hours following 

Table 2  Potential mechanisms that could be employed to improve responses to immunotherapy via exercise

Immunotherapy Mode of exercise Potential mechanisms to support immunotherapy

Immune checkpoint 
inhibitors

Acute/training Increase in trafficking and homing of T cells to tumors
Increase in T cell activation and proliferation
Reduce infiltration of immunosuppressive myeloid cells to the TME

Chronic/long term Diminish the presence of senescent T cells
Improve T cell function and metabolism

Adoptive, CAR, and γδ 
T cell Therapies

Acute/training Increase in T cell numbers, including low frequency viral or antigen specific 
T cells, for ex vivo expansion
Increase in trafficking and homing of T cells to tumors
Increase in T cell activation, proliferation, and cytotoxicity
Enhance persistence of T cells in vivo

Chronic/long term Maintain homeostatic mechanisms for naïve T cell survival via IL-7
Enhance persistence of T cells in vivo
Decrease in dysfunctional senescent T cells

NK Cell Therapies Acute/training Increase in cell numbers for ex vivo expansion
Increase in trafficking and homing of NK cells to tumors
Increase in NK cell activation, proliferation, and cytotoxicity
Enhance persistence of NK cells in vivo

Chronic/long term Prevent obesity-mediated NK cell dysfunction
Enhance persistence of NK cells in vivo

Cancer vaccines:
Dendritic cells and 
acellular

Acute/training Increase in cell yield from leukapheresis products
Improve efficiency of DC maturation in vivo

Chronic/long term Improve maintenance of circulating DCs normally lost during aging
Decreased age-related decline in phagocytic activity, antigen presentation, 
migratory capacity of DCs

DCs, dendritic cells; NK, natural killer; TME, tumor microenvironment.
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the completion of the exercise. This phenomenon likely 
reflects a protective effect of immune cells redistributing 
into various organ sites as part of a response to stress.89 90 
These mobilized cells have enhanced functional capac-
ities and if harvested before redeployment into tissues, 
could also provide a superior population of cells for the 
manufacturing the process. With the improved yields of 
cells, it is likely that culture times to obtain the desired 
numbers for dosing can be shortened. Emerging evidence 
suggests that the antitumor activity of CAR-T cells may be 
enhanced by shorter culture times.91 In addition, short 
term exercise can improve the collection of low-frequency 
T cells like γδ T cells, virus-specific T cells, and antigen 
specific T cells.

Prolonged T cell expansion and persistence in vivo 
are associated with better clinical outcomes in patients 
treated with T cell therapies.92–94 We hypothesize, that 
exercise, both in the acute and the long-term settings, has 
the potential to significantly improve both the expansion 
and persistence of T cells. A connection between exer-
cise and T cell expansion and persistence is potentially 
mediated by IL-7 and IL-15. As mentioned previously, 
skeletal muscle is a major source of IL-7 and IL-15 and 
the secretion of both are increased after exercise and the 
elevated levels may improve expansion and persistence in 
T cell immunotherapies. Preclinical models have shown 
that IL-15 and IL-7 contribute to superior CAR-T cell 
proliferation, effector functions, trafficking, survival, 
and antitumor activity.95 In patients with advanced stage 
lymphoma treated with CAR-19 T cells, high serum levels 
of IL-15 were associated with greater peak CAR-T levels 
in circulation and lymphoma remissions.96 One caveat to 
be noted here, is that a recently published study demon-
strated reduced T cell counts in animal models subjected 
to 6 weeks of exercise training as a result of declining 
hematopoiesis.97 While it is unknown about how long 
lasting these effects are, there will need to be some addi-
tional scrutiny in cancer patients to confirm and/or 
account for a potential drop in T cell counts during a 
particular bout of exercise or training session. However, 
the clinical observations in the CAR-T treatment setting 
provide a very provocative and testable hypothesis that 
frequent bouts of exercise sustain high levels of IL-7 and 
IL-15 for optimal expansion and persistence of adoptively 
transferred T cells. Moreover, by simply engaging in exer-
cise after adoptive transfer therapy, the therapeutic cell 
products would undergo frequent mobilization and redis-
tribution which is likely to increase their efficacy.

