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Abstract

Most of the proteins present in mitochondria and chloroplasts, the organelles acquired via endosymbiotic events, are en-
coded in the nucleus and translated into the cytosol. Most of such nuclear-encoded proteins are specifically recognized
via an N-terminal-encoded targeting peptide (TP) and imported into the organelles via a translocon machinery. Once im-
ported, the TP is degraded by a succession of cleavage steps ensured by dedicated peptidases. Here, we retrace the evolution
of the families of the mitochondrial processing peptidase (MPP), stromal processing peptidase (SPP), presequence protease
(PreP), and organellar oligo-peptidase (OOP) that play a central role in TP processing and degradation across the tree of life.
Their bacterial distributions are widespread but patchy, revealing unsurprisingly complex history of lateral transfers among
bacteria. We provide evidence for the eukaryotic acquisition of MPP, OOP, and PreP by lateral gene transfers from bacteria
at the time of themitochondrial endosymbiosis. We show that the acquisition of SPP and of a second copy of OOP and PreP at
the time of the chloroplast endosymbiosis was followed by a differential loss of one PreP paralog in photosynthetic eukar-
yotes. We identified some contrasting sequence conservations between bacterial and eukaryotic homologs that could reflect
differences in the functional context of their peptidase activity. The close vicinity of the eukaryotic peptidasesMPP andOOP to
those of several bacterial pathogens, showing antimicrobial resistance, supports a scenario where such bacteria were instru-
mental in the establishment of the proteolytic pathway for TP degradation in organelles. The evidence for their role in the
acquisition of PreP is weaker, and none is observed for SPP, although it cannot be excluded by the present study.
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Introduction
Eukaryotic organelles, mitochondria and chloroplasts,
evolved from ancestral bacteria through primary endosym-
biosis. Mitochondria most probably derived from
α-proteobacteria (Wang and Wu 2015; Roger et al. 2017)

and the chloroplast from an ancestral cyanobacterium,
probably close to Gloeomargarita litophora (Jensen and
Leister 2014; Ponce-Toledo et al. 2017). These endosymbi-
otic events were accompanied by massive horizontal gene
transfer (HGT) of genetic material from the bacterial
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progenitors to the host genome that is named endosymbi-
otic gene transfer (EGT) (Timmis et al. 2004). Today, most of
the proteins found in mitochondria and chloroplast are en-
coded in the nucleus, translated in the cytosol, and subse-
quently imported into the organelles through dedicated
translocon machineries: the Translocase of the Outer/
Inner mitochondrial Membrane (TOM/TIM) for mitochon-
dria (Wiedemann and Pfanner 2017) and the Translocon
at the Outer/Inner envelope Membrane of Chloroplasts
(TOC/TIC) for chloroplast (Chotewutmontri et al. 2017). In
most cases, this import is driven by an N-terminal targeting
peptide (TP).

The degradation of TPs in organelles is ensured by zinc
metallopeptidases acting on different peptides according
to their lengths (Johnson et al. 2006; Kmiec and Glaser
2012). The degradation follows common steps in the two
organelles (Teixeira et al. 2017; Kmiec et al. 2018). First,
two endopeptidases, the mitochondrial processing peptid-
ase (MPP) (Taylor et al. 2001) and the stromal processing
peptidase (SPP), cleave the TP, respectively, in the mito-
chondria and the chloroplast, thus releasing the mature
protein. These enzymes have critical roles in cell viability.
MPP is essential for cell viability in yeast (Yaffe et al.
1985) and nematodes (Nomura et al. 2006), and mutant
of the MPP catalytic subunit cause neurodegeneration in
early childhood (Vögtle et al. 2018). Similarly, SPP is essen-
tial inArabidopsis thaliana (Trösch and Jarvis 2011) and also
has been shown to impact protein import in pea (Zhong
et al. 2003). The resulting TP is further degraded by the pre-
sequence protease (PreP) that cleaves peptides ranging
from 10 to 65 amino acids (Kmiec and Glaser 2012) and
by the organellar oligo-peptidase (OOP) that cleaves pep-
tides ranging from 8 to 23 residues (Kmiec et al. 2013). In
photosynthetic eukaryotes, both PreP and OOP are dually
targeted to mitochondria and chloroplast. To the best of
our knowledge, all described PrePs are targeted to orga-
nelles, while many OOP paralogs remain in the cytosol. In
mitochondria, the cleavage by MPP may be followed by
an additional cleavage by Oct1, an OOP homolog (Kmiec
et al. 2013), or Icp55 in order to obtain the final mature pro-
tein, more stable than the intermediate form released after
the MPP cleavage (Vögtle et al. 2009, 2011; Venne et al.
2013). Finally, single amino acids are released by the action
of aminopeptidases from theM1 andM17metalloprotease
families acting on peptides <8 amino acids (Kmiec et al.
2018). MPP, SPP, and PreP are members of the M16 family,
whereas OOP is part of the M3 family in the MEROPS hier-
archical classification (Rawlings et al. 2018). In eukaryotes,
MPP is a heterodimer, composed of a catalytic subunit,
MPP-β in A. thaliana (Mas1 in yeast and PMPCB in human)
and MPP-α (Mas2 and PMPCA) (Poveda-Huertes et al.
2017). Default of TP degradation can perturb organelle in-
tegrity and biogenesis, as free peptides may have a toxic ef-
fect (Kmiec et al. 2014). Also, human PreP is responsible for

the degradation of amyloid-β peptides that accumulate
into mitochondria in Alzheimer’s disease patients, which
saturates the capacity for peptide degradation in the mito-
chondrion and leads to the accumulation of immature pre-
cursor proteins (Pinho et al. 2014). In yeast, in addition to
Cym1 (the yeast PreP homolog), two other M16 proteases
are involved in mTP degradation: Prd1 in the intermem-
brane space (Kambacheld et al. 2005) and Ste23, which is
also able to cleave amyloid-β peptides (Taskin et al.
2017). For a complete overview of TP processing in mito-
chondria or chloroplast, including additional peptidases
with a narrower set of substrates, see recent reviews (van
Wijk 2015; Poveda-Huertes et al. 2017; Ghifari et al. 2019).

