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HES5-mediated repression of LIGHT transcription may
contribute to apoptosis in hepatocytes
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Non-alcoholic fatty liver disease (NAFLD) is prototypical form of metabolic syndrome and has become a global pandemic.
Hepatocytes undergo apoptosis in the pathogenesis of NAFLD. We report that the lymphokine LIGHT/TNFSF14 was upregulated in
the murine NAFLD livers and in hepatocytes treated with free fatty acids (palmitate, PA). LIGHT knockdown or neutralization
attenuated PA-induced apoptosis of hepatocytes. Similarly, knockdown or blockade of LTβR, the receptor for LIGHT, ameliorated
apoptosis in hepatocytes exposed to PA. Ingenuity pathway analysis (IPA) revealed several Notch-related transcription factors as
upstream regulators of LIGHT, of which HES5 expression was downregulated paralleling LIGHT induction in the pathogenesis of
NAFLD. HES5 knockdown enhanced whereas HES5 over-expression weakened LIGHT induction in hepatocytes. HES5 was found to
directly bind to the LIGHT promoter and repress LIGHT transcription. Mechanistically, HES5 interacted with SIRT1 to deacetylate
histone H3/H4 on the LIGHT promoter to repress LIGHT transcription. SIRT1 knockdown or inhibition offset the effect of HES5 over-
expression on LIGHT transcription and hepatocyte apoptosis. In conclusion, our data unveil a novel mechanism that might
contribute to excessive apoptosis in hepatocyte exposed to free fatty acids.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a prototypical
metabolic disorder influenced by genetic and environmental
factors. Well-established risk factors for NAFLD include obesity,
type 2 diabetes, hypertension, hyperlipidemia, and senility [1].
NAFLD encompasses a continuum of pathologies ranging from
simple steatosis, to steatohepatitis, to cirrhosis and hepatocellular
carcinoma (HCC) [2]. NAFLD is projected to become the leading
cause for HCC and liver transplantation causing significant
socioeconomic burdens worldwide [3]. The pathogenesis of
NAFLD is complex and remains incompletely understood despite
decades of vigorous research. It is generally agreed that a
combination of excessive influx and insufficient consumption of
nutrients leads to skewed hepatic metabolism causing accumula-
tion of lipid droplets in the liver. In response to lipotoxic stimuli,
stressed hepatocytes may become necrotic and/or apoptotic,
which triggers pro-inflammatory responses in the liver accelerat-
ing the pathogenesis of NAFLD [4]. Indeed, increased incidents of
hepatocyte apoptosis have been observed in patients with NAFLD
[5, 6]. On the contrary, manipulating key mediators of apoptosis,
including caspase-3 [7] and caspase-6 [8], affects the development
and progression of NAFLD in mice. In addition, a pan-caspase
inhibitor (VX-166) has been reported to confer hepatoprotective
effects on mice with established NAFLD [9].
Tumor necrosis factor superfamily member 14 (TNFSF14), also

known as LIGHT, is a pro-apoptotic cytokine originally identified in
activated T lymphocytes (hence the term “lymphokine”) and
characterized as a mediator of host defense against the invasion of

herpesvirus [10]. LIGHT has been reported to induce a pro-apoptotic
response in a wide range of cells including thymocytes [11], islet beta
cells [12], breast cancer cells [13, 14], osteoblasts [15], and smooth
muscle cells [16] under both physiological and pathological
conditions. Early investigation has found that LIGHT mediates cellular
apoptosis by binding to lymphotoxin receptor beta (LTβR) [17].
Recent studies have implicated LIGHT in the pathogenesis of NAFLD.
Otterdal et al. have reported that serum LIGHT levels are upregulated
in the NAFLD patients and positively correlated with disease severity
[18]. Herrero-Cervera et al. [19] have investigated the effect of LIGHT
deletion on the pathogenesis of NAFLD in mice and found that
LIGHT deficiency attenuated hepatic inflammation owing to
defective leukocyte infiltration in a high-fat diet (HFD) induced
model. These intriguing findings notwithstanding, it remains unclear
how LIGHT expression is regulated and whether LIGHT contributes to
hepatocyte apoptosis in the course of NAFLD pathogenesis. We
report here that downregulation of transcriptional repressor HES5
leads to LIGHT upregulation and may contribute to hepatocyte
apoptosis in the context of NAFLD.