Chronic exercise moderates the effects of the aging 
immune system and likely augments responses to immu-
notherapy by preserving naïve T cells, reducing the 
accumulation of senescent T cells, and increasing the 
frequency of stem-cell like memory T cells. Each of 
these T cell populations can impact the manufacturing 
of T cells for clinical trials using ACT/CAR-T cells. The 
higher ratios of naïve T cells in long-term physically active 
individuals may be important as high ratios of memory 
T cells may potentially cause accelerated differentiation 

of naïve T cells into a KLRG+CD27lo senescent pheno-
type with diminished antitumor activities.98 The presence 
of dysfunctional senescent T cells during the manufac-
turing process could result in lower yield of cells, higher 
numbers of T cells with insufficient cytokine and cyto-
toxic capacities, and inhibition of antigen presentation by 
dendritic cells.99 Finally, our observations that naïve CD8+ 
T cells were correlated with VO2max may likely suggest 
that long-term exercise, via skeletal muscle release of IL-7 
and IL-15, promotes higher frequencies of cells highly 
responsive to initiating durable cellular immunity. In 
summary, our groups have independently found T cell 
populations associated with physical fitness parameters 
(VO2max), and obesity-related factors (BMI, % body fat, 
etc)46 60 the findings suggest that the body’s primary cells 
that mediate antitumor immunity are specifically influ-
enced by physical fitness. As such, the emerging hypoth-
esis that exercise may enhance the efficacy of T cell 
therapies by restoring the quantity, diversity, and function 
of T cell subsets in cancer patients is an exciting premise 
and warrants further study.

NK cell therapies
Due to their diverse functions, NK cells have long been 
considered a desirable form of cellular immunotherapy.100 
NK cells have performed well clinically in hematologic 
malignancies and transplant settings.101 In other settings, 
the clinical efficacy of NK cells has been inconsistent with 
many factors likely contributing to this problem. Manu-
facturing aspects such as low NK cell quantities in the 
leukapheresis product and poor ex vivo expansion and/
or activation are significant obstacles. Once infused, the 
lack of persistence and in vivo expansion appear to be 
significant determining factors of whether patients will 
respond.102 The collection of a leukapheresis product 
after acute exercise could potentially solve the manu-
facturing issues of low yields and ex vivo expansion 
since the product collected after exercise would contain 
approximately 5–10 times the amount of primed NK cells 
compared with routine leukapheresis collections. Exer-
cise can also greatly limit the effects of obesity on NK 
cells. The excess lipid/fatty acid accumulation causes NK 
cell dysfunction by directly inhibiting mTOR-mediated 
glycolysis.103 104 Glycolysis and oxidative phosphorylation 
drive proper NK cell activation and these processes are 
initiated by cytokines like IL-2, IL-12, and IL-15.105 IL-2 
and IL-15 result in the upregulation of metabolic regu-
lators mTORC and c-Myc resulting in sustained NK cell 
survival and great antitumor capacities.106 107 Since exer-
cise training has been shown to reduce fatty acid levels 
in obese/sedentary individuals,108 109 chronic exercise 
can improve NK cell function by limiting the immuno-
suppressive effect of obesity on NK cells.

Dendritic cell-based cancer vaccines
Cancer vaccines are used clinically to stimulate the 
immune system and generate T cells that can recog-
nize tumor antigens and specifically kill tumor cells that 
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express those antigens. Dendritic cells can be targeted 
in vivo with tumor antigens (ie, peptide injection into 
the intradermal layer of the skin) or by ex vivo cultured 
antigen-loaded dendritic cells that can also be injected 
into the intradermal layer. In vaccines manufactured 
using dendritic cells, circulating monocytes are obtained 
from leukapheresis collections, purified most commonly 
by elutriation or immunomagnetic selection, and then 
placed into ex vivo culture to differentiate the mono-
cytes into dendritic cells. In the acute setting, exercise 
can be utilized to increase the yield of monocytes from 
leukapheresis collections. Since monocytopenia has been 
observed in patients with a variety of cancers,1 110 111 the 
lack of adequate quantities of monocytes for the manu-
facturing of dendritic cell vaccines is a significant issue. 
We demonstrated a threefold increase in the number of 
circulating monocytes collected from healthy volunteers 
after they ran on a treadmill until with increasing intensity 
until volitional exhaustion.112 Monocytes collected after 
the exercise exhibited similar cell surface phenotypes, 
maturation efficiency, and antigen uptake to monocytes 
taken from subjects without exercise. In addition, healthy 
volunteers that cycled for 20 min at 80% of VO2max in a 
single bout of acute exercise demonstrated an increase 
in circulating plasmacytoid dendritic cells are also mobi-
lized during acute exercise.113 Chronic exercise may also 
reduce the presence of immunosuppressive monocytes 
in cancer patients. The significant accumulation of these 
cells in peripheral blood resulting from interactions 
within the TME can affect the quality of dendritic cell 
maturation in ex vivo cultures.114–116 Since patients ith 
cancer exhibit significant immune dysfunction from the 
normal aging process and from tumor-derived immuno-
suppression, physical activity and further exercise training 
could benefit cancer patients receiving cancer vaccines 
through the improvement of dendritic cell numbers and 
enhanced antitumor functions.