Peptidases from the M16, M3, M1, and M17 families in-
volved in TP cleavage and degradation are well conserved
from bacteria to eukaryotes, and M16 and M3 peptidases
may have been present in the Last Universal Common
Ancestor (LUCA) (Rawlings et al. 2018; Rawlings and
Bateman 2019). However, the MEROPS families are very
large, with members carrying varied functions, because
the classification is solely based on the part of the protein
directly responsible for the peptidase activity (substrate
binding site and the catalytic residues). Therefore, they
are not adapted to accurately retrace the evolutionary his-
tory of a specific peptidase. The possible presence of an
M16 and an M3 peptidase in LUCA does not imply that
the functions now ensured by MPP, SPP, PreP, and OOP
were present as well. Rather, previous studies all pointed
for a bacterial origin of the organelle peptidases, as pepti-
dases acting similarly are also found in bacteria, which is
not the case for the protein degradation processes ob-
served in the nucleus and the cytosol where these are main-
ly performed by the proteasome (Van Dyck and Langer
1999; Adam and Clarke 2002). It is of note that in photo-
synthetic eukaryotes, both mitochondria and chloroplasts,
which arose from two distinct primary endosymbiotic
events, use the same players (PreP and OOP) and players
from the same peptidase family (MPP and SPP) to ensure
disposal of their TPs.

We recently provided experimental evidence for an anti-
microbial origin of TPs. A subclass of antimicrobial peptides
(AMPs) are synthesized by the ribosome and adopt an
amphipathic helical structure (HA-RAMPs) (Garrido et al.
2020), supporting the idea that the import machineries
into organelles may derive from an antimicrobial resistance
machinery in the bacteria involved in early endosymbiotic
events (Wollman 2016; Caspari and Lafontaine 2021).
In this view, the translocon machineries and the peptidases
involved in the proteolytic degradation of TP may derive,
respectively, from bacterial transporters and bacterial pep-
tidases that participated in antimicrobial resistance. In
agreement with this hypothesis, it has been demonstrated
that MPP most probably originates from a progenitor of
a rickettsiales putative peptidase (RPP) in a parasitic
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bacterium, and that extant bacterial RPP still have the cap-
ability to cleave mitochondrial TPs (Kitada et al. 2007). To
challenge this hypothesis further, here, we focused on
the peptidases involved in the first steps of themain proteo-
lytic pathway (MPP, SPP, PreP, and OOP), leaving aside
more specific peptidases, as well as the house-keeping ami-
nopeptidases that degrade small peptides<10 amino acids,
acting at the very end of the proteolytic pathway.We there-
fore built the exhaustive catalog of MPP, SPP, PreP, and
OOP families across eukaryotes, bacteria and archaea in or-
der to decipher accurately their evolutionary history and to
estimate the possible contribution of HA-RAMP-resistant
bacteria in the acquisition the proteolytic pathway degrad-
ing organelle TPs.

Results

An Exhaustive Catalog of Organelle Peptidase Families

We searched for homologs of MPP, SPP, PreP, and OOP in
8,340 reference proteomes from Uniprot comprising 291
archaea, 6,820 bacteria, and 1,230 eukaryotes (including
135 photosynthetic eukaryotes). The MPP, SPP, PreP, and
OOP sequences of A. thaliana were thus used as a starting
point to construct Hidden Markov Model (HMM) profiles
with the retrieved homologs (supplementary table S1,
Supplementary Material online). HMM profiles allowed
the detection of 36,807 candidates (10,930 PreP; 2,716
SPP; 6,822 OOP; and 16,339 MPP), from which, only the
26,211 candidates that contain all the Protein Families
(PFAM) motifs present in the A. thaliana peptidase of refer-
ence were considered its homologs (table 1).

Given the paucity of those peptidases in the 291 archae-
al proteomes present in the Uniprot Reference proteomes,
we searched the Uniprot database to retrieve all archaeal
sequences in the ca. 440 archaeal species absent from
the Reference proteomes that possess either aM16 domain
(429 sequences from 143 species) or a M3 domain (1,185
sequences from 623 species) and selected homologs of
MPP, PreP, and OOP following the procedure described
above. We also searched homologs in the nonredundant
(nr) database at NCBI (see Methods). The outcome
of this search is provided in supplementary data S1,
Supplementary Material online. In total, we found peptid-
ase homologs in <7% of the 1,937 different archaea spe-
cies with sequences referenced in the three databases.
Among the 44 referenced Asgard species, which are con-
sidered the most closely related to eukaryotes, only one
has an MPP homolog: Candidatus Thorarchaeota archaeon
(strain OWC), and another one has an OOP homolog:
Heimdallarchaeota archaeon (strain LC_2). PreP and SPP
are absent from Asgard species.

On the proximity graph of the four peptidase families
based on the BLAST pairwise E-value (supplementary fig. S1,

Supplementary Material online), MPP, PreP, and SPP group
together within the M16 peptidases families, well apart
from OOP, belonging to the M3 family. Each family of
M16 peptidase localizes differently from the two others,
with an overlap between MPP and SPP.

The M16 Family

To better analyze the relationships among the peptidases of
the M16 family, we built a phylogenetic tree of the 264
M16 homologs from the sample set (see Methods), based
on the multiple alignment of the two first conserved do-
mains (M16 and M16C) between MPP, PreP, and SPP
(fig. 1). Each peptidase groups in three different subtrees
in which both eukaryotic and bacterial homologs are
found. The eukaryotic MPP subtree is divided into two sub-
trees, in line with an early duplication at the basis of the eu-
karyotic lineage, leading to the two subunits (a) and (b) of
the MPP heterodimer. Only 28 homologs are misclassified
on the tree: 2 PrePs and 16 SPPs localize within the MPP
subtree; 1 MPP and 3 SPPs are found within the PreP sub-
tree and 5 MPPs are found within the SPP subtree. Given
that the tree is based on the first two conserved domains,
and not the entire protein sequence, this could be due to
sequences experiencing contrasting evolutionary rates.
The rickettsiales putative peptidase (RPP), putative MPP an-
cestral progenitor, groups within theMPP subtree, confirm-
ing previous reports (Kitada et al. 2007). The bacterial
metalloproteases FusC and HrrP that play a role in anti-
microbial resistancemechanisms in Gram-negative bacteria
group within the SPP subtree.