RESULTS
LIGHT expression is elevated in the pathogenesis of
non-alcoholic fatty liver disease
In the first set of experiments, LIGHT expression was evaluated in
different models of non-alcoholic fatty liver disease. Six to 8-week-
old, male C57B6/L mice were fed a methionine-and-choline-
deficient (MCD) diet for 4 weeks when extensive hepatocyte
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apoptosis was observed [20]. Compared to the mice fed on a
control diet, the MCD diet-fed mice exhibited significantly higher
LIGHT expression, as measured by qPCR and ELISA, in the livers
(Fig. 1A, B). In the second model, 6–8-week-old, male C57B6/L
mice were fed a high-fat high-carbohydrate diet (HFHC) for
12 weeks, which has been reported to induce hepatocyte
apoptosis [21]. Significantly higher LIGHT expression, at both
mRNA level (Fig. 1C) and protein level (Fig. 1D), was detected in
the HFHC livers than in the control livers. Next, primary murine
hepatocytes were exposed to free fatty acids (palmitate), a
known risk factor for NAFLD [22] and inducer of hepatocyte
apoptosis [23]. As shown in Fig. 1E, F, PA treatment led to robust
induction of LIGHT expression in hepatocytes with the peak
occurring at 24 h.

LIGHT blockade might attenuate PA-induced hepatocyte
apoptosis
Having observed elevated LIGHT expression in the pathogenesis
of NAFLD, we asked whether LIGHT might contribute to
hepatocyte apoptosis in this process. Several different strategies
were exploited to interfere with LIGHT expression/signaling. A
spectrophotometric assay, based on the detection of chromo-
phore released by Caspase-3 catalyzed hydrolysis of its substrate,
was employed to measure Caspase-3 activity. PA treatment led to
increased apoptosis of primary murine hepatocytes as evaluated
by Caspase-3 activity (Fig. 2A). In addition, mRNA (Fig. 2B) and
protein (Fig. 2C) expression levels of pro-apoptotic genes were
also upregulated by PA treatment. LIGHT knockdown by siRNA
markedly attenuated PA-induced apoptosis of hepatocytes. Next,
an anti-LIGHT neutralizing antibody was added to the culture
media to prevent LIGHT from binding to its receptor [24].
Compared to the isotype IgG control, the LIGHT neutralizing
antibody mitigated PA-induced apoptosis of hepatocytes (Fig. 2D–F).
It is generally agreed that LIGHT exerts its pathobiological
functions by binding to the trans-membrane receptor LTβR [25].
Indeed, depletion of endogenous LTβR with RNAi similarly
ameliorated PA-induced apoptosis of hepatocytes (Fig. 2G–I).
Finally, an LTβR antagonist (LTβR-Ig) [26] was added to the culture
media along with PA. Blockade of the LIGHT-LTβR interaction and
presumably the downstream signaling cascade suppressed PA-
induced apoptosis of hepatocytes (Fig. 2J–L).

HES5 downregulation parallels LIGHT upregulation in the
pathogenesis of non-alcoholic fatty liver disease
As LIGHT expression was upregulated in the pathogenesis of
NAFLD, the following experiments were performed to examine the
potential mechanism(s). Ingenuity pathway analysis (IPA) revealed
that several E-box-binding HEY basic helix-loop-helix (bHLH)
transcription factors, considered to be mediators of the Notch
signaling pathway [27], were among the top upstream regulators
of LIGHT (Fig. 3A). Quantitative PCR (Fig. 3B, D) and western
blotting (Fig. 3C, E) profiling indicated that HES5, but neither HEY1
nor HEY2, was downregulated in the livers of the NAFLD mice
compared to the control mice in the MCD model and the HFD
model. Similarly, PA treatment decreased the expression of HES5,
but not that of HEY1 or HEY2, in primary murine hepatocytes
(Fig. 3F, G). In addition, knockdown of HES5 (Fig. 3H) further
augmented the induction of LIGHT expression by PA treatment in
hepatocytes (Fig. 3I, J, K). On the contrary, over-expression of
HES5, mediated by adenoviral delivery of a HES5 vector into
hepatocytes (Fig. 3L), repressed LIGHT induction by PA treatment
(Fig. 3M, N, O). Taken together, these data suggest that loss of
HES5 expression may contribute to LIGHT upregulation in
hepatocytes.

