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Abstract

Background: Covalent linkage of ubiquitin regulates the function and, ultimately, the degradation of many proteins by the
ubiquitin-proteasome system (UPS). Given its essential role in protein regulation, even slight perturbations in UPS activity
can substantially impair cellular function.

Methodology/Principal Findings: We have generated and characterized a novel transgenic mouse model which expresses
a previously described reporter for UPS function. This UPS reporter contains a degron sequence attached to the C-terminus
of green fluorescent protein, and is predominantly expressed in neurons throughout the brain of our transgenic model. We
then demonstrated that this reporter system is sensitive to UPS inhibition in vivo.

Conclusions/Significance: Given the obstacles associated with evaluating proteasomal function in the brain, our mouse
model uniquely provides the capability to monitor UPS function in real time in individual neurons of a complex organism.
Our novel mouse model now provides a useful resource with which to evaluate the impact of aging, as well as various
genetic and/or pharmacological modifiers of neurodegenerative disease(s).
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Introduction

The ubiquitin-proteasome system (UPS) regulates the degrada-

tion of numerous regulatory proteins that control signal transduc-

tion, cell cycle progression and differentiation, as well as apoptotic

pathways [1]. Ubiquitin ligases covalently link ubiquitin polypep-

tide chains to proteins, marking those proteins as substrates for the

proteasome and allowing for targeted and selective degradation. In

addition to degrading regulatory proteins, the UPS also degrades

misfolded and damaged proteins, thus collectively implicating the

UPS in a wide range of conditions, including neurodegenerative

diseases, cancer, inflammation, and autoimmunity [2,3].

The proteasome is a large, multisubunit complex containing a

common proteolytic core, the 20S proteasome, which is composed

of 28 subunits arranged in four, heptameric rings. The two outer

rings are each composed of seven alpha-type subunits (a1–a7),

while the two inner rings each contain seven beta-type subunits

(b1–b7). The proteolytic activity is enclosed within the inner rings,

with only the b1, b2, and b5 subunits possessing caspase-like,

trypsin-like, and chymotrypsin-like cleavage specificity, respective-

ly [4,5]. The activity of the 20S proteasome is modulated by a

variety of regulators, including the 19S/PA700 complex, PA200,

as well as PA28 a/b and PA28c [6–8]. The most common

regulator, the 19S/PA700 complex, contains six AAA-family

ATPases and is capable of binding both ends of the 20S

proteasome in an ATP-dependent manner, forming the 26S

proteasome, which is involved in the degradation of ubiquitinated

proteins [9–11]. Given that only the 19S/PA700 complex

possesses ATPase activity and binds to polyubiquitin chains,

alternative regulators of the 20S proteasome are believed to

modulate ubiquitin-independent functions of the proteasome.

A diverse group of neurological disorders that are characterized

by an accumulation of ubiquitinated proteins (reviewed in [12]),

suggesting that UPS dysfunction is likely to play a prominent role

in the pathogenesis of neurodegenerative diseases. UPS impair-

ment has been reported in aging [13], brain ischemia [14,15],

Huntington’s disease (HD) [16–19], Cruetzfeldt-Jakob disease

(CJD), Alzheimer’s disease (AD) [20–23], Amyotrophic Lateral

Sclerosis (ALS) [24], and Parkinson’s disease (PD) [25–30].

Utilizing an innovative approach, Bedford and colleagues

established a compelling link between dysfunction of the 26S

proteasome and the development of a-synuclein neuropathology

[31]. By genetically ablating a critical 19S/PA700 subunit (Rpt2/

PSMC1) in the forebrain, and thus preventing formation of the

26S proteasome, Bedford and colleagues reveal that loss of 26S

proteasome activity leads to synuclein and ubiquitin-positive

inclusions in neurons of the forebrain, in addition to a learning

deficit and progressive degeneration of forebrain regions. Intrigu-

ingly, as knockdown of Rpt2/PSMC1 expression leads to a specific

impairment of 26S proteasome activity, while activity of the 20S
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proteasome is unaffected, neurodegeneration can be conclusively

attributed to dysfunction of the 26S proteasome [31].