MPP, PreP, SPP, and OOP have a Bacterial Origin

Figure 2 describes the repartition of the homologs across
the tree of life. MPP, PreP, and OOP peptidases are found,
respectively, in 98%, 87%, and 75% of the eukaryotic pro-
teomes, with 69%of the studied eukaryotic species posses-
sing the three peptidases. The Rotosphaerida species
Fonticula alba bears only the MPP and the two
Choanoflagellata species lack PreP. Their frequencies are
lower in bacterial lineages 72%, 53%, and 12% for MPP,
OOP, and PreP, respectively, where they are heteroge-
neously distributed. There are very few homologs in
Archaea: MPP and OOP are present only in 16 out of 291
archaeal proteomes and no PreP was found in any of these
proteomes. They are also scarce in viruses, with only 13
MPPs, 2 OOPs, and no PreP among the 9,424 viral
proteomes.

SPP is the least abundant peptidase, absent from ar-
chaea and viruses, present in only 21% of the bacterial pro-
teomes and found only in photosynthetic eukaryotes (11%
of the studied eukaryotic proteomes, including two of the
three photosynthetic Stramenopiles present in our prote-
ome database) and in nonphotosynthetic eukaryotes
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Table 1
Composition of the Peptidase Families

Archaea (291) Bacteria (6,820) Eukaryotes (1,230)

PFAM motif #proteins #species #proteins #species #proteins #species

MPP M16/M16C 11 10 10,812 4,972 3,966 1,204
PreP M16/M16C/M16C_assoc 0 0 910 854 1,037 925
SPP M16/M16C/M16C 0 0 2,376 1,477 279 141
OOP M3 6 6 4,694 3,624 2,120 1,071

For each peptidase, the composition in PFAM motifs is given in the first column M16: PF00675; M16C: PF05193; M16C_assoc: PF08367; M3: PF01432. The number of
homologs and number of corresponding proteomes across archaea, bacteria, and eukaryotes is given in the following columns. The total number of species considered is
indicated in parenthesis for each domain.
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containing a plastid like some Apicomplexa, Amoebozoa,
and Alveolata species.

The taxonomic distribution of the four eukaryotic pepti-
dases suggests that they most likely have a bacterial origin
and that they were acquired early in eukaryote evolution.
Only 23/1,230 (2%) eukaryotes are devoid of those four
peptidases, including the 19 Microsporidia having lost their
mitochondria, the parasitic nematode Brugia timori, the
neuropathogenic flatworm Trichobilharzia regenti, as well
as two Basidiomycota Fungi that are plant pathogens: the
brown-rot fungus Postia placenta andMoniliophthora per-
niciosa. There are 9% (607 of 6819) of bacterial proteomes

free of MPP, PreP, SPP, and OPP, among which there are
four groups in which all species lack the peptidases: the
77 Mollicutes pathogens (55 Mycoplasmatales and 22
Entomoplasmatales), the 22 Enterococcus pathogenic spe-
cies, and 48 Bifidobacteriales. The other 460 species are
scattered among their respective groups.

The Evolutionary History of Peptidase Families

To get insights into the evolutionary history of each peptid-
ase family from bacteria to eukaryotes, we built its phylo-
genetic tree and looked for the distribution of the

FIG. 3.—TheMPP gene tree reveals a single bacterial origin of the eukaryotic MPPs. Because the entireMPP family contain 14,789 sequences, the nodes
whose leaves belong to the same NCBI taxonomical group are collapsed, thus only 1,726 leaves are visible on the tree. Branches are colored according to the
classification given in the left lower part of the figure. Branch supports are given in the original tree in our github repository (see Methods). The inner circle
recapitulates the taxonomy. Number of sequences collapsed at each node is given on the external circle. Numbers under the inner circles indicate collapsed
branches containing homologs frommodel organisms (the genetic loci are given). (1) Caenorhabditis elegans (mppa-1), Homo sapiens (PMPCA), Drosophila
melanogaster (CG8728), Saccharomyces cerevisiae (MAS2); (2)Arabidopsis thaliana (MPPA1,MPPA2),Chlamydomonas reinhardtii (MPPA1); (3)C. reinhardtii
(MPPA2); (4) C. elegans (ucr-2.2, ucr-2.1), H. sapiens (UQCR-C2), D. melanogaster (UQCR-C2); (5) A. thaliana (MPP-β), C. reinhardtii (QCR1); (6) C. elegans
(mppb-1, ucr-1), H. sapiens (PMPCB, UQCR-C1), S. cerevisiae (MAS1), D. melanogaster (UQCR-C1); (7) S. cerevisiae (COR1). Rpo is the homolog found in
Rickettsia prowazekii. The red dotted arrows indicate the two eukaryotic MPP subtrees: (α) containing the collapsed branches 1–4 and (β) containing the col-
lapsed branches 5–7.
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bacterial sequences that are close to eukaryotic homologs,
which are the potential donors through gene transfers.

MPP and SPP, the Cleavage Peptidases, were Inherited
from a Single HGT

On the MPP tree, all the eukaryotic MPP sequences form a
monophyletic group among other bacteria (fig. 3), which
suggests that the ancestral eukaryotic MPP has been ac-
quired by a single HGT. Note that because there are more
than 14,000 MPP homologs, the tree is collapsed. The eu-
karyote MPP subtree forms a monophyletic group with
some homologs from α-proteobacteria (see supplementary
fig. S2, Supplementary Material online for a tree with a sam-
pling of bacterial homologs), in agreement with an EGT from
the mitochondrial progenitor during or following the early
stages of mitochondrial endosymbiosis. In some bacterial
homologs, the M16–M16C region is repeated. Given their
heterogeneous distribution on the tree presented in
supplementary fig. S3A, Supplementary Material online, it
is unlikely that it represents an ancestral form of MPP. 132
additional PFAM domains were identified in our retrieved
candidates. These additional domains are heteregeneously dis-
tributed and shared by <8 species each, with two exceptions
found in the leotiomyceta clade in the Ascomycota phylum
(supplementary data S2, Supplementary Material online).
The addition of these domains could suggest two independ-
ent subfunctionalizations, one in Eurotiomycetes and one in
Leotyomycetes.

