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Abstract
Recent studies revealed changes in odor representations in the olfactory bulb during active olfactory learning (Chu et al.,
2016; Yamada et al., 2017). Specifically, mitral cell ensemble responses to very similar odorant mixtures sparsened and
became more distinguishable as mice learned to discriminate the odorants over days (Chu et al., 2016). In this study, we
explored whether changes in the sensory inputs to the bulb underlie the observed changes in mitral cell responses. Using
two-photon calcium imaging to monitor the odor responses of the olfactory sensory neuron (OSN) axon terminals in the
glomeruli of the olfactory bulb during a discrimination task, we found that OSN inputs to the bulb are stable during
discrimination learning. During one week of training to discriminate between very similar odorant mixtures in a Go/No-go
task, OSN responses did not show significant sparsening, and the responses to the trained similar odorants did not diverge
throughout training. These results suggest that the adaptive changes of mitral cell responses during perceptual learning are
ensured by mechanisms downstream of OSN input, possibly in local circuits within olfactory bulb.
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Introduction
Olfactory transduction occurs when odorants bind to

specific receptors expressed by olfactory sensory neu-
rons (OSNs), each of which expresses only one of � 1000
types of odorant receptors in the nasal epithelium (Ressler

et al., 1994; Vassar et al., 1994; Mombaerts et al., 1996).
Axons from OSNs expressing the same type of receptor
converge onto one or two glomeruli on the surface of the
olfactory bulb; thus different odorants are represented at
this early stage in olfactory encoding by unique combina-
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Significance Statement

Odor representations in the rodent olfactory bulb have been demonstrated to undergo dynamic changes
during a variety of olfactory experiences. In particular, odor representations in mitral cells, the primary
projection neurons of the olfactory bulb, become more different (pattern separation) when mice are trained
to distinguish between two similar odor mixtures. Here, we address whether similar changes occur in
olfactory sensory neurons (OSNs), which provide input onto mitral cells. We find that OSN odor represen-
tations do not exhibit pattern separation when mice are trained to discriminate between two similar odor
mixtures, suggesting that the changes likely occur downstream of OSNs during this task.
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tions of activated glomeruli. At the glomerular layer, OSNs
provide input onto mitral/tufted cells, the primary projec-
tion neurons of the olfactory bulb, which in turn send their
axons to higher brain areas (Price and Powell, 1970).
Additionally, throughout the olfactory bulb, inhibitory in-
terneurons play a major role in transforming odor repre-
sentations (Lledo et al., 2008; Mcgann, 2013; Imai, 2014;
Yu et al., 2014).

Odor representations in the early olfactory system are
highly dynamic and have been shown to be modulated by
various types of olfactory experience. For example, the
activity of OSNs can change with passive experience
(Kass et al., 2016) or associative learning, such as fear
conditioning (Kass et al., 2013) or odor-reward associa-
tion (Abraham et al., 2014). Experience has also been
shown to induce response changes further downstream in
the olfactory circuit: changes in odor responses in inhib-
itory interneurons of the olfactory bulb, which are targets
of feedback from cortical and neuromodulatory areas (Ma
and Luo, 2012; Nunez-Parra et al., 2013; Boyd et al.,
2015; Otazu et al., 2015), have been shown to correlate
with odor-specific changes in behavior (Mandairon et al.,
2008; Moreno et al., 2009). Additionally, mitral cell activity
can also be modulated by passive experience or behav-
ioral training (Kay and Laurent, 1999; Doucette and Re-
strepo, 2008; Doucette et al., 2011; Kato et al., 2012; Li
et al., 2015; Yamada et al., 2017).