We have now generated a mouse model which will facilitate the

identification of suitable targets in neurodegenerative diseases in

which UPS impairment has been implicated. Development of

therapies against these targets relies on our ability to pinpoint the

exact stage of disease in which proteasome impairment contributes

to the pathogenesis. To this end, we have engineered a transgenic

mouse expressing a reporter (GFPm) sensitive to perturbations in

UPS function as demonstrated by Bence and colleagues [32]. In

contrast to other transgenic mouse models expressing UPS

reporters throughout the body [32,33], GFPm expression in our

model is controlled by the mouse prion promoter (MoPrP). Use of

the MoPrP for this UPS reporter system largely targets transgenic

expression to neurons, providing an ideal model to evaluate the

role of proteasome function in neuronal cell biology. In this report,

we describe the development and characterization of this model,

and determine that aging alone does not alter neuronal GFPm
expression in our mouse model.

Results

GFPm protein and RNA is expressed throughout the brain
in 2-month mice

The GFP-CL1 reporter proteasome substrate (GFPm) was

utilized to generate our transgenic model, termed Degron mice

[34]. Briefly, GFPm consists of a short degron sequence fused to

the COOH end of the green fluorescent protein sequence, causing

rapid ubiquitination and proteasomal degradation. High expres-

sion levels of this reporter, previously described by Bence and

associates [32], are well tolerated in mammalian cells, and the

system is very sensitive to the effects of proteasome inhibition.

Using western-blotting and qRT-PCR to evaluate regional

GFPm protein and mRNA transgene expression levels respectively

in the Degron model, GFP is most highly expressed in cortical,

subcortical, hippocampal, and cerebellar regions (see Figure 1A–B,

I). Although the mRNA levels of GFP are relatively high in the

spinal cord, GFP protein expression in the spinal cord is very low

in comparison to other regions of the brain. Although native GFP

fluorescence is preserved in free-floating tissue sections, it is

difficult to detect GFP without antibody-mediated amplification of

the GFP signal given the low level of GFPm expression under

conditions when proteasomal function is not impaired. Using

immunohistochemical techniques, we were able to detect GFP in

the GFPm transgenic mice (Figure 1D–E, G–H), while specificity

of the immunolabeling was demonstrated by the lack of

immunoreactivity in non-transgenic mice (Figure 1C, F).

Primary neuronal cultures from GFPm mice are sensitive
to proteasomal inhibition

To verify the sensitivity of the GFPm reporter to proteasomal

inhibition, as well as to monitor the kinetics of GFPm induction,

primary hippocampal neurons generated from GFPm mice were

treated with 5 mM MG132, a proteasomal inhibitor, and harvested

at various time points after treatment (Figure 2A). As shown in

Figure 2A, increased GFPm protein levels are first observed at

12 hours, and maximal induction is observed following 24 hours

of exposure to 5 mM MG132. In addition, primary hippocampal

neurons from GFPm mice exhibit a dose-dependent induction of

GFPm when exposed to various concentrations of MG132

(0.1 mM–10 mM) for 24 hours (Figure 2B). Upregulation of GFPm
is coincident with increased ubiquitination following proteasomal

inhibition (Figure 2C), confirming the physiological relevance of

GFPm. Upregulation of GFPm in response to proteasomal

inhibition is also observed in primary hippocampal neurons using

confocal microscopy (Figure 2D = untreated, 2E = 5 mM MG132

for 24 hours). We observed no difference in GFPm mRNA levels

between MG132-treated and untreated cells, confirming that the

increase in GFPm protein expression is due to a decrease in

proteasome-dependent degradation and not influenced by trans-

lational changes (data not shown).