On the SPP tree, homologs from photosynthetic eukar-
yotes are divided into two subtrees (fig. 4). A first one as
a sister group of sequences from the superphylum com-
posed of Fibrobacteres, Chlorobi, and Bacteroidetes (FCB)
in the lower part of the tree (euka1), and a second one at
the basis of the larger group containing the euka1 subtree
(euka2). The majority (93/141) of eukaryotic species have a
paralog in both subtrees. This topology can be explained
by an acquisition from a FCB bacteria by HGT at the basis
of the photosynthetic eukaryotic lineage, followed by a
duplication event and the divergent evolution of one of
the paralogous copies. The conservation of the domain
architecture of the SPP homologs from the lower subtree
containing the euka1 and euka2 subtrees (supplementary
fig. S3B, Supplementary Material online) supports this hy-
pothesis. Note that homologs from euka2 appear to bear
an additional N-terminal part, compared to all other homo-
logs from the lower subtree that could explain their basal
position. Noticeably, there are very few SPP homologs in
cyanobacteria (64 from the 142 cyanobacterial proteomes
studied), most closely related to chloroplast, and they
form a monophyletic group distant from the euka1 and
euka2 subtrees. 33 species (28 bacteria and 5 eukaryotes)
and 8 others (7 bacteria and 1 eukaryote) have an addition-
al M16M andM16C_assoc PFAM domain in their identified

SPP homologs, respectively. The other 26 additional PFAM
domains in SPP candidates are found in <4 species each
(supplementary data S2, Supplementary Material online).

OOP and PreP Degrade the TP after their Cleavage has
been Acquired Twice in Close Relationship with the Two
Primary Endosymbiosis

On the complete OOP tree (fig. 5), a large group of 1,393
eukaryotic sequences, 110 of which are from photosyn-
thetic eukaryotes, form a sister group in the lower left sub-
tree with mainly Proteobacteria and Terrabacteria,
suggesting an acquisition from these bacteria at an early
step of eukaryogenesis. Another 171 sequences from
photosynthetic eukaryotes, 120 cyanobacteria, 15 PVC, 5
Proteobacteria, and 1 Chlamydiales, a potential partner of
the chloroplast endosymbiosis (Ball et al. 2016) form amono-
phyletic group in the upper left part of the tree (fig. 5), sug-
gesting a second acquisition of a bacterial OOP during
chloroplast endosymbiosis. The majority of photosynthetic
eukaryotes (85 over 123) has a paralog in both eukaryotic
subtrees, thus they conserved the two acquired OOP cop-
ies. As the OOP family contains many paralogs (172 in eu-
karyotes on average) some of which being cytosolic (three
in A. thaliana), we built a tree with eukaryotic OOP that
are predicted to be addressed to either the chloroplast or
the mitochondria and their closest bacterial homologs
(one per species). The taxonomic distribution of the
peptidases remains unchanged and so are the evolutionary
conclusions (supplementary fig. S5, Supplementary
Material online). 135 additional PFAM domains were found
in OOP candidates, found in <10 species each
(supplementary data S2, Supplementary Material online).

The eukaryotic PreP homologs are distributed among
three subtrees (fig. 6). The vast majority of homologs
from nonphotosynthetic eukaryotes (770) form a mono-
phyletic group with a sister bacterial clade mainly com-
posed of Proteobacteria (NPSeuka subtree, fig. 6) and all
but 5 (148) PreP from photosynthetic eukaryotes form a
monophyletic group with a sister bacterial clade composed
of homologs form Proteobacteria and Terrabacteria
(PSeuka subtree, fig. 6). Another 97 Opisthokonta se-
quences (from 91 distinct species) form a long-branched
group at the basis of the tree (Baseuka subtree, fig. 6), sug-
gesting they are highly diverged homologs that could be re-
lated to either the NPSeuka or the Pseuka subtree. Ignoring
the Baseuka subtree, the tree topology suggests two inde-
pendent acquisitions of PreP in eukaryotes: one associated
with the mitochondrial endosymbiosis (within the NPSeuka
subtree) and a posterior one that could be associated to the
chloroplast endosymbiosis (within the Pseuka subtree).
Among bacteria, PreP is present most exclusively in
Terrabacteria (493 homologs) and in Proteobacteria (263)
(fig. 2 and supplementary data S1, Supplementary
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Material online), containing the cyanobacteria and
α-proteobacteria, respectively, the extant bacteria most
closely related to chloroplast and mitochondria. The nearly
complete absence of homologs from photosynthetic eukar-
yotes in the NPSeuka subtree suggests that the PreP copy
acquired at the time of the mitochondrial endosymbiosis
has been lost after the acquisition of the chloroplast, except
in five microalgae. The timing of the second PreP acquisi-
tion relatively to the chloroplast endosymbiosis is difficult
to determine with the present data when considering the
Baseuka subtree: half of these Opisthokonta homologs cor-
respond to paralogs from the NPSeuka subtree, supporting
an independent duplication before the Opisthokonta diver-
gence followed by rapid evolution, and a second PreP ac-
quisition during or after the chloroplast endosymbiosis.

But the remaining half sequences in the Baseuka subtree
have no paralog in the NPSeuka subtree and could also cor-
respond to highly diverged homologs from the Pseuka sub-
tree. This would imply an alternative, but less parsimonious
scenario, in which the two acquisitions of PreP occurred be-
fore the chloroplast endosymbiosis so that ancestral eukar-
yotes had two PrePs and one copy has been differentially
lost depending on the presence of a chloroplast in the ma-
jority of the lineages. In support of this alternative scenario,
the domain composition of PreP homologs in the Baseuka
subtree is identical to the one in the Pseuka subtree
(supplementary fig. S3C, Supplementary Material online).
27 additional PFAM domains were found in PreP candi-
dates, found in <7 species each (supplementary data S2,
Supplementary Material online).