HES5 directly binds to the LIGHT promoter and represses
LIGHT transcription
Since HES5 appeared to be able to regulate LIGHT expression in
hepatocytes, we asked whether the regulation occurred at the
transcriptional level. A LIGHT promoter-luciferase fusion construct
(−2148/+1) was transfected into HepG2 cells with or without
HES5. As shown in Fig. 4A, HES5 over-expression repressed the
LIGHT promoter activity in a dose-dependent manner. To locate
the HES5 binding element in the LIGHT promoter, serial inward
deletions were introduced to the full-length construct. When the
deletion was extended beyond −441 relative to the transcription
start site, HES5 was no longer able to repress the LIGHT promoter
(Fig. 4B). Closer examination of the LIGHT promoter region
between −441 and −175 revealed a putative E-box (CACGTG) that
could serve as a binding site for HES5. Chromatin immunopreci-
pitation (ChIP) assay showed that HES5 occupancy on the E-box of
the LIGHT promoter was progressively decreased in response to
PA treatment, mirroring the changes of HES5 expression (Fig. 4C).

Fig. 1 LIGHT expression is elevated in the pathogenesis of non-alcoholic fatty liver disease. A, B C57B6/L mice were fed an MCD diet for
4 weeks. Hepatic LIGHT expression was examined by qPCR and ELISA. C, D C57B6/L mice were fed an HFHC diet for 12 weeks. Hepatic LIGHT
expression was examined by qPCR and ELISA. E, F Primary murine hepatocytes were treated with palmitate (0.3 mM) and harvested at
indicated time points. LIGHT expression was examined by qPCR and ELISA.
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Of interest, PA treatment markedly induced the accumulation of
acetylated histones H3 (Fig. 4D) and H4 (Fig. 4E) on the proximal,
but not the distal, LIGHT promoter; HES5 over-expression
suppressed the enrichment of both acetyl H3 and acetyl H4,
indicating that HES5 might regulate LIGHT transcription by
influencing histone (de)acetylation. To determine the specific

histone deacetylase(s) mediating HES5-dependnet LIGHT trans-
repression, hepatocytes were treated with either trichostatin A
(TSA), a pan-inhibitor for class I/II deacetylases, or EX-527, a
specific inhibitor for the class III deacetylase SIRT1. As shown in
Fig. 4F, G, co-treatment with EX-527, but not TSA, partially
reversed the repression of LIGHT expression by HES5 over-