In particular, we recently showed that mitral cell odor
ensembles undergo bidirectional changes in odor repre-
sentations during week-long discrimination learning. Spe-
cifically, when mice learned to discriminate between very
different odorants, the representations of the odorants
became more similar to each other. In contrast, discrimina-
tion learning of very similar odorants led to an enhanced
separation of the odor representations, correlating with the
improved ability of mice to discriminate the similar odorants
(Chu et al., 2016). These mitral cell response changes
could arise from at least two different mechanisms. First,
mitral cells may simply reflect the changes that occur at
the level of OSN inputs. Second, plasticity downstream of
OSN inputs may alter the way mitral cells respond to the
same OSN inputs. To begin to distinguish these possibil-
ities, here, we addressed whether OSN inputs show plas-
ticity during the same paradigm in which mice learn to
discriminate between very similar odorant mixtures. This
was achieved by longitudinal two-photon calcium imaging
to characterize the activity of OSN axon terminals in
behaving mice. We find that although mice exhibited a
behavioral improvement in their ability to discriminate
between odorants during training, OSN odor representa-
tions remained relatively stable throughout training with-
out exhibiting enhanced pattern separation, suggesting
that learning-related plasticity likely occurs downstream
of OSNs.

Materials and Methods
Animals

All procedures were in accordance with protocols ap-
proved by the UCSD Institutional Animal care and Use Com-
mittee and guidelines of the National Institutes of Health.

Transgenic mice were obtained from Jackson laboratories
[OMP-tTA, RRID:IMSR_JAX:017754 (Yu et al., 2004) and
tetO-GCaMP6s, RRID:IMSR_JAX:024742 (Wekselblatt et al.,
2016)] and group housed in disposable plastic cages with
corncob bedding in a reversed light cycle room (12/12 h).
Experiments were all performed during the dark period.

Surgeries
Surgeries were performed in adult male mice (at least

six weeks old) as described previously (Kato et al., 2012).
Briefly, mice were anesthetized with isoflurane, the skull
was exposed and a steel headplate was glued to the skull.
The skull above the olfactory bulb was then removed and
replaced with an optical glass window (�1 � �2 mm),
which was secured in place with dental cement. Mice
were then allowed to recover for at least two weeks (35 �
9.3 d, mean � SEM) before imaging.

Odorant delivery
Odorants (Sigma) were delivered to the mouse through a

Teflon-coated tube at a final concentration of 100 ppm and
flow rate of 1 l/min. Odorant vials contained odorant diluted
in mineral oil (Thermo Fisher) to a calculated vapor pressure
of 200 ppm, and a custom olfactometer mixed odorant
vapor from odorant vials with filtered and humidified house
air at 1:1 to achieve a final concentration of 100 ppm.

Behavioral training
The training protocol, including the duration, criteria

and odorant choice, was identical to our previous study
(Chu et al., 2016). Mice began water restriction (�1 ml/d)
�3-5 d after surgery, and weight was maintained at 80-
85% of initial weight. Mice first went through a pretraining
period, where they became accustomed to being head-
fixed in the imaging environment and learned the Go/
No-Go olfactory discrimination task.

The behavioral task was controlled by a real-time pro-
gram (C. Brody). In the olfactory discrimination task, mice
performed daily sessions that lasted 150 trials, or until the
mouse disengaged, whichever came first. Mice per-
formed 140.0 � 2.13 trials/d (mean � SEM). In each trial,
one of two odorants was pseudorandomly delivered
(maximum of three trials in a row with the same odorant).
Each trial consisted of a 4-s odorant delivery period,
followed by a 2-s answer period, during which the mouse
could choose whether or not to lick a lickport. A water
reward (�6 �l water) was delivered from the lickport if the
rewarded odorant (S�) was delivered in a trial and the
mouse responded by licking the lickport during the an-
swer period. Any other action, such as not licking to S� or
the unrewarded odorant (S-), or licking to S-, did not result
in a water reward. A 15-s intertrial interval followed the
answer period, and there was no punishment delivered for
error trials (not licking to S�, or licking to S-).

In the first phase of training, called pretraining (�7-14
d), mice were trained with citral (S�) and limonene (S-).
The intertrial interval (ITI) started at 3 s and as mice
performed above 80% success rate, the ITI was increased
incrementally by 2 s every half-session until the ITI reached
15 s. Once the mice performed above 80% success rate for
the first odorant pair (citral/limonene), they were trained with
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a second pair, �-carvone (S�) and cumene (S-) until they
reached above an 80% success rate.