Tree scale: 1
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FIG. 4.—Phylogenetic tree of the 2,652 SPP homologs. Five additional sequences are used as outgroup (see supplementary data S1, Supplementary
Material online). Branches are colored according to the classification given in the left lower part of the figure. The inner circle recapitulates the taxonomy.
Branches with support higher than 0.8 are depicted in bold. Homologs from model organisms are indicated next to the inner circle, with the name of the
Escherichia coli homolog in parenthesis. Cre: Chlamydomonas reinhardtii, Ath: Arabidopsis thaliana, Eco: E. coli. See supplementary figure 3A,
Supplementary Material online for a collapsed version of this tree.

Garrido et al. GBE

8 Genome Biol. Evol. 14(7) https://doi.org/10.1093/gbe/evac101 Advance Access publication 27 June 2022

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac101#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac101#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac101#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac101#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac101#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac101#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac101#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac101#supplementary-data
https://doi.org/10.1093/gbe/evac101


Molecular Evolution of the Peptidase Motifs from
Bacteria to Eukaryotes

To get further insights into the evolution of the function of
these peptidases, we compared the conserved motifs con-
taining their catalytic sites. The logo representations of the
multiple alignments of the M16 motif in the MPP family are
presented in figure 7. Eukaryotic homologs in the MPP tree
were annotated asMPP-α orMPP-β according to their local-
ization in either the subtree α or the subtree β (fig. 3). The
27 MPP homologs grouping outside these two subtrees
where not considered.

The logos for MPP-β (fig. 7B) and for MPP in the 200 bac-
teria that are the most closely related to eukaryotic homo-
logs, hereafter referred to as top200-bacteria (fig. 7D)
show a much higher overall conservation (indicated by
the height of the stacks in the logo) than those of MPP-α

(fig. 7A) and MPPs in the bulk of bacteria (fig. 7C).
Further comparison of the logos on figure 7B and D shows
however that the most frequent amino acid at a given pos-
ition is not conserved in most cases. A noticeable exception
is the zinc-bindingmotif HXXEHX76E (red boxes in fig. 7) re-
quired for the activity of the catalytic subunitMPP-β (fig. 7B)
which is well conserved in the top200-bacteria and in the
bulk of bacterial homologs (fig. 7C and D), suggesting
that it was already present in the bacterial donors of MPP.
Note that HXXEH has been lost inMPP-αwhich is consistent
with it being an inactive form in the MPP heterodimer
found in eukaryotes (fig. 8).

Contrary to the eukaryotic MPPs, bacterial ones do not
function in a heterodimeric context. A possible signature of
this functional shift from bacteria to eukaryotes can be found
in the HXXEH motif that reads HFLEH in MPP-β but HLLEH in
the MPP from the top200-bacteria (fig. 7B and C). Also, the

FIG. 5.—Phylogenetic tree of the 6,820 OOP homologs, rooted atmidpoint. Homologs frommodel organisms are indicated next to the inner circle, with
their name in parenthesis for bacterial homologs if paralogs exist in eukaryotes. Cre: Chlamydomonas reinhardtii, Ath: Arabidopsis thaliana, Eco: Escherichia
coli. Hsa: Homo sapiens, Sce: Saccharomyces cerevisiae, Dme: Drosophila melanogaster. See supplementary figure 3B, Supplementary Material online for a
collapsed version of this tree.
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positions 98–103 (green boxes, fig. 7) read HLNAYT inMPP-β
but EXNAXT in the top200-bacteria and XXNAXT in the bulk
of bacteria. In MPP-β, this region corresponds to the beta
strand located at the active site (strand 1, fig. 8) within the
binding region of the mitochondrial TP, delimited by the
edges of four β sheets (Taylor et al. 2001). In the inactive
MPP-α, there is no conservation at these positions, which cor-
respond to strand 4 of the substrate binding region (fig. 8).
Several other changes in the logos between MPP-β and bac-
terial MPPs are also likely to be related to the functional shift
from bacteria to eukaryotes, like positions 158–167 (grey
box, fig. 7) that are not conserved in the bulk of bacterial
MPPs except for the proline at position 158, read
PDDVVFDRFX in the top200-bacteria but becomes
EEVVFDHLH in MPP-β. Logos of the multiple alignments for
the other peptidases are given in supplementary figures S6,
S7, S8, Supplementary Material online. Similar observations
suggesting a possible functional shift from bacteria to eukar-
yotes can be made for OOP and SPP, but not for PreP.

Some Peptidases from AMP-Resistant Bacteria are Close
to their Eukaryotic Homologs

Next, we estimated the extent at which AMP-resistant bac-
teria could have been involved in the acquisition of the pep-
tidases from the proteolytic degradation pathway of
organellar TP. It is worth mentioning here that our defin-
ition of AMP-resistant bacteria is restricted to those bacteria
for which there are publications that document an
AMP-resistance experimentally. A number of bacteria has
not been studied yet in that respect.

For each peptidase family, we determined the distance
of each bacterium to its closest eukaryotic homolog accord-
ing to three different metrics: 1) the evolutionary distance
between each pair of species, that is, the sum of branch
length separating two leaves of the complete gene family
tree, 2) the topological distance between each pair of spe-
cies, corresponding to the number of internal nodes separ-
ating a pair of species on the complete gene family tree,
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FIG. 6.—Phylogenetic tree of the 1,947 PreP homologs. Homologs from model organisms are indicated next to the inner circle, with their name in par-
enthesis unless there are only systematic names. See supplementary figure 3C, Supplementary Material online for a collapsed version of this tree.
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and 3) the log(E-value) of the best Blast hit between two se-
quences (see Methods). We took these three metrics into
account to avoid erroneous conclusions due to phylogenet-
ic reconstruction uncertainties, considering they will be
somehow compensated. Figure 9 presents the evolutionary
distance of all bacterial sequences to their closest eukaryote
counterparts. We defined as the top200 set, the 200 bac-
teria that are most proximal to their eukaryotic homologs
in each group, for a given metric, and pan-top200 corre-
sponds to the union of the top200 sets of three metrics
(supplementary table S2, Supplementary Material online).