Fig. 2 LIGHT blockade attenuates PA-induced hepatocyte apoptosis. A–C Primary murine hepatocytes were transfected with siRNA-
targeting LIGHT or scrambled siRNA (SCR) followed by treatment with PA (0.3 mM). Caspase-3 activity was measured by a fluorescence kit as
described in Methods. Gene expression was evaluated by qPCR and western blotting. D–F Primary hepatocytes were treated with PA (0.3 mM)
in the presence or absence of a LIGHT neutralizing antibody. Caspase-3 activity was measured by a fluorescence kit as described in Methods.
Gene expression was evaluated by qPCR and western blotting. G–I Primary murine hepatocytes were transfected with siRNA-targeting LTβR or
scrambled siRNA (SCR) followed by treatment with PA (0.3 mM). Caspase-3 activity was measured by a fluorescence kit as described in
Methods. Gene expression was evaluated by qPCR and western blotting. J–L Primary hepatocytes were treated with PA (0.3 mM) in the
presence or absence of a LIGHT neutralizing antibody. Caspase-3 activity was measured by a fluorescence kit as described in Methods. Gene
expression was evaluated by qPCR and western blotting.
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Fig. 3 HES5 downregulation parallels LIGHT upregulation in the pathogenesis of non-alcoholic fatty liver disease. A IPA analysis of
potential LIGHT upstream regulators. B, C C57B6/L mice were fed an MCD diet for 4 weeks. Hepatic gene expression was examined by qPCR
and western. D, E C57B6/L mice were fed an HFHC diet for 12 weeks. Hepatic gene expression was examined by qPCR and western. F, G
Primary murine hepatocytes were treated with palmitate (0.3 mM) and harvested at indicated time points. Gene expression was examined by
qPCR and ELISA. H–K Primary murine hepatocytes were transfected with siRNA-targeting LIGHT or scrambled siRNA (SCR) followed by
treatment with PA (0.3 mM). LIGHT expression was examined by qPCR, ELISA, and western blotting. L–O Primary murine hepatocytes were
transduced with Ad-HES5 or Ad-GFP followed by treatment with PA (0.3 mM). LIGHT expression was examined by qPCR, ELISA, and western
blotting.
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Fig. 4 HES5 directly binds to the LIGHT promoter and represses LIGHT transcription. A A LIGHT promoter-luciferase construct (−2186/+1)
were transfected into HepG2 cells with or without HEY5. Luciferase activities were normalized by protein concentration and GFP fluorescence.
B Different LIGHT promoter-luciferase constructs were transfected into HepG2 cells with or without HES5. Luciferase activities were
normalized by protein concentration and GFP fluorescence. C Primary murine hepatocytes were treated with palmitate (0.3 mM) and
harvested at indicated time points. ChIP assay was performed with anti-HES5 or IgG. D, E Primary murine hepatocytes were transduced with
Ad-HES5 or Ad-GFP followed by treatment with PA (0.3 mM). ChIP assay was performed with anti-acetyl H3 and anti-acetyl H4. Inset, global
histone H3/H4 and acetyl H3/H4 levels were examined by western blotting. F, G Primary murine hepatocytes were transduced with Ad-HES5
or Ad-GFP followed by treatment with PA (0.3 mM) in the presence of absence of TSA (100 nM) or EX-527 (1 μM). LIGHT expression was
examined by qPCR and ELISA. H–K Primary murine hepatocytes were transduced with Ad-HES5 or Ad-GFP, transfected with siRNA-targeting
SIRT1 or scrambled siRNA (SCR) and treated with PA (0.3 mM). SIRT1 knockdown efficiency was examined by western. LIGHT expression was
examined by qPCR, ELISA, and western blotting.
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expression. Consistent with this observation, SIRT1 knockdown
(Fig. 4H) also mitigated LIGHT repression by HES5 (Fig. 4I, J, K).

HES5 interacts with SIRT1 to repress LIGHT transcription and
antagonizes PA-induced apoptosis
In order to probe the possibility that HES5 may recruit SIRT1 to
repress LIGHT transcription, the following experiments were
performed. FLAG-tagged HES5 and Myc-tagged SIRT1 were co-
transfected into HEK293 cells. Immunoprecipitation experiments
demonstrated that an anti-FLAG antibody pulled down both HES5
and SIRT1 whereas an anti-Myc antibody precipitated both SIRT1
and HES5, suggesting that HES5 and SIRT1 could interact with
each other (Fig. 5A). Neither PA treatment nor HES5 over-
expression appeared to significantly alter SIRT1 expression
hepatocytes (Fig. 5B). However, PA treatment downregulated
SIRT1 recruitment to the proximal LIGHT promoter, which was
restored by HES5 over-expression (Fig. 5C).
We finally evaluated the functional interplay between HES5 and

SIRT1 in PA-induced hepatocyte apoptosis. Over-expression of
HES5 antagonized PA-induced hepatocyte apoptosis as evidenced
by caspase-3 activity (Fig. 5D) and expression levels of pro-
apoptotic genes (Fig. 5E); simultaneous SIRT1 knockdown,
however, abrogated the anti-apoptotic effect of HES5 over-
expression. Similarly, SIRT1 inhibition by EX-527 treatment
enabled apoptosis despite HES5 over-expression in PA-treated
hepatocytes (Fig. 5F, G). Combined, these data suggest that HES5
may recruit SIRT1 to repress LIGHT transcription and antagonize
hepatocyte apoptosis.