Pretraining was followed by the week-long difficult dis-
crimination task, during which glomerular activity was
imaged while mice were performing the same Go/No-Go
task with a novel set of similar binary odorant mixtures
consisting of heptanal (Sigma, W254002) and ethyl tiglate
(Sigma, W246000). S� was a mixture of 52% heptanal
48% ethyl tiglate, while S- was a mixture of 48% heptanal
52% ethyl tiglate.

Imaging
Two-photon imaging was performed with a commercial

microscope (B-scope, Thorlabs) with 925 nm excitation
from a Ti-Sa laser (Spectra-physics). Images were ac-
quired at a framerate of �28 Hz. Each imaging frame
consisted of 512 � 512 pixels, and spanned 1132 � 982
�m. Images were acquired for �2.4-min-long segments,
with intersegment intervals of 7 s. Trials with missing
data (trials which overlapped with the intersegment
intervals) were not analyzed. A custom (MATLAB, RRID:
SCR_001622) program performed motion correction (Full-
frame cross-correlation correction) on imaging frames.

Data analysis
In two sessions, we were not able to collect imaging

data, and these sessions were excluded from analysis
(day 3: one mouse; day 6: one mouse).

Regions of interest (ROIs)
ROIs were manually drawn around individual glomeruli,

using a reference image which was created from a max-
imum projection of the imaged data on the first day of the
experiment. For subsequent days, ROIs were shifted
manually to accommodate shifts in alignment from day to
day. All fluorescence pixel values within each ROI were
averaged to create a fluorescence time series. For each
trial, the time series for a single glomerulus was normal-
ized to the baseline period for that trial (the 5 s preceding
odor onset) to calculate the dF/F. The total number of
animals imaged was 13 mice, and 32 � 2.38 (mean �
SEM) glomeruli were imaged in each mouse.

Classifying glomeruli as divergent
A glomerulus was divergent if the following criteria were

met. Criterion 1: dF/F is significantly different (p � 0.05)
between odorant trials for �75% of time points within a
sliding half-second window during the odorant period. A
Wilcoxon rank sum test was performed to compare odor-
ant 1 and odorant 2 dF/F values for each time frame.
Criterion 2: the difference between trial-averaged dF/F
trace for odorant 1 and odorant 2 exceed 0.2 in at least
one time point during the sliding half-second window
which meets the first criterion.

Classifying glomeruli as responsive
A glomerulus was classified as responsive if it was

classified as divergent, and/or if the following criteria were
met. Criterion 1: dF/F is significantly different (p � 0.05)
for �75% of time points within a sliding half-second
window during the odorant period. A Wilcoxon rank sum
test was performed to compare all baseline values (0–5 s
of all trials) dF/F values with each time frame during the

odor response period. Criterion 2: the difference between
trial-averaged dF/F trace for odorant 1 and odorant 2
exceed 0.2 in at least one time point during the sliding
half-second window which meets the first criterion.

Calculating d-prime
All trial traces were smoothed with the MATLAB

“smooth” function with a time constant of six frames
(�0.25 s). The sensitivity index d-prime was calculated
for divergent glomeruli: d’ � �meandF / F odorant1 � mean
dF / F odorant 2� / pooled standard deviationodorant 1 and 2 .

If a glomerulus was divergent on a given day, d’ was
calculated for each time frame during the odorant period
(0–4 s after odorant onset). The maximum d’ value of all
frames during the odorant period was assigned to each
glomerulus, and the average of these maximum d’ values
of divergent neurons for each mouse on each session was
calculated and plotted in Figure 3A.

Glomerular activity vectors
For each mouse, decoder analysis was performed us-

ing 100 iterations. For each iteration, 14 glomeruli were
randomly selected from all glomeruli that were responsive
to at least one odorant in at least 1 d. The subset size of
n � 14 glomeruli was determined by the mouse with the
lowest number of responsive glomeruli.

For each trial, an activity vector was assembled by
concatenating the average dF/F from 0–2 s and 2–4 s
bins during the odor period. A single mouse would then
have a 28-dimensional activity vector (14 glomeruli � two
time bins per glomeruli).