For the MPP and OOP families, homologs from resistant-
bacteria of a given group are distributed closer to their eu-
karyotic counterpart than the other bacteria of that group.
This is the case for the MPP homologs of α-proteobacteria
according to both the evolutionary and the pairwise dis-
tances (fig. 9, upper panel). This is also the case for the
OOP homologs from resistant proteobacteria according to
all three distances (fig. 9, lower panel). On the contrary,
PreP from resistant-bacteria is more distantly distributed
to eukaryotes than the other bacterial PreP (fig. 9, second

panel) and there is no bias in the distribution of the SPP
homologs in resistant-bacteria (fig. 9, third panel). Still,
we note the presence of several resistant-bacteria close en-
ough to their eukaryotic counterparts as will be discussed
below.

For the MPP family, 22% (114/521) of homologs of the
pan-top200 belongs to resistant-bacteria among which 46
Pseudomonas and 35 Rhizobium (α-proteobacteria). For the
OOP family, 10%(40/402)ofhomologsof thepan-top200be-
longs to resistant-bacteria, mainly γ-proteobacteria, with 30
Enterobacteria and 8 Pseudomonadales. Also, a significant
part (85%) of the homologs from resistant proteobacteria
groups with the eukaryote subtree at the upper left (fig. 6).
For the PreP family, even if the distribution of homologs
from AMP-resistant bacteria is unbiased, 57 are in the pan-
top200 (16.7% of them), among which 44 from Clostridium
species. For the SPP, there are only nine homologs from
resistant-bacteria (8 γ-proteobacteria and Borreliella burgdor-
feri) in the pan-top200 (2% of them) (fig. 9, third panel).

At the genus level, Pseudomonas species have homologs
in the pan-top200 ofMPP, OOP, and SPP, and Acinetobacter

A

B

C

D

FIG. 7.—Sequence logos of the M16 Motif in MPP homologs. (A) MPP-α eukaryotic homologs (2,306). (B) MPP-β eukaryotic homologs (1,633). (C) All
MMP bacterial homologs (10,812). (D) The closest to eukaryotes 200 bacterial homologs according the similarity distance (top200 bacteria). The positions are
those of the M16 motif in the catalytic subunit (MPP-β) of Saccharomyces cerevisiae,Mas1. The overall height of the stack at each position reflects conser-
vation, the height of residues reflects their relative frequency and the width of the stack is inversely proportional to the number of gaps at that position.
Residues are colored according to their chemical properties, green: polar, purple: neutral, basic: blue, acidic: red, and hydrophobic: black. The position of
the HXXEHX76E motif of the catalytic site in MPP- β is indicated by red boxes in each panel. The green box indicates the position of the beta strand involved
in the binding cavity of theMPP heterodimer (Taylor et al. 2001): strand 1 at the catalytic site in MPP-β and strand 4 inMPP-α, as shown in figure 8. The grey
box indicates positions discussed in the text.
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have close homologs in the pan-top200 of SPP, PreP, and
OOP. Borreliella species have homologs in the pan-top200
of SPP and PreP; Escherichia and Acinetobacter species
have homologs in the pan-top200 of OOP and SPP.
However, only few bacterial species have peptidases homo-
logs in the top-200 of more than one family. The most not-
able case is four Pseudomonas species (P. agarici, P.
cremoricolorata, P. fluorescens F113 and P. sp. 5) with a
homolog in the OOP pan-top200 and a homolog in the
MPP pan-top200.

Regardless of their distance to eukaryotic homologs,
co-occurences of pairs of the four peptidases in
AMP-resistant bacteria are significantly less frequent than
observed in the whole bacterial clade. However, the most
frequent co-occurrence of peptidases among the 658
AMP-resistant bacteria is observed for OOP and MPP, in
167 species (25%), notably in all studied Pseudomonas
and FCB species, and in the majority of the α and
γ-proteobacteria. This co-occurence of OOP andMPP is sig-
nificantly higher in resistant α−proteobacteria than in non-
resistant α−proteobacteria. Similarly, the co-occurence of
MPP and PreP is higher in resistant Terrabacteria than in
non-resistant Terrabacteria. The co-occurence of OOP and
SPP is observed in 58 AMP-resistant bacterial species
(8%), including 28 Vibrio. The co-occurence of PreP and
OOP is observed only in the 15 Acinetobacter species
(supplementary fig. S9, Supplementary Material online).
Note that only 98 out of the 658 AMP-resistant bacteria
studied (15%) are devoid of homolog for the four studied
peptidases.

Discussion
We established a complete version of the homologous fam-
ilies of the peptidases involved in the proteolytic pathway of
TPs in mitochondria and chloroplast, recapitulated in figure
10. Indeed, deep phylogenies are based on very ancient sig-
nal and incorrectly account for the very different modes of
genetic transmission between bacteria and eukaryotes, and
are therefore hardly devoid of errors. In an attempt to
avoid, as much as we could, erroneous conclusions due
to phylogenetic artifacts, we used a simple strategy-mixing
metrics based on evolutionary models and a simple similar-
ity distance. If our phylogenies are error-free, our results
confirm that MPP, PreP, SPP, and OPP were inherited
from bacterial ancestors, but not necessarily the organelle
progenitors. Indeed, we found no SPP and PreP homologs
in Archaea and less than a dozen of archaeal MPP and
OOP homologs. The scarce distribution on the archaeal
homolog on the MPP and OOP gene trees provide no evi-
dence for their presence in LUCA, but rather for an acquisi-
tion from bacteria. Such HGT from Bacteria to Archaea are
estimated to be 5-fold more frequent than HGT from
Archaea to Bacteria, and have been largely documented,
see, for example, Nelson-Sathi et al. (2015).

