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The multifunctional role of mast cells (MCs) in the immune system is complex and has not fully been explored. MCs reside in
tissues and mucous membranes such as the lung, digestive tract, and skin which are strategically located at interfaces with the
external environment. These cells, therefore, will encounter external stimuli and pathogens. MCs modulate both the innate and
the adaptive immune response in inflammatory disorders including transplantation. MCs can have pro- and anti-inflammatory
functions, thereby regulating the outcome of lung transplantation through secretion of mediators that allow interaction with
other cell types, particularly innate lymphoid cells (ILC2). ILC2 cells are a unique population of hematopoietic cells that
coordinate the innate immune response against a variety of threats including infection, tissue damage, and homeostatic
disruption. In addition, MCs can modulate alloreactive T cell responses or assist in T regulatory (Treg) cell activity. This paper
outlines the current understanding of the role of MCs in lung transplantation, with a specific focus on their interaction with
ILC2 cells within the engrafted organ.

1. Introduction

1.1. Mast Cells. The multifunctional role of mast cells (MCs)
within the immune system has been clarified since their dis-
covery by Paul Ehrlich in 1878 [1–3]. CD34+ progenitor cells
circulate in the blood and migrate into peripheral tissues
where they further differentiate into mature MCs under
the influence of various tissue-specific factors such as extra-
cellular matrix proteins, adhesion molecules, cytokines, and
chemokines [4]. MCs act as key immune and inflammatory
sentinels by initiating and shaping the inflammatory response

through the rapid activation of IgE-dependent and -indepen-
dent innate immune pathways [5–8]. The most well-known
MC activation pathway involves IgE/FcϵRI signaling, but
MCs are also triggered via pattern recognition receptors such
as Toll-like receptors (TLRs), complement, neuropeptides,
cytokines, and many other stimuli [9].

MCs are present in all tissues and are particularly abun-
dant in tissues and mucous membranes, such as the lung and
digestive tract. MCs have this strategic later location in order
to respond to external inflammatory stimuli and pathogens
[4, 10, 11]. MCs can produce growth factors, costimulatory
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molecules, and numerous pro- and anti-inflammatory medi-
ators. These cells are heterogeneous in nature [12], and the
response to an external stressor may be altered by the local
microenvironment. MCs release >200 mediators including
prestored factors, such as histamine [2] and tryptase [13],
as well as de novo synthesized such as chemokines and cyto-
kines in response to allergic or nonimmune triggers [14, 15].

The important role of MCs in both the innate and
adaptive immune responses [16–19] has led to speculation
that MCs may play a crucial role in organ allograft rejec-
tion [17, 20–23]. In contrast to other immune-competent
organs, the transplanted lung is constantly exposed to air-
borne antigens that may activate the local immune response
and thereby modulate MC activity [10, 24–29]. For exam-
ple, activated MCs release IL-2 [30], IL-7 [31], IL-3, IL-6,
IL-9, IL-10, IFN-γ, and TNF-α and chemokines (CXCL8,
CCL2, and CCL5) which have all been implicated in organ
transplant and rejection [10, 14, 15, 25, 32]. In addition,
MCs may enhance chronic rejection by the induction of
fibrotic pathways [33] in the lung [29], kidney [34–36],
and heart [37, 38].

Regulatory T cells (Tregs) are essential in maintaining
tolerance to self-antigens, preventing excessive immune
responses and in abrogating autoimmunity during graft
rejection [39–41]. The use of MC-deficient mice has
emphasized the important role of MCs in the activation
of Treg-mediated immunoregulatory activities during trans-
plant rejection [42]. In agreement with this, the absence of
MCs is associated with significantly reduced cardiac allo-
graft survival after heterotopic heart transplantation in rats
[43]. Mechanistically, this may involve the ability of MCs to
act as antigen-presenting cells and to mediate allograft reac-
tions [12, 44].