Nearest-centroid decoder
The decoder accuracy was calculated as follows. Each

trial was classified by assigning that trial with the identity
of the odor with the closest centroid in glomerular activity
space. The trial that was being classified was excluded
from the odor centroid calculation. The decoder accuracy
for each iteration for each day is then calculated as frac-
tion of trials that were successfully classified by the de-
coder. The final decoder accuracy value is calculated as
the mean of the 100 iterations.

Correlation coefficient
For each day and odor, a mean odor activity vector was

created by averaging across trials for each odorant. The
correlation coefficient between the means of the popula-
tion activity vectors was calculated using the Matlab func-
tion “corrcoef.” The mean correlation coefficient value
across animals is plotted in Figure 3B.

Peak amplitude of odorant response
For glomeruli that were classified as having excitatory

odorant responses, the peak amplitude was calculated as
the maximum dF/F between a time window of 0–8 s after
odorant onset (Fig. 3C,D).

Results
Chronic imaging of OSN activity in behaving mice

We recently showed that when mice are trained to
discriminate between very similar odorants, mitral cell
odor representations for the similar odorants become
more separable (Chu et al., 2016). In the current study, we
addressed whether OSN inputs to the olfactory bulb ex-
hibit plasticity during the same task. More specifically, we
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asked if training mice to discriminate between two similar
odorants would enhance the separation of OSN re-
sponses to the two odorants. To record OSN activity, we
used two-photon imaging of OSN axon terminals at the
glomerular layer of the olfactory bulb in transgenic mice
expressing GCaMP6s specifically in mature OSNs (OMP-
tTA::tetO-GCaMP6s). Craniotomies were performed above
the right olfactory bulb, and after a recovery period, mice
were trained to learn a Go/No-Go discrimination task (Fig.
1A). First, mice underwent a pretraining period, where they
learned the Go/No-Go paradigm in which mice were pre-
sented in each trial with one of two very different odorants,
only one (S�) of which was paired with a water reward. Mice
eventually learned to lick the lickport in response to S� to
obtain a water reward, while withholding from licking to the
unrewarded odorant (S-; Fig. 1B,C). After reaching a suc-
cess rate of above 80% correct in the Go/No-Go task with
the pretraining odorants, mice were then trained to perform
a difficult discrimination task in which they were required to
discriminate between two highly similar binary odorant mix-
tures (odorant 1: S�, 52% heptanal and 48% ethyl tiglate;
odorant 2: S-, 48% heptanal and 52% ethyl tiglate; % are of
total concentration of 100 ppm).

Throughout the week-long training in the difficult dis-
crimination task, mice gradually improved their perfor-
mance, taking on average �3 d (3.18 � 0.51; mean �

SEM) to reach a level of expertise above an 80% success
rate (Fig. 1D). The speed of learning was comparable to
the same discrimination task in Chu et al., 2016 (Wilcoxon
rank sum test, p � 0.15) and require more days to reach
expertise compared to the discrimination of very distinct
odor pairs [also from Chu et al. (2016), Wilcoxon rank sum
test, p � 0.0008], indicating the requirement of perceptual
learning in the difficult discrimination task.