DISCUSSION
Lipotoxicity-associated apoptosis of hepatocytes is a hallmark
event in the pathogenesis of NAFLD [28]. Here we describe a novel
transcriptional mechanism that might contribute to free fatty acids
(PA) induced hepatocyte apoptosis (Fig. 5H). We show that LIGHT/
TNFSF14 expression is upregulated by pro-NAFLD stimuli in the
murine livers and by PA treatment in primary murine hepatocytes.
Although LIGHT was originally isolated from and characterized in T
lymphocytes [10], recent studies suggest that its expression could
be detected, at least under stress conditions, in a variety of
different cell types. Kim et al. have observed that white adipocytes
exposed to PA treatment upregulate the production and release
of LIGHT, which serves as a chemoattractant to promote immune
cell infiltration [29]. Grabiec et al. [30] have reported that PA
treatment induces LIGHT expression by more than threefold in
proliferating skeletal muscle cells, which likely accounts for
reduced viability of the myocytes. In agreement with our data,
Saunders et al. [31] have demonstrated that LIGHT expression is
upregulated in the murine livers by high-fat diet (HFD) feeding.
Despite these consistent observations, the potential effect of
LIGHT and its receptor LTβR on the full spectrum of NAFLD
pathogenesis has not been clearly and conclusively elucidated.
Heikenwalder and colleagues have shown that global LIGHT
deletion or hepatocyte-restricted LTβR deletion in mice attenuates
the development of HCC in mice following 12-month feeding on a
choline-deficient high-fat diet (CD-HFD) [32]. Of interest, LIGHT
deficiency attenuates liver injuries as assessed by plasma ALT
levels, which could be owing to reduced hepatocyte apoptosis
although it was not directly evaluated. On the contrary, the
LIGHT-/- mice placed on a 42% high-fat diet for 12 weeks displayed
exacerbated obesity and insulin resistance, two key features of
NAFLD, compared to the wild type mice [31]. As WT mice receiving
bone marrows from the LIGHT-/- mice phenocopy the LIGHT-/-

mice, it is proposed that hematopoietic cells likely mediate the
pro-NAFLD effects of LIGHT deficiency. More recently, Herrero-
Cervera et al. have fed the LIGHT-/- mice with a high-fat high-
cholesterol diet (HFHCD) for 16 weeks and discovered that LIGHT
inactivation improved glucose tolerance and insulin sensitivity

[19]. These discrepancies likely reflect the differences in the diet-
induced models. Alternatively, LIGHT in different cell lineages may
exert distinct or opposing effects on the pathogenesis of NAFLD.
We show here that LIGHT upregulation in hepatocytes can be

attributed to, at least in part, by loss of HES5 expression. HES5 can
be placed downstream of the Notch signaling pathway [33]. The
mechanism whereby HES5 is downregulated in the liver by pro-
NAFLD stimuli is not clear. A recent population study by Auguet
et al. has found an inverse correlation between hepatic Notch
signaling and NAFLD severity in women with obesity [34], which
likely explains HES5 downregulation in the pathogenesis of
NAFLD. HES5-null mice are viable but with some minor
neurological abnormalities [35, 36]. Although it remains to be
determined how HES5 deficiency would influence the pathogen-
esis of NAFLD in mice, two recent reports appear to support a role
for HES5 in the regulation of liver pathobiology. Yu et al. have
investigated the involvement of HES5 in hepatic ischemia-
reperfusion injury (IRI) and found that HES5, activated by canonical
Notch signaling, protects the mice from IRI by cleansing excessive
reactive oxygen species in hepatocytes [37]. On the other hand,
Luiken et al. have found that high HES5 expression predicts better
survival in a small cohort of patients with hepatocellular carcinoma
and that HES5 over-expression suppresses MYC-induced hepato-
carcinogenesis in mice [38]. As ROS accumulation represents a key
pathophysiological process and a driving force in NAFLD and the
development of HCC is the ultimate consequence of NAFLD, it is
tempting to speculate that enhancing HES5 activity may attenuate
NAFLD pathogenesis in vivo.
HES5 typically interacts with histone deacetylases to repress

target gene transcription [27]. Here, we show that HES5 recruits
the class III lysine deacetylase SIRT1 and cooperates with SIRT1 to
repress LIGHT transcription in hepatocytes. SIRT1 has long been
hailed as a master regulator of hepatic metabolism with a well-
established protective role in NAFLD [39]. Of interest, diminished
SIRT1 expression/activity in the NAFLD livers has been found to be
associated with increased hepatocyte apoptosis in mice and in
humans [40, 41]. Notably, SIRT1 may contribute to the regulation
of hepatocyte apoptosis in NAFLD via multiple mechanisms. For
instance, SIRT1 has been shown to deacetylate and consequently
activate NF-κB, which in turn promotes the transcription of several
anti-apoptotic genes in hepatocytes [42]. Alternatively, SIRT1 may
deacetylate and de-activate FOXO3a thereby excluding FOXO3a
from the nucleus and preventing FOXO3a from stimulating the
transcription of pro-apoptotic genes [43]. Our data offer additional
support for SIRT1 as a hepato-protector by reining in excessive
loss of hepatocytes due to lipotoxicity-induced apoptosis.
In conclusion, our data as summarized in this report point to a