GFPm mice are sensitive to proteasomal inhibition in vivo
To validate the GFPm reporter in vivo, we performed stereotaxic

injections of the proteasomal inhibitor MG132 into the cortices of

GFPm mice. Confirming our observations from primary neuronal

cultures, injection of MG132 led to a prominent increase in

cortical GFPm expression (Figure 3). In addition, given the extent

of GFPm upregulation in the MG132-injected mice, it was possible

to detect GFPm without antibody-mediated amplification of the

GFP fluorescent signal (Figure 3B–C). We detected only minimal

native GFP fluorescence in vehicle-injected (Figure 3A) and

uninjected controls (data not shown).

Effect of aging on GFPm protein and RNA expression
Given that aging has been reported to lead to UPS impairment

[13], we evaluated GFP protein (Figure 4; Figure S1) and mRNA

expression (Figure 5) in aged cohorts of Degron mice to determine

if aging alone would lead to an increase in GFP expression.

Surprisingly, as demonstrated in Figure 4, there was no change in

GFP protein expression between the ages of 6 to 18 months in the

cortex (F = 0.243, p = 0.788), hippocampus (F = 3.092, p = 0.075),

midbrain (F = 2.598, p = 0.108), or cerebellum (F = 3.377,

p = 0.062), which is consistent with results from immunohisto-

chemical studies on aging GFPm mice (Figure S1). In addition,

there was no observed difference in GFP accumulation with age

between male and female GFPm mice. As shown in Figure 5, there

was also no effect of aging on regional GFPm mRNA expression

(cortex, F = 0.963, p = 0.409; hippocampus, F = 0.831, p = 0.456;

cerebellum, F = 0.265, p = 0.771; midbrain, F = 0.22, p = 0.806),

indicating that aging alone does not significantly impair protea-

somal function in our mouse model.

Discussion

In this report, we describe the development, characterization,

and validation of our novel UPS reporter transgenic mouse model.

In contrast to earlier reports [13], we show that aging is not

associated with proteasome impairment in our mouse model,

though it is possible we may observe UPS dysfunction in mice aged

beyond 18 months [13]. However, our finding is consistent with a

recent study by the Dantuma lab using a transgenic mouse

expressing a different UPS reporter substrate [24]. Specifically,

the Dantuma group employed a model expressing a mutant form of

ubiquitin (G96V) fused to the N-terminus of GFP, which cannot be

cleaved and is instead polyubiquitinated on both the lysine 29 and

48 residues and targeted for proteasome-mediated degradation

[24,35]. Given that two different UPS reporter substrates do not

exhibit a significant accumulation with age, it is possible that

previous work evaluating proteasome activity and subunit expres-

sion in mouse brain homogenates does not accurately reflect UPS

function in vivo [13], making models such as ours valuable in

elucidating the in vivo roles of the UPS. Additionally, the recent

demonstration that specific inhibition of the 26S proteasome leads

to a neurodegenerative phenotype [31], as well as the finding that

neurons and glia display different basal levels of UPS activity [36], in

vivo models expressing UPS reporters are becoming increasingly

more valuable. These recent studies also highlight the major
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shortcomings of earlier reports assessing proteasome function in

brain homogenates utilizing enzymatic assays, which do not

discriminate between 26S versus 20S proteasomes, and also cannot

differentiate between various cell types.

The utility of UPS reporter mice has also increased in parallel

with the number of neurodegenerative diseases being linked to

UPS dysfunction, making it somewhat of a common theme

associated with neurodegeneration. For example, soluble Ab
oligomer formation and impaired proteasomal function are

observed concomitantly in the triple transgenic mouse model of

AD; however, proteasome activity is restored when soluble Ab
oligomers are converted into insoluble aggregates [23]. This

suggests that soluble oligomeric Ab species, and not the

monomeric or fibrillar form of Ab, inhibits proteasomal activity

[23]. UPS impairment has also been observed in cell culture and

animal models overexpressing mutant huntingtin protein [16–

19,34,37–39], and consistent with data proposing a protective

effect of aggregation due to sequestration of toxic species,

treatment with a compound that increases inclusion formation

prevents huntingtin-mediated proteasome inhibition [19]. How-

ever, the lack of GFP accumulation in an HD mouse model (R6/2)