Activated MCs influence the activity of many other cell
types [45]. In turn, the function of MCs is controlled by fac-
tors such as proteases, complement [46], TLR ligands [47],
and stem cell factor (SCF) released by other immune cells
and by structural cells such as fibroblasts and smooth muscle
cells. These factors either prime MCs for mediator release or
directly induce MC degranulation [48].

MCs are histologically categorized into two phenotypes
based on their protease content termed MC-tryptase
(MCT) and MC-tryptase/chymase (MCTC) [24]. However,
it remains unclear which MC phenotype is involved in reg-
ulating transplant rejection. The phenotype of MCs varies
over time following transplantation with the MCTC being
the main phenotype implicated in chronic rejection after
fibrosis in the transplanted kidney [49]. Indeed, the pheno-
typic shift from MCT to MCTC cells may be associated with
a progressive and potentially irreversible decline in allograft
function [50].

These data together indicate that MCs are important
immune effector cells during lung allograft rejection, but
the role of these cells in organ transplant rejection is still
not completely clear. Type 2 innate lymphoid cells (ILC2)
cells are found in the vicinity of MCs in lung tissue, and
both cell types can communicate with each other [51]. In
addition, ILC2s are involved in epithelial and lung tissue
repair [52, 53] and ILC2 are found in the lung parenchyma

and bronchoalveolar lavage (BAL) fluid of subjects under-
going lung transplant [54]. In this review, we discuss
how MCs and ILC2 can modulate transplant rejection of
the lung.

1.2. Innate Lymphoid Cells (ILCs). ILCs are a novel population
of hematopoietic cells [55] that develop from common lym-
phoid progenitors in fetal liver and bone marrow [56, 57].
These cells are multifunctional and found throughout the
body but are more prominent at barrier surfaces such as
the lung and mucosal membranes [54, 58, 59]. Three types
of ILCs exist (ILC1, 2, and 3), and these are functionally anal-
ogous to T-helper (Th) 1, Th2, and Th17 cell subsets [54, 60].
ILCs have a lymphoid morphology and release similar pro-
files of cytokines and eicosanoids as their respective Th cells
but lack the T cell antigen receptor [60, 61]. Exposure of
ILC progenitors (ILCP) to cytokines such as IL-25 and
IL-33 induces ILC2 cells which are able to release cyto-
kines IL-5, IL-9, and IL-13 [32, 54].

In the lung, ILC2s are mainly localized to the epithe-
lium and perform a variety of protective immune functions
[62, 63]. For example, ILC2s and their cytokines play critical
roles in the protection of airway epithelial cells (ECs) against
pathogens and regulate the repair of damaged cells [52, 64].
Since ILC2s have a protective role by organizing the innate
immune response against infection and tissue damage, it is
likely that they are involved in regulating transplant rejection
[54, 65, 66].

Expansion of ILC2s is driven by exposure to numerous
immune factors including the cytokines IL-2 [67], IL-4
[68], IL-25, IL-33 [69–71], thymic stromal lymphopoietin
(TSLP) [72], IL-9 [52, 73], IL-1β [69], and TNF-like ligand
1A [55]. In addition, eicosanoids such as prostaglandin D2
(PGD2) and leukotriene D4 (LTD4) [69] can drive the devel-
opment of ILC2s. In contrast, inflammatory or immune sup-
pressors such as montelukast, corticosteroids, prostaglandin
L2, IL-27, IFN-γ, and lipoxin A4 suppress ILC2 proliferation
and cytokine production [70, 74, 75] (Figure 1).

2. Role of MCs and ILC2s in Rejection/
Survival of the Transplanted Lung

Since the first successful lung transplant in 1983 [76], the
number of operations has grown substantially [77]. A lung
transplant is generally the final treatment option for patients
with end-stage lung disease. Various types of injury can
damage a grafted organ. Some processes are due to the sur-
gical procedure itself, for example, the sectioning of vessels
and nerves or, in the transplanted lung, of the conducting
airways. Other processes are inflammatory in nature, due
to reperfusion of the graft or the onset of early allogeneic
reactions. The lack of efficient tissue repair mechanisms
could severely impair graft functioning, and the events
involved in restoration of the transplanted airways utilize a
variety of cell types [78].