HES5-SIRT1-LIGHT axis that can potentially regulate hepatocyte
apoptosis in NAFLD pathogenesis. There are lingering issues that
need to be addressed in future studies. For instance, although
previous investigations have indicated that LIGHT is capable of
modulating both the intrinsic and extrinsic apoptotic pathways
[14, 44, 45], it is not clear how LIGHT regulates apoptosis of
hepatocytes in the context of NAFLD. Several HES5 targeting
reagents, including neutralizing antibody and receptor antago-
nists, are currently available and proven effective in the
intervention of glomerulonephritis [46] and Sjögren’s syndrome
[47]. Our data certainly provide new incentive to exploit these
reagents as potential therapeutic solutions against NAFLD.

METHODS
Animals
All animal protocols were reviewed and approved the intramural Ethics
Committee on Humane Treatment of Laboratory Animals of Nanjing
Medical University. The mice were maintained in an SPF environment with
12 h light/dark cycles and libitum access to food and water. Non-alcoholic
fatty liver disease (NAFLD) was induced by MCD feeding or HFHC feeding
as previously described [48, 49].
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Fig. 5 HES5 interacts with SIRT1 to repress LIGHT transcription and antagonizes PA-induced apoptosis. A FLAG-tagged HES5 and Myc-
tagged SIRT1 were co-transfected into HEK293 cells followed by immunoprecipitation with anti-FLAG, anti-MYC, or IgG. B, C Primary murine
hepatocytes were transduced with Ad-HES5 or Ad-GFP followed by treatment with PA (0.3 mM). SIRT1 expression was examined by western.
SIRT1 binding to the LIGHT promoter was examined by ChIP. D, E Primary murine hepatocytes were transduced with Ad-HES5 or Ad-GFP,
transfected with siRNA-targeting SIRT1 or scrambled siRNA (SCR) and treated with PA (0.3 mM). Caspase-3 activity was measured by a
fluorescence kit as described in Methods. Gene expression was evaluated by qPCR. F, G Primary murine hepatocytes were transduced with
Ad-HES5 or Ad-GFP followed by treatment with PA (0.3 mM) in the presence or absence of EX-527 (1 μM). Caspase-3 activity was measured by
a fluorescence kit as described in Methods. Gene expression was evaluated by qPCR. H A schematic model.
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Cell culture
Primary hepatocytes were isolated from C57B6/L mice and cultured in
DMEM with 10% FBS as previously described [48, 50–52]. FLAG-tagged
Hes5 [53], LIGHT promoter-luciferase constructs [54], and MYC-tagged
SIRT1 [55] have been described previously. Small interfering RNAs were
purchased from Dharmacon. Transient transfections were performed with
Lipofectamine LTX (for DNA plasmid) or Lipofectamine RNAiMax (For
siRNA) per vendor recommendation. Luciferase activities were assayed 24-
48 hours after transfection using a luciferase reporter assay system
(Promega) as previously described [56–58].

Whole-cell lysate extraction, immunoprecipitation, and
western blotting
Whole-cell lysates were extracted by re-suspending the cell pellet in RIPA
buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1% NP40, 0.5% sodium
deoxycholate, 0.1% SDS) with freshly added protease inhibitor tablet
(Thermo Fisher) as previously described [59–66]. Specific antibodies or
pre-immune IgGs (P.I.I.) were added to and incubated with cell lysates
overnight before being absorbed by Protein A/G-plus Agarose beads
(Santa Cruz). Precipitated immune complex was released by boiling with
1x SDS electrophoresis sample buffer. Thirty micrograms of protein were
loaded in each lane and separated by 8% PAGE-SDS gel with all-blue
protein markers (Bio-Rad). Proteins were transferred to nitrocellulose
membranes (Bio-Rad) in a Mini-Trans-Blot Cell (Bio-Rad). The membranes
were blocked with 5% fat-free milk powder in Tris-buffered saline at
room temperature for half an hour and then incubated with anti-Hes5
(Abcam, ab194111), anti-SIRT1 (Santa Cruz, sc-74504), anti-FLAG (Sigma,
F3165), anti-MYC (Thermo Fisher, PA1-981), anti-LIGHT (Thermo Fisher,
PA5-104479), anti-PUMA (Proteintech, 55120-1), anti-BIM (Proteintech,
22037-1), and anti-β-actin (Sigma, A1978) overnight. Image J software
was used for densitometrical quantification and densities of target
proteins were normalized to those of β-actin. Data are expressed as
relative protein levels compared to the control group, which is arbitrarily
set as 1.