crossed to our GFPm mice may be indicative of a complex

relationship between overexpression of mutant polyglutamine

proteins and UPS function [40]. Importantly for prion disorders

such as CJD, the abnormal prion conformer (PrPsc) inhibits the

26S proteasome in vitro, while either preincubation with an

oligomer antibody or heat denaturation of PrPsc alleviated this

inhibitory effect [22]. These findings indicate that a specific

conformation of an oligomeric PrPsc intermediate mediates the

proteasomal inhibitory effect [22]. Proteasome activity was also

significantly decreased in both cells exposed to prion-infected

mouse brain homogenates and in brain regions exhibiting

Figure 1. GFPm protein and RNA is expressed throughout the brain. A) Representative WB showing regional GFPm expression in a 2-month
old GFPm+/2mouse. B) Quantification of WB data performed by calculating GFP O.D. on brain regions from 4 mice heterozygous for GFPm transgene,
and normalizing values to GAPDH. A calibrator sample was included on each gel to compare protein expression across gels. C–E) Confocal
microscopy of GFP immunoreactivity in nontransgenic cortex (C), and the cortex (D) and brainstem (E) from a 2-month old GFPm+/2mouse
(green = GFP, red = MAP2). F–H) Lack of GFP immunoreactivity in nontransgenic cortex (F), compared to specific GFP labeling in cortex (G) and
brainstem (H) of a 2-month old GFPm+/2mouse. I) Bar graph depicting quantification of regional mRNA expression from 4 heterozygous 2-month old
GFPm mice. (Ctx = cortex, Sub = subcortex, Hipp = hippocampus, MID = midbrain, BS = brainstem, Cb = cerebellum, SC = spinal cord; error bars = SEM).
doi:10.1371/journal.pone.0005888.g001
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Figure 2. Primary neuronal cultures from GFPm mice are sensitive to proteasomal inhibition. A) Induction of GFPm following exposure to
5 mM MG132 is time dependent, with maximal induction observed at 24 hours. Synaptophysin was used as an endogenous loading control. B) GFPm
reporter is dose-dependently upregulated by 24 hours of MG132 treatment. C) Accumulation of GFPm reporter is coincident with increased
ubiquitination in the presence of MG132. D, E) Confocal microscopy of D = untreated and E = 5 mM MG132 for 24 hrs (red = MAP2, blue = DAPI,
green = GFP).
doi:10.1371/journal.pone.0005888.g002

Figure 3. GFPm mice are sensitive to proteasomal inhibition in vivo. A) Without antibody-mediated amplification, little GFP
immunofluorescence is observed in cortical neurons near injection site of vehicle-injected control. B, C) In contrast, GFP immunofluorescence is
easily detectable and significantly upregulated in cortical neurons near injection site of MG132-injected mouse. Scale bar, 20 mm.
doi:10.1371/journal.pone.0005888.g003
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significant prion neuropathology in mice infected with PrPsc. This

finding establishes a solid link between UPS impairment and

neurodegeneration associated with prion infection [22].

In regard to the link between UPS function and PD, multiple

publications have consistently reported greater proteasomal

impairment in the presence of aggregated a-synuclein in

comparison to its monomeric counterpart [41–43]. Although both

monomeric and aggregated a-synuclein have been shown to bind

the S69/TBP1 (Tat binding protein 1) subunit of the 19S/PA700

proteasome complex [42,44], only aggregated a-synuclein inhibits

ubiquitin-dependent and independent 26S proteasomal activity

[42]. Zhang and colleagues have demonstrated that a-synuclein

protofibrils inhibit the ubiquitin-independent degradation of

unstructured proteins by the 26S proteasome, though monomers

and dimers have no effect on the proteolysis of these substrates

[43]. In contrast, ubiquitin-dependent 26S proteasome activity is

slightly inhibited by monomeric and dimeric a-synuclein, while

protofibrillar a-synuclein potently inhibits the degradation of

Figure 4. No effect of aging on GFPm protein expression. Representative WB showing GFPm expression in cortex (Ctx), cerebellum (Cb),
midbrain (MID), and hippocampus (Hipp) from 6 to 18 months of age in heterozygous GFPm mice. Quantification of GFP O.D. was normalized to actin
to control for protein loading (each bar represents average GFP expression for n = 6 mice [3 males, 3 females] at each time point, with error bars
depicting SEM).
doi:10.1371/journal.pone.0005888.g004
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polyubiquitinated proteins. Given that a-synuclein protofibrils