2.1. The Role of IL-33 and IL-13. After lung transplant, IL-33
is released into the extracellular space which results in the
activation of immune and inflammatory cells such as ECs,
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dendritic cells (DCs), MCs, ILC2s, and CD4+ T cells [79–82].
IL-33 is an alarm signal that triggers ECs in the lung and
other cells present at the mucosal barrier, to reverse or pre-
vent cell damage [20, 83, 84]. In addition, IL-33 recruits
and activates cytokine production by ILC2s and by MCs
[80, 82]. For example, ATP, released from the damaged epi-
thelium and acting via the P2X7 receptor [66, 69, 83], in
combination with IL-33, triggers the production of IL-13 by
ILC2s. MCs can also release IL-33 following IgE cross-
linking [51, 85].

IL-33, therefore, acts as a “sensor of cell injury” via MCs
[86], and, in a feed-forward manner, activated MCs secrete
additional IL-33 [20, 33, 85] which further enhances IL-13
release. IL-13 can prolong allograft survival associated with
inhibition of IL-12 and TNF-α expression by DCs and mac-
rophages. IL-13 does not directly activate T cells as they do
not express the IL-13 receptor [87] indicating that the precise
site of action of IL-13 requires further investigation. This is
important since IL-13 is involved in transplant rejection as
well [33] possibly through an effect on fibrosis [88]. IL-33
can expand and promote Tregs [80, 85, 89] and decrease
the number of Th1 cells and their release of cytokines
[80, 89]. Thus, IL-33 is implicated in the maintenance of
allograft tolerance.

2.2. The Role of the IL-9/Th9 Nexus. IL-9 promotes the activa-
tion of both MCs [90] and ILC2s [91]. MCs produce IL-2

when activated by IL-9 released from IL-33-stimulated
ILC2s. This MC-derived IL-2 release leads to expansion of
proinflammatory CD25+ ILC2s and the release of cytokines
from ILC2s which in turn activate Th9 cells [51]. Activated
Th9 cells, in turn, release IL-9 which further enhances ILC2
and MC activation in the airways in a feed-forward manner
[52]. In addition, IL-9 acts via MCs to induce tolerance in
Tregs [42, 90] (Figure 1). IL-9 is likely to be important in lung
rejection as anti-IL-9 treatment, at least in mice, reduced air-
way remodeling and TGF-β1 expression, and improved lung
function in models of lung transplant rejection [92]. Impor-
tantly, there was a correlation between the reduction in MC
numbers and decreased airway remodeling further indicating
the important role of MCs in fibrosis [93]. This indicates that
the IL-9/Th9 nexus can modulate transplant rejection by
affecting the interaction between MCs and ILC2 [52].

2.3. Other Mediators. ILC2s express important immune
molecules including GATA3, RORα, BCL11B, EST1, G9a,
and GFI1 [54, 69, 70]. In general, ILC2s respond rapidly
to the presence of numerous factors involved in cell death
via damage-associated molecular patterns (PAMPs) by
releasing numerous cytokines that enable crosstalk with
other immune cells [69]. Thus, MCs and ILC2s work coor-
dinately to provide the optimal immune response needed to
control survival or prevent rejection during transplant of
the donor organ [91].
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Figure 1: The role of Th9 cells and IL-9 in lung transplantation. IL-9 released by Th9 cells act onMCs to produce IL-2. MC-derived IL-2 leads
to the expansion of CD45+ ILC2, which enhances the activation of Th9 cells and the further release of IL-9 in a feed-forward manner. In
addition, IL-2 released from MCs induces tolerance in Treg cells and regulates transplantation survival. Activated ILC2s, MCs, and Th2
cells release Areg which is important in promoting EC repair from injury. Damaged epithelial cells, seen during transplant rejection,
release IL-33 and ATP, which together can act on ILC2 and MCs to enhance their activity. A number of inhibitors including montelukast,
IL-27, corticosteroid, PGI2, and lipoxin A4, can suppress the activation and/or proliferation of ILC2s and their release of inflammatory
mediators. Abbreviations: Areg: amphiregulin; ECs: epithelial cells; IL: interleukin; ILC2: type 2 innate lymphoid cell; MCs: mast cells;
PGI2: prostaglandin I2; Th9: T-helper type 9; Treg: T regulatory cells.
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Human MCs produce lipid mediators such as PGD2 and
LTD4 following FcεRI activation [31, 94–96]. PGD2 stimu-
lates ILC2 migration into the lung and drives the production
of type 2 cytokines via its receptor CRTH2 [97] which is a
distinctive marker of human ILC2s [31, 98]. In contrast,
IL-2 produced by ILC2s assists Treg survival [30, 99] and
thus supports survival of the transplanted organ. In addition,
activated lung ECs release PGD2 to enable recruitment of
ILC2s, basophils, MCs, and Th2 cells into the inflamed
airway [100].