RNA isolation and real-time PCR
RNA was extracted with the RNeasy RNA isolation kit (Qiagen). Reverse
transcriptase reactions were performed using a SuperScript First-strand
Synthesis System (Invitrogen) as previously described [62, 67–72]. Real-
time PCR reactions were performed on an ABI Prism 7500 system with the
following primers: Light, 5’-GTTTCTCCTGAGACTGCATCAA-3’ and 5’-TGGCT
CCTGTAAGATGTGCTG-3’; Hes5, 5’-AGTCCCAAGGAGAAAAACCGA-3’ and 5’-
GCTGTGTTTCAGGTAGCTGAC-3’; Hey1, 5’-GCGCGGACGAGAATGGAAA-3’ an
d 5’-TCAGGTGATCCACAGTCATCTG-3’; Hey2, 5’-AAGCGCCCTTGTGAGGAAA
C-3’ and 5’-GGTAGTTGTCGGTGAATTGGAC-3’; Puma, 5’-AGCAGCACTTA
GAGTCGCC-3’ and 5’-CCTGGGTAAGGGGAGGAGT-3’; Bim, 5’-TCGTCCATC
GAGGATGACTTC-3’ and 5’-TGCAGAGAGAGGATACTGTAGAC-3’. Ct values of
target genes were normalized to the Ct values of housekeeping control
gene (18s, 5’-CGCGGTTCTATTTTGTTGGT-3’ and 5’-TCGTCTTCGAAACTCC
GACT-3’) using the ΔΔCt method and expressed as relative mRNA
expression levels compared to the control group, which is arbitrarily
set as 1.

Chromatin immunoprecipitation (ChIP)
Chromatin immunoprecipitation (ChIP) assays were performed essentially
as described before [57, 73–90]. In brief, chromatin in control and treated
cells were cross-linked with 1% formaldehyde. Cells were incubated in lysis
buffer (150mM NaCl, 25 mM Tris pH 7.5, 1% Triton X-100, 0.1% SDS, 0.5%
deoxycholate) supplemented with protease inhibitor tablet and PMSF.
DNA was fragmented into ~200 bp pieces using a Branson 250 sonicator.
Aliquots of lysates containing 200 μg of protein were used for each
immunoprecipitation reaction with anti-Hes5 (Abcam, ab194111), anti-
SIRT1 (Santa Cruz, sc-74504), anti-acetyl H3 (Millipore, 06-599), anti-acetyl
H4 (Millipore, 06-866), or pre-immune IgG. Precipitated DNA was amplified
with the following primers: #1, 5’-AGAGTGAGACAGGGCCAAGAC-3’ and 5’-
AAACCGAAATTGCTCAACACAC-3’; #2, 5’-AAACCCACAACGTATTA-3’ and
5’-ATGCAGCAATGAACAAC-3’.

Enzyme-linked immunosorbent assay
Secreted LIGHT levels were examined by ELISA as previously described
using a commercially available kit (R&D, catalog# DY1794-05) according to
vendor’s recommendations.

Fluorometric caspase-3 activity assay
Caspase-3 activity in cell lysates was assayed by a fluorometric kit using a
microtiter plate reader per vendor instructions (Abcam, ab39401). Briefly,
chromophore p-nitroaniline (p-NA) is conjugated to the Caspase-3
substrate DEVD. When incubated with cell lysates containing activate
Caspase-3, p-NA is cleaved from DEVD and released. The light emission is
measured at 400 or 405 nm on a a GloMax microplate reader (GM3000,
Promega). The data were expressed as relative Caspase-3 activity
compared to the control group arbitrarily set as 1.

Statistical analysis
Two-tailed student t-test or one-way ANOVA with post hoc Scheff´e
analyses was performed by SPSS software (IBM SPSS v18.0, Chicago, IL,
USA). Unless otherwise specified, values of p < 0.05 were considered
statistically significant.

DATA AVAILABILITY
The data that support the findings of this study are available upon reasonable
request.
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