bind the 19S/PA700 regulatory complex of the 26S proteasome,

as well as p21 (an unstructured proteasomal substrate) and K48-

linked polyubiquitin chains, it is proposed that a-synuclein

protofibrils inhibit 26S proteasome activity by interfering with

substrate translocation into the proteasome core, achieved through

direct interactions with the proteasome, as well as through the

sequestration of proteasomal substrates [43,45].

The GFPm UPS reporter mice described in this report provide a

novel resource with which to monitor the activity of the 26S

proteasome in vivo. A number of mouse models are available for

the neurodegenerative diseases in which UPS dysfunction has been

implicated. Crossing our Degron model with these neurodegen-

erative disease models, such as those for AD, will allow a unique

opportunity to directly follow the UPS impairment in relation to

neuropathological, biochemical, and behavioral features of the

model system. Such studies should help investigators understand if

and when the UPS plays a key role in disease pathogenesis.

Ultimately, such findings with our transgenic mouse model could

be utilized to identify key therapeutic timepoints in the disease

process, and to develop and screen therapeutic agents for the

potential to modulate UPS function at these timepoints.

Materials and Methods

Generation of GFPu construct/mice
To generate transgenic mice carrying the GFPm reporter

(described in [34]), the GFP-CL1 sequence was cloned into the

EcoR1 site of the mouse prion promoter construct [46]. The

construct cDNA was linearized with NotI, gel purified, and injected

into the pronuclei of fertilized eggs harvested from C57BL6/

DBA2/SW mice. Founder mice were bred to C57BL6 mice, and

progeny were screened at 3 weeks of age for integration of the

transgene using PCR and dot blotting analysis of genomic DNA

obtained from tail biopsies. 10 founder lines were expanded for

further characterization, and the founder line with the highest

level of expression was then used for all subsequent experiments.

Genotyping/GFP primers
To genotype mice, tail biopsies from 3 week old mice were

digested overnight at 55uC in Direct PCR Tail lysis buffer

(Qiagen) and proteinase K (Qiagen). Samples were then cooled to

room temperature, and PCR performed using GFP specific

primers (59GTG ACT CGA GAG ATC CGC TAG CGC TAC C

39) and (59 CAC CTT GAT GCC GTT CTT CT 39) detecting a

0.5 kB GFP band, against an internal 0.3 kB b-actin control (59

CGG AAC CGC TCA TTG CC 39) and (59 ACC CAC ACT

GTG CCC ATC TA 39). Tail DNA combined with dH2O, 106
PCR buffer (Qiagen), Q solution, each of the four primers, dNTPs,

and Taq (5 U/ml; Qiagen). DNA samples were then denatured for

4 minutes at 94uC using an Eppendorf mastercycler (epgradient S

model), undergo 3 cycles of 94uC for 15 seconds, 65uC for

30 seconds, and 72uC for 45 seconds, 10 cycles of 94uC for

15 seconds, 65uC for 30 seconds, and 72uC for 30 seconds, 20

cycles of 94uC for 15 seconds, 60uC for 30 seconds, and 72uC for

45 seconds, before a final 72uC extension step for 10 minutes.