ILC2s produce amphiregulin (Areg) which promotes
epithelial cell repair [34, 101, 102]. Areg is also produced
by MCs and Th2 cells which further indicates a critical
feed-forward interaction within the MC-ILC2 nexus [91,
101, 103] (Figure 1). Conversely, ECs release factors such
as IL-25, IL-33, and TSLP which drive ILC [91, 104]. IL-25
and IL-33 induce different types of ILCs. IL-33 induces ILC2s
whereas IL-25 preferentially elicits multipotent progenitor-
(MPP-) type 2 cells, a new population of innate cells which
also promote type 2 immunity [105]. IL-7 has also been
described as a crucial factor in the development of ILC2s
[31]. The in vivo sources of IL-7 required for ILC develop-
ment are unknown, but IL-7 is critical for the generation
and maintenance of all lymphocytes and is expressed by
stromal cells [106].

These data highlight the interplay between MCs and
ILC2s in maintaining the integrity of the respiratory epithe-
lium and restoring the lung during infection of the trans-
planted lung [78, 107, 108] (Figure 2).

3. Possible Role of MCs and ILC2s in Lung
Allograft Rejection

Due to the lung’s distinctive anatomic position, long-term
graft survival is comparatively lower than with other solid
organs such as the heart, liver, and kidney [76]. According
to the 2016 report, a half-life of heart, kidney, and liver trans-
plants endures around 12 years but the median survival after
lung transplantation in the same condition is around 5.8
years [109]. This may result from injury occurring during
the lung transplant and the lack of organized tissue repair
mechanisms which together damage the grafted organ [78]
or an immunological reaction to the foreign organ leading
to graft dysfunction and failure [110].

3.1. The Role of Fibrosis. Lung allograft rejection occurs due
to both acute (AR) and chronic (CR) rejection processes
[111–113]. Lung MCs play a dual role in the transplanted
lung being implicated in both the induction of organ rejec-
tion and the induction of immune tolerance [10, 14, 50]. In
contrast to the role of MC in AR, various studies have corre-
lated CR with the fibrosis-inducing activity of MCs [10]. The
proinflammatory cytokines TGF-β, IL-13, IL-1β, IL-17A,
and IL-37 all contribute to the fibrotic [20]. IL-25 is also
believed to be important as it induces a dramatic increase
in both IL-13 and TGF-β expression in the lungs [70, 114].

Obliterative bronchiolitis (OB) occurs when graft sur-
vival is compromised after transplant of the donor lung
[27, 113]. OB is the major cause of allograft rejection

affecting at least 60% of recipients within 5 years of trans-
plant [27, 115]. The release of profibrotic mediators such as
TGF-β1 and basic fibroblast growth factor (bFGF) by MCs
led to the examination of MCs in OB [116]. In addition to
TGF-β1 and bFGF, other MC mediators including IL-4,
TNF-α, histamine, heparin, chymase, and cathepsin G stim-
ulate fibroblast proliferation and/or induce collagen synthesis
[11, 31, 115, 117].