INCORPORATION OF EXERCISE INTO CLINICAL APPLICATIONS 
AND TRANSLATION
Investigators are increasingly incorporating exercise 
training and physical activity into practice and in clinical 
trials to improve quality of life,117–120 improve cardiore-
spiratory function,121–123 and even as a preventive and/
or therapeutic anticancer intervention.124 Exercise was 
proposed as an immunotherapy by de Araújo et al as a 
way to counter immunosenescense in aging cancer 
patients.125 Since then, the concept of using exercise to 
augment cancer therapy, exercise-oncology, has been 
progressively advocated.126–128 While the field is still in 
its infancy, data from preclinical animal models as well 
as human studies are providing insight and sound justifi-
cation into how clinical trials might be designed to incor-
porate exercise into immunotherapeutic regimens. For 
example, the study by Pophali et al provides an excellent 
model for how to measure the impact of exercise in that 
the group prospectively measured the physical activity in 

approximately 3000 newly diagnosed lymphoma patients 
and found that active patients had improved survival 
vs more sedentary patients.129 A similar approach and 
clinical setting may be applied to ask whether increased 
physical activity, aerobic capacity, or training programs 
improve responses to immunotherapy. In order to prop-
erly use exercise in the oncology setting, several legit-
imate concerns including feasibility of incorporating 
exercise training into existing clinical trials, ensuring 
safe training regimens in patients who are often frail, and 
patient compliance, must continue to be addressed by the 
community. In terms of feasibility, perhaps the best setting 
to introduce exercise is in newly diagnosed patients who 
are early in their treatment. For patient compliance, new 
ways of encouraging compliance are also being imple-
mented as the community better understands barriers to 
exercise in patients.130–132 Finally, more published guide-
lines are becoming available to clinicians to incorporate 
physical activity in the treatment of cancer patients.133–135 
Although the incorporation of exercise into clinical trials 
for patients appears to be quite feasible and safe, there 
will be some patients with cancer who are unable to exer-
cise or are too sick for exercise.136–138

Another major obstacle to optimizing exercise in 
the treatment of cancer patients is that it is currently 
unclear as to what parameters of exercise show the most 
promise for improving disease outcomes. The FITT 
principles in exercise are indeed significant and need to 
be considered as they contribute greatly to the hetero-
geneity of defining a physiologically effective exercise 
dose. Dethlefsen et al argue that single bouts of acute 
exercise are beneficial to the cancer patient, as exer-
cise causes physiological changes, even transiently, that 
increase the anticancer components of exercise.139 140 
However, data from the literature suggests that there are 
considerable differences in outcomes in cancer patients 
on exercise regimens. There is some evidence that short-
term training (<4 months) in patients with cancer does 
not appear to yield significant benefits on measured 
outcomes like improved preoperative fitness, aerobic 
capacity, or chemotherapy completion rates.141–143 
However, improved cardiorespiratory fitness (VO2max) 
appears to be one of the most consistent improvements 
among studies involving cancer patients.144 145 In non-
cancer patient populations, there is evidence that the 
immune system (ie, changes in lymphocyte frequen-
cies) can change in athletes after short-term training 
programs.146 147 In patients with rheumatoid arthritis 
who completed ten weeks of high-intensity interval 
training, disease severity was reduced, cardiorespiratory 
function (VO2max) improved, and circulating inflam-
matory monocytes were reduced.148 Moving forward, 
the data collected from the effects of exercise on cancer 
patients will be important, as the information will likely 
guide the design of future studies assessing the impact 
of exercise on responses to immunotherapy.
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FUTURE DIRECTIONS AND CONCLUSIONS
It is understood that much of what we have proposed here 
needs to be investigated and confirmed (or disproved) 
before exercise be can incorporated routinely into immu-
notherapeutic regimens. It is clear that there are many 
complex aspects to the impact of exercise on immune 
responses. Also, since most human studies have utilized 
healthy subjects, similar studies will need to be performed 
in cancer patients in order to better understand whether 
exercise can restore systemic immunity in cancer patients 
in which immune suppression is commonly observed. 
The preliminary evidence is encouraging to support 
the hypothesis that exercise can improve immunolog-
ical fitness to the extent that patients should be able to 
respond better to immunotherapeutic regimens. Now 
the difficult task has begun to systematically test these 
hypotheses in both animal models and in clinical trials. 
It is hoped that the evidence and scientific premise we 
have outlined here would provide significant justification 
to move these studies forward.
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