Primary neuronal culture
For primary neuronal cultures, hippocampi from postnatal day

2 mouse pups were removed and stored at 4uC in HIBERNA-

Figure 5. No effect of aging on GFPm RNA expression. Regional GFPm mRNA expression was evaluated using GAPDH as an endogenous
loading control for each sample, and the lowest expressing sample for each region used as the calibrator sample for that respective brain region.
Samples were loaded in quadruplicates, and an n = 6 mice used to determine RNA expression at each time point. Quantification of relative mRNA
expression revealed no effect of aging in any of the brain regions evaluated (cortex, F = 0.963, p = 0.409; hippocampus, F = 0.831, p = 0.456;
cerebellum, F = 0.265, p = 0.771; midbrain, F = 0.22, p = 0.806).
doi:10.1371/journal.pone.0005888.g005

Aging and UPS Function

PLoS ONE | www.plosone.org 6 June 2009 | Volume 4 | Issue 6 | e5888



TETM A media without calcium (BrainBits), supplemented with

B27 (Invitrogen), 0.5 mM GMAX (GIBCO), and gentamicin

(GIBCO). Excised hippocampi were digested in papain (2 mg/

mL; Fisher Scientific), triturated with a Pasteur pipet (bore size

0.8–1 mM), centrifuged to collect cell pellet, and resuspended in

Neurobasal A (Invitrogen), supplemented with B27, GMAX,

gentamicin, and bFGF (Invitrogen). Following determination of

cell number, neurons were plated on poly-D-lysine-coated

coverslips within 24-well plates for immunocytochemical studies

(seeded at a density of 2.56104 cells/coverslip), or seeded on poly-

D-lysine coated 6-welll plates for immunoblotting at a seeding

density of 2.56105 cells/well.

Mouse sacrifice/harvest
For immunohistochemical studies, mice were terminally anes-

thetized with sodium pentobarbital (i.p. 45–80 mg/kg), and when

unresponsive to toe pinch, a longitudinal incision was made over

the sternum, the diaphragm and ribs were cut, and the sternum

peeled back to expose the heart. A 25-gauge butterfly needle

attached by tubing to a perfusion pump was placed in the left

ventricle, and an incision made in the right atrium. The mice were

then transcardially perfused with saline (2.25 mL/min for

5 minutes until all blood was flushed from the system), followed

by fixative (4% paraformaldehyde; approximately 2.25 mL/min

for 15 minutes). Brains and spinal cords were then removed and

placed in 4% paraformaldehyde for 24 hours, and cyropreserved

in 30% sucrose until sectioning.

For regional protein and mRNA analysis, mice were sacrificed by

CO2 asphyxiation, and brains were rapidly removed and both

halves dissected on ice into 6 regions (cortex [CTX], subcortex

[SUB; includes striatum, thalamus, and hypothalamus], hippocam-

pus [HIPP], midbrain [MID], brainstem [BS], cerebellum [CB]).

Spinal cords were also excised, and all samples frozen on dry ice.

Immunohistochemistry/immunofluorescence and
confocal microscopy

Fixed brains were sectioned at 40 microns on a sliding

microtome (Leica SM2400), and stored in 0.12 M PBS with

0.02% sodium azide. Free-floating sections were washed in

0.05 M PBS with 0.02% triton X (PBS-Tx), blocked for 1 hour

in 10% normal goat serum (PBS-Tx), and incubated overnight in

anti-MAP2 (1:500, Sigma-Aldrich) or anti-GFP (1:100, Chemicon)

diluted in 1% normal goat serum (PBS-Tx). On the following day,

sections were washed in PBS-Tx, incubated for 1 hour in goat

anti-rabbit Alexa Fluor 568 (1:1000, Molecular Probes) or goat

anti-mouse Alexa Fluor 488 (1:1000, Molecular Probes) diluted in

1% normal goat serum (PBS-Tx). Sections were then washed in

PBS-Tx, incubated for 10 minutes in Hoescht 33258 (1:10000,

Invitrogen) diluted in PBS-Tx. Sections were again washed in

PBS-Tx, and then mounted onto Superfrost plus microscope slides

(Fisherbrand). After sections were dry, slides were coverslipped

with Fluoromount G (Southern Biotech). The depicted GFP

immunofluorescence from the MG132-stereotaxic injections into

the cortex of GFPm mice did not require antibody amplification.