In the presentation of our results, we assumed that HGT
occurred shortly after or during the endosymbiosis, directly
from ancestral bacteria close to the extant ones, to the an-
cestral eukaryotes. This implies that bacterial partners other
than the endosymbiont ancestors would have been
involved in such events, as proposed earlier (Gray 2015;

FIG. 8.—The heterodimeric yeast MPP. Crystal structure of the yeast MPP (Taylor et al. 2001, PDB:1hr6) in two different orientations. MPP-β (Mas1) is
drawn in blue and MPP-α (Mas2) in yellow. In each subunit, the M16 region is in brighter color. The position of the HXXEHX76E motif found in MPP-β is de-
picted in red in both subunits. The region in the grey box of figure 7 is depicted in grey. Beta strands delimiting the binding cavity are numbered 14. Green:
strands 1 and 4 in the M16 motif, magenta: strands 2 and 3 in the M16C motif. This figure was created with the RCSB PDB 3D viewer.
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Ball et al. 2016; López-García and Moreira 2020). Another
and non-mutually exclusive possibility is that the ancestors
of mitochondria and chloroplast have transferred to the
host cell part of their ancestral pan-genome, that is, the en-
tire gene set of their species, which was different from the
present pan-genome. Thus, the present phylogenetic

proximities observed with bacteria other than cyanobac-
teria and proteobacteria could also be caused by posterior
HGT events among prokaryotes and may reflect that they
were part of the ancestral pan-genome of mitochondria
and chloroplast precursors (Ku et al. 2015). Whatever the
actual source of these transfers, genetic properties that

evolutionary distance topology distance similarity distance

OOP

PreP

SPP

MPP

dist_E dist_E dist_E

dist_E dist_E dist_E

dist_E dist_E dist_E

dist_E dist_E dist_E

FIG. 9.—Distribution of the distance of each bacterial peptidase to its closest eukaryote homolog (dist_E, see Methods). The evolutionary topology and
similarity distances are given in the first, second, and third panels, respectively. As the conservation varies among bacterial groups for the four different pep-
tidases, the number of distributions also varies. On the left of the dashed line, are the 200 bacterial homologs most closely related to their eukaryotic
counterparts.
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are absent from the present repertoire of extant bacteria
close to the endosymbiont ancestors are likely to have
played an important role for the establishment and the
maintenance of the endosymbionts, notably from patho-
genic partners that helped to escape host defense mechan-
ism. Also, we found several molecular signatures specific of
either bacterial or eukaryotic homologs, which could play a
role in the functional shift in their activity in eukaryotes, ex-
cept for PreP. Further biochemical investigations should be
undertaken to assess the significance of these observations.

Our results suggest that some AMP-resistant bacteria
could have contributed to the setup of the TP proteolytic
pathway. MPP was most probably inherited by EGT from
an α-proteobacteria-like mitochondrion ancestor, most
probably pathogenic. This is in line with previous findings
that the rickettsiales putative peptidase (RPP) in the obligate
intracellular Rickettsialles is able to cleave mTP from a cou-
ple of yeast, human, and mouse preproteins. Most notably,
RPP can induce the peptidase activity of the yeast MPP-β
subunit for the processing of proteins, that MPP-β normally
does not perform (Kitada et al. 2007). It is thus a reasonable
hypothesis to consider that the ancestral eukaryotic MPP al-
ready had this property, which would have been crucial for
adaptation of the ancestral endosymbiont. A first copy of
OOP would also have been acquired from proteobacteria,
at the time of the mitochondrial endosymbiosis, with a

possible role of AMP-resistant α and γ-proteobacteria. A se-
cond acquisition of OOP probably occurred at the time of
chloroplast endosymbiosis, with a possible role of a patho-
genic Chlamydia, in agreement with the “Ménage à trois”
hypothesis (MATH), in which pathogenic Chlamydiales pro-
vided critical help for maintenance of the chloroplast ances-
tor into the protist host (Greiner and Bock 2013; Ball et al.
2016; Cenci et al. 2016, 2017). As for OOP, PreP would
have been acquired twice most probably from a resistant
Terrabacteria or a Proteobacteria. The first copy would
have been acquired at the time of mitochondrial endosym-
biosis and the second copy at the time of the chloroplast
endosymbiosis, with the first acquired copy being lost after
the chloroplast endosymbiosis in photosynthetic eukar-
yotes. If this hypothesis is true, then the second acquired
copy works not only in the chloroplast, but also in the mito-
chondria, as in A. thalianawhere it has been experimentally
demonstrated (Kmiec et al. 2014). The chloroplast counter-
part of MPP, SPP would have been acquired during chloro-
plast endosymbiosis from an FCB bacteria with no evidence
of contribution from resistant-bacteria.

Our results are based on a minimal group of bacteria for
which experimental evidence of resistance to AMPs has
been described, with a considerable and expected bias to-
wards Enterobacteria. In particular, to our knowledge there
are no reports of studies regarding possible resistance to

FIG. 10.—Scenario of gains and losses of the four peptidases across the tree of life. Up arrows represent horizontal transfer. Peptidase names and up
arrows are colored according to the bacterial donor group. Down arrows represent loss. Superscript “D” indicates a basal duplication in the group. In the
table, the number of proteomes containing at least one homolog of each peptidase is indicated. The heatmap indicates the percentage of the proteomes
with at least one homolog within each group. This figure has been created with Biorender.com.
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AMPs among cyanobacteria, from which originated the
chloroplast. On the other hand, we considered a whole
bacterial genus as potentially antimicrobial resistant but
functional evidence is not available for every single species,
leading to possible over-interpretation that should however
be minimal if orthologous conservation is a proxy for func-
tional conservation.

In conclusion, AMP-resistant bacteria have OOP, MPP,
and PreP homologs in the closest vicinity to their eukaryotic
counterparts, which is consistent with their possible impli-
cation in the early stages of mitochondrial endosymbiosis
and for OOP and PreP, also in the early stage of the chloro-
plast endosymbiosis. It is of note that very few SPP homo-
logs from resistant-bacteria were found close to SPP in
photosynthetic eukaryotes.