MCs and other immune cells accumulate around the ves-
sels and airways during AR [118, 119]. Furthermore, MC
hyperplasia occurs in areas of luminal fibrosis in both AR
and CR of human lung allografts and is associated with the
release of bFGF and histamine [29]. MC stabilization using
cromolyn prevented the development of chronic lung allo-
graft rejection in rats, again emphasizing the critical role of
MCs in this process [95, 96]. Not only has bFGF been impli-
cated in driving fibrosis-induced chronic lung allograft rejec-
tion but enhanced expression of bFGF may be a biomarker of
rejection [37, 120]. Finally, TGF-β1 acts cooperatively with
IL17 in fibrosis [115] and clinical observations indicate that
TGF-β1 expression predicts the failure/success of the organ
transplant [115, 121].

3.2. The Role of Th2 Cytokines. The cytokines IL-4 [10] and
IL-13 [98], produced directly or indirectly by MCs and
ILC2, are important during the development of chronic lung
rejection [115]. IL-13 can drive transplant rejection due to
fibrosis [31, 98]. ILC2-derived IL-13 promotes the migration
of activated DCs into the local lymph nodes and thereby
induce naïve T cells to differentiate into Th2 cells and
increase IL-13 and IL-4 production [31, 122]. MC-derived
IL-4 is an inducer of fibroblast activation during the develop-
ment of chronic rejection [123].

In AR of lung allografts, MCs may increase allo-specific T
cell responses which are unfavorable for the engrafted organ
[22]. MCs activate T cells by presenting the antigen either
directly in the context of MHC II [27, 124] or indirectly
through the release of cytokines [10]. Numerous mediators
produced by MCs and/or ILC2s [10, 31, 55, 60] have been
implicated in either the survival or the rejection of trans-
planted lungs [125]. Many of these mediators act on T cells;
for example, IL-4 and TNF-α can augment MHC-II on
antigen-presenting cells (APC) and in the presence of IFNα
induce T cell proliferation [116]. In addition to TNF-α
inducing the recruitment of T cells and enhancing their inter-
action with antigen-presenting cells [10], MC-derived TNF-α
can drive donor-derived DCs toward a tolerogenic pheno-
type [126]. Conversely, a reduction in the release of IL-10
and TGF-β1 from T cells supports the development of acute
rejection [10] in part by effects on Tregs [127].

In summary, donor T cells are continually primed and
activated to react against the host causing graft-versus-host
disease (GvHD) that leads to tissue damage and death
[40]. Finally, MC-derived mediators can upregulate the
expression of adhesion molecules such as VCAM-1 and
ICAM-1 on endothelial and granulocytes and enhance the
trans-endothelial migration of T cells. This effect of MC
products on adhesion molecule expression is amplified by
crosstalk with ILC2s [52, 116].
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4. Conclusion

ILC2s are juxtaposed with MCs in the lung and directly com-
municate with MCs to induce the release of numerous medi-
ators from both cell types that are implicated in either the
survival or the rejection of transplanted lungs. MCs affect
ILC2 activities directly by the release of PGD2 or indirectly
via the release of the proteases chymase and tryptase to pro-
mote IL-13 production and that of the other Th2 cytokines.
IL-13 acts in a synergistic manner with IL-33 released from
airway ECs to reverse or prevent tissue damage during the
transplant. Moreover, IL-33 can directly activate mast cells
to secrete additional IL-33 and further activate Th2 cytokine
production in a feed-forward manner. IL-2 produced by
ILC2s assists Treg survival and thus further supports survival
of the transplanted organ.

In contrast, IL-2 produced by MCs leads to the expansion
of CD25+ ILC2s that, in turn, stimulates the IL-9/Th9 nexus
to induce tolerance in Treg cells and an immune environ-
ment that enables rejection. There is still much to be learnt
about what determines the nature of MC-ILC2 interactions

in distinct local settings during transplant rejection, and
further investigations are required.
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