Glomerular odor responses do not sparsen during
training

To characterize OSN activity in behaving mice, we used
two-photon calcium imaging to monitor the activity of
OSN axon terminals in glomeruli throughout the learning
of the difficult discrimination task (Fig. 2A,B). We tracked
the activity in 32 � 2.4 (mean � SEM) glomeruli in each
mouse. Individual glomeruli exhibited odor responses by
fluorescence changes during the 4-s odor period, with
predominantly excitatory responses (Fig. 2C). With some
exceptions, individual glomeruli showed stable odorant
responses during difficult discrimination training (Fig. 2C).
As a population, the fraction of responsive glomeruli was
stable throughout training (Pearson correlation, p � 0.97;
Fig. 3A), and there was no change in the response ampli-
tude of responsive glomeruli across days as a population
(Kolmogorov-Smirnov test: odorant 1, p � 0.64; odorant
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Figure 1. Training mice to perform a difficult discrimination task. A, Experimental timeline. Water-restricted mice first undergo a
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glomerular responses are imaged while the mouse learns to perform a difficult discrimination task with two similar odor mixtures.
B, Schematic of imaging setup (left) and trial structure (right). C, Schematic of behavioral paradigm. If a rewarded odorant is presented
and the mouse responds with a lick, a water reward will be delivered through the lickport. If the unrewarded odor is delivered, no water
reward will be given regardless of the mouse’s actions. D, Fraction of correctly answered trials (mean � SEM of all mice, n � 13 mice)
on each day of difficult discrimination training. Mice take 3 d on average to perform above an 80% success rate.
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2. p � 0.99; Fig. 3B). Additionally, the temporal dynamics
of the glomerular odor responses remained stable for
each odorant from day 1 to day 7 (Wilcoxon rank sum test
for each imaging frame, false-discovery rate corrected:
q � 0.05, N.S.; Fig. 3C). This is reminiscent of the stable
level of OSN odor responses observed during a week-
long passive exposure by imaging synaptopHlourin re-
sponses in OSN terminals (Kato et al., 2012) and in
contrast to the profound sparsening observed in mitral
cell responses over a week-long passive exposure (Kato
et al., 2012) and discrimination learning (Chu et al., 2016).
These results suggest that the sparsening of mitral cell
responses during passive exposure and discrimination
learning is likely due to changes downstream of OSN
input onto mitral cells.

No increase in separation of OSN odor responses
during discrimination learning

In addition to the sparsening, mitral cell responses to
the similar odorants showed an enhanced separation dur-
ing the discrimination task (Chu et al., 2016). We then

asked whether OSN responses showed similar changes,
potentially underlying the mitral cell changes and the
behavioral improvement during learning. However, in con-
trast to what has been observed with mitral cell ensem-
bles (Chu et al., 2016), there was no significant change in
the fraction of glomeruli whose activity distinguished the
two odorants (“divergent glomeruli”) across days during
training (Pearson correlation; divergent, p � 0.50; diver-
gent of responsive, p � 0.73; Fig. 3A). Furthermore, in
divergent glomeruli, the degree of divergence (quantified
as d-prime) remained stable throughout training (Pearson
correlation; p � 0.87; Fig. 3D). Thus, we found no evi-
dence for an enhanced separation of responses to the
two similar odorants at the level of individual glomeruli.

Next, we investigated potential changes at the level of
glomerular ensembles. To address this, we first calculated
the correlation coefficient as a measure of similarity be-
tween glomerular ensemble response vectors. Consistent
with what was observed in individual glomeruli, the cor-
relation coefficient between glomerular odor responses
was stable throughout training (Pearson correlation; p �
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Figure 2. Imaging glomerular odor responses during training. A, Schematic of the olfactory bulb. Two photon imaging of glomerular
responses was performed in OMP-tTA::tetO-GCaMP6s mice, in which OSNs express GCaMP6s. B, An example of a typical
glomerular field of view on the first day of imaging (day 1) and 6 d later (day 7). C, Examples of odorant responses (mean � SEM) from
individual glomeruli. Responses to the odorant 1 (S�, rewarded odorant) are shown in blue, and responses to odorant 2 (S-,
unrewarded odorant) are shown in black. Odorant period is indicated by the thick horizontal black bar.
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training (Pearson correlation; p � 0.58). G–I, There were no significant changes in the (G) mean-squared distance between odor

New Research 6 of 8

September/October 2017, 4(5) e0287-17.2017 eNeuro.org



0.24; Fig. 3E). We next performed a linear decoder anal-
ysis to assess the discriminability between glomerular
odor representations. The average decoder accuracy, or
the fraction of correctly decoded trials on each day, re-
mained stable during training (Pearson correlation; p �
0.58; Fig. 3F). Consistent with the stable correlation co-
efficient and decoder accuracy, we found no change in
the distance between the mean responses for the two
odorants in glomerular activity space (Pearson correla-
tion; p � 0.68; Fig. 3G). We also did not observe any
change in the total variance across same odor trials in
glomerular activity space (Pearson correlation; p � 0.73;
Fig. 3H), nor in the variance along the decoder axis of
discrimination (Pearson correlation; p � 0.50; Fig. 3I).
Thus, although mice exhibited a behavioral improvement
in their ability to discriminate the two odorants during
training, multiple measures of discriminability by glomer-
ular ensembles indicate that OSN odor responses did not
show an enhanced separation throughout training. There-
fore, it seems unlikely that OSNs are a main source of the
plasticity observed in mitral cell ensembles (Chu et al.,
2016) during the learning of this difficult discrimination
task.