Immunoblotting procedures
Each of the 6 sub-dissected regions from the left hemisphere and

the spinal cord were weighed and homogenized in 106volume of

homogenate buffer (50 mM Tris-HCl [pH 7.4], 300 mM NaCl,

5 mM EDTA, 1% Triton-X-100, 1% SDS, 1 mM PMSF,

protease inhibitor cocktail, phosphatase inhibitors I and II [Fisher

Scientific]). Following sonication, samples were centrifuged at

16,000 g for 15 minutes, and a BCA protein assay (Thermo

Scientific) performed on the supernatant. 30 mg of protein from

each sample was diluted in dH2O, 26 tris-glycine SDS sample

buffer (Invitrogen), and 5% b-mercaptoethanol (Sigma-Aldrich),

and heat-denatured for 5 minutes at 95uC. Samples were run on

4–20% tris-glycine gels (Invitrogen), and transferred to PVDF

membrane (Millipore). Membranes were blocked in 5% milk in

TBS/0.1% Triton-X-100, and incubated overnight in anti-GFP

(1:2000; Invitrogen), anti-actin (1:10,000; Sigma), or anti-GAPDH

(1:10,000; BioSource) at 4uC. Membranes were incubated in

HRP-conjugated secondary antibodies (1:5000; Jackson Immuno)

for 1 hour at room temperature, and detected by ECL

(PerkinElmer).

qRT-PCR
Total RNA was extracted from the 6 brain regions (right

hemisphere) and spinal cord using the TRIzol/Total RNA

Purification System (Invitrogen). Concentration of RNA was

determined using Nanodrop, and 0.5 ug RNA was converted to

cDNA using the SuperScript III First-Strand Synthesis System

(Invitrogen). Real-time PCR was performed on an ABI7900 using

SYBR green (Applied Biosystems) as the detector. Samples were

run in quadruplicate, with GAPDH used as an endogenous

calibrator for each sample. The SYBR green fluorescent signal was

analyzed using SDS2.2.2 software, and relative quantities of GFPm
were determined.

Stereotaxic surgical procedures
For stereotaxic injections, 1 month old GFPm transgenic mice

were anesthetized with isoflourane (3% for induction, 1.5% for

maintenance) and deemed anesthetized when the corneal eyeblink

and ear-twitch reflexes could no longer be elicited by touch. Mice

were then placed in a Kopf stereotaxic instrument, and the scalp

cleaned with iodine and isopropanol. A midsagittal longitudinal

incision was made in the scalp to expose the skull, and two small

burr holes drilled through the skull (from Bregma, anterior posterior

21.6, mediolateral 61.5, dorsal-ventral 21.5). A 10 mL Hamilton

syringe mounted in an UMP2 Microsyringe injector and Micro4

Pump (World Precision Instruments, Sarasota FL) on the Kopf

apparatus was inserted into the right cortex, and 2 mL of vehicle

(10% DMSO) or MG132 (5 mM in 10% DMSO) injected into the

brain at a flow rate of 0.2 mL/min. The procedure was repeated to

inject vehicle/MG132 into the left cortex. Following the second

injection, Michel clips were used to close the scalp, and mice were

injected with sterile saline for hydration, and placed on a hot pad

under a heating lamp for 2 hours. Mice were also administered

acetaminophen in gelatin ad libitum both pre- and post-operatively

for pain management, and monitored for signs of distress. Mice

were sacrificed by CO2 asphyxiation 24 hours post-injection.

Aseptic techniques were used for all surgical procedures, and all

mouse procedures were performed under an approved IACUC

protocol and in accordance with guidelines established by the NIH.

Supporting Information

Figure S1 No effect of aging on GFP immunolabeling in GFPm
mice. GFP immunoreactivity in cortex (Ctx), midbrain (MID), and

hippocampus (Hipp) from 2 to 18 months of age in heterozygous

GFPm mice. Magnification, 106; inset, 406.

Found at: doi:10.1371/journal.pone.0005888.s001 (15.31 MB

TIF)
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