Discussion
Recent studies have revealed changes in mitral cell

responses during discrimination learning paradigms. In
particular, the learning to discriminate between very sim-
ilar odorants led to an enhanced pattern separation in
mitral cell responses, potentially underlying the percep-
tual learning (Abraham et al., 2014; Chu et al., 2016). Here,
we explored whether the mitral cell changes may be
inherited from changes in OSN inputs to the bulb. How-
ever, the separation of odor responses of OSN inputs
remained stable during the same week-long learning par-
adigm that induced an enhanced separation of mitral cell
responses, suggesting that plasticity during this task oc-
curs downstream of OSN input onto mitral cells.

We acknowledge that several previous studies have
demonstrated changes in the glomerular activity during
olfactory experiences. For example, week-long passive
exposure to a single odorant resulted in a temporal diver-
gence in OSN odorant responses (measured by the fluo-
rescence of synaptopHluorin expressed in OSN axons) to
a novel pair of similar odorants (Kass et al., 2016). Fur-
thermore, fear conditioning has been demonstrated to
result in the potentiation of the response to the paired
odorant (Kass et al., 2013). Additionally, after odor-reward
association learning, OSN responses to the trained odor-
ants, which were monitored by intrinsic signal imaging,
were shown to be potentiated (Abraham et al., 2014). We
did not observe these changes in OSN activity. The
source of this potential discrepancy is unclear and may be
due to differences in behavioral contexts (including task

difficulty and trial parameters), measurement methods
(our GCaMP6s imaging vs synaptopHluorin signals or
intrinsic signal imaging), choice of odorants used, etc.
Nevertheless, in this and previous studies (Chu et al.,
2016), we have compared the changes in OSN activity
and mitral cell activity during the same behavioral task
with the same odorants, providing a strong case for
plasticity downstream of OSN inputs. We also note that
our results do not exclude the potential contribution of
changes in OSN activity that are not detected by our
current method, such as changes in millisecond-level
spike synchrony across OSNs, although it seems un-
likely that such changes account for the entirety of
the enhanced pattern separation observed in mitral
cells.

There are many possible sites downstream of OSN
input which could result in the changes in mitral cell
activity during perceptual learning. For example, mitral
cell activity is shaped by local inhibitory neurons, and
plasticity in inhibitory connections could contribute to the
enhanced pattern separation of mitral cell responses. In-
terestingly, thousands of newly generated inhibitory in-
terneurons are integrated into the olfactory circuitry daily
through adult neurogenesis, which provides an additional
layer of inhibitory plasticity in the olfactory bulb (Alonso
et al., 2006). Furthermore, the olfactory bulb receives
ample feedback projections from higher brain centers.
Cortical glutamatergic feedback, which mainly target in-
hibitory interneurons in the olfactory bulb, indirectly mod-
ulates mitral cell activity (Balu et al., 2007; Boyd et al.,
2012; Markopoulos et al., 2012; Otazu et al., 2015; Mazo
et al., 2016). Additionally, feedback from various neuro-
modulatory areas can shape mitral cell odor responses
and have been demonstrated to play an important role in
olfactory tasks such as odor discrimination and odor
detection (Linster et al., 2001; Doucette and Restrepo,
2008; Chaudhury et al., 2009; Escanilla et al., 2010; Ma
and Luo, 2012; Nunez-Parra et al., 2013; Kapoor et al.,
2016). Future studies are needed to determine the spe-
cific loci and nature of changes responsible for the ob-
served changes in mitral cell activity.
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