As Microsporidia lost their mitochondria after the diver-
gence of Fungi, the absence of MPP and PreP, found exclu-
sively in organelles is expected. As many OOP paralogs
remain cytosolic, the fact that Microsporidia also lack
OOP is consistent with a possible action of OOP on proteins
that failed to be imported or that were released from mito-
chondria. The fact that the four other eukaryotes devoid of
the four peptidases are all pathogens could suggest an un-
usual mitochondrial metabolism in those species.

With our previous finding that a certain class of
HA-RAMPs and organelle TPs are likely evolutionary related,
based on their shared physico-chemical properties, and
their ability to functionally complement each other
(Garrido et al. 2020; Caspari et al. 2021) the present phyl-
ogeny of organellar peptidases is fairly consistent with the
hypothesis that the organelle-targeting machineries derive
from an antimicrobial resistance (Wollman 2016; Caspari
and Lafontaine 2021), through an import and destroy
mechanism that has been documented in several studies.
In that respect, the fact that the co-occurrence of MPP
and PreP/OOP is higher in AMP-resistant α-proteobacteria/
Terrabacteria compared to sensitive α-proteobacteria/
Terrabacteria suggests that MPP and PreP/OOP were likely
to be involved in the destroy steps. Moreover, we note
that the Gram-negative γ-proteobacteria Pseudomonas
and Acinetobacter are opportunistic pathogen that possess
MPP, OOP, and SPP homologs closely related to their eu-
karyotic counterparts, making them model organism of
choice that possess the major part of the proteolytic path-
ways for the degradation of AMP and AMP-derived TPs.
In Pseudomonas aeruginosa HA-RAMP activity requires its
binding to outer membrane proteins. This could probably
promote HA-RAMP uptake and cytoplasma protrusion as
it has been proposed for the HA-RAMP hRNase 7 with
the outermembrane protein OprI (Lin et al. 2010), and for
the HA-RAMP LL-37 with the porin OmpA (Lin et al.
2015). Other HA-RAMPs are actively internalized via import
pump, like the bacteriocin pyocin S2 that can hijack the iron
transporter FpvAI, a β-barrel TonB-dependent transporter

(TBDTs) in P. aeruginosa (White et al. 2017). Such hijacking
of TBDTs by bacteriocins is also observed in the
Gram-negative phytopathogens Pectobacterium species
in which pectocin M1 and M2 containing a ferredoxin do-
main can enter the bacterial cell through iron-uptake
(Grinter et al. 2012, 2014). In those phytopathogens,
FusC is associated with the TBDTs to promote the import
of ferredoxin across the outer membrane (Grinter et al.
2018). This protease-associated import system capable of
HA-RAMP uptake is widespread in Gram-negative bacteria
(Grinter et al. 2019) and suggests that such association
could have played a role in the establishment of an early
protein import system upon endosymbiosis.

Further investigations are needed to estimate the evolu-
tionary relationships between bacterial peptide uptake me-
chanisms in resistant bacteria and the TIM/TOM and TIC/
TOC complexes. Indeed, several subunits of the extant
translocons are of bacterial origin. For example, the protein
core of TOC/TIC, composed of Toc75, Tic136, and Tic110,
is thought to be derived from the bacterial β-barrel protein
export system BAM/TAM, composed of BamA/TamA
(Omp85 and Toc75 homologs) and TamB (Tic136 homolog)
(Day and Theg 2018; Richardson and Schnell 2020).
Similarly, mitochondrial outer membrane β-barrels
(VDAC, TOM40, but also lineage-specific outer membrane
β-barrels like ATOM in trypanosoma) are homologous and
thought to derive from bacterial primitive channels
(Pereira and Lupas 2018), and Tim23, Tim44 and Tim 14
of the TIM23 complex also have bacterial homologs
(Rassow et al. 1999; Clements et al. 2009).

Methods

Peptidase Sequences and Proteomes

Reference sequences were selected for each of the four
peptidases in the photosynthetic model plant A. thaliana:
the two members of the PreP family PreP1, Prep2; the three
MPP subunits: MPPα1, MPPα2, MPPβ; OOP and SPP, see
supplementary table S1, Supplementary Material online
for accession numbers. The search for homologs was per-
formed against a database composed of the 8,340 nonvirus
proteomes from the Uniprot reference database (released
version 26 February 2020), including 291 archaea, 6,819
bacteria, and 1,230 eukaryote proteomes.

Family Reconstruction

First, the proteome database was searched for significant
hits (minimum query coverage of 70% and E-value
<10−5) with BLASTP (standalone version 2.6.0) (Altschul
et al. 1997) for each of the reference proteases (table 1).
In order to retrieve remote homologs from the A. thaliana
sequences, we built some HMM profiles for each peptidase
with hmmbuild. Hits for the highly similar paralogs PreP1
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and PreP2,MPPα1 and α2, MPPβ1 and β2weremerged. Hits
were then clustered with the ETE3 toolkit (3.1.1), according
to the major phylum of Archaea, Bacteria, and Eukaryota of
the NCBI taxonomy. Clusters with <5 hits weremerged with
the clusters from sister phyla. The clusters used are listed in
supplementary table S1, Supplementary Material online.
Each cluster was then multiply aligned with MUSCLE
v3.8.31 and the resulting multiple alignment was used to
build the HMM profile with hmmbuild from hmmer-3.2.1
(hmmer.org). Obtained profiles are used to scan the prote-
ome database. Hits with an E-value <10−2 covering >70%
of at least one of the profiles were selected. Next, PFAM do-
mains of interest were searched in the candidate sequences
with hmmsearch (hmmer version 3.2.1), hits with an E-value
<10−2 were selected. Candidates containing all the PFAM
motifs present in the A. thaliana peptidase were considered
as homologs. The presence of additional conserved domains
was determined with hmmsearch (hmmer version 3.2.1)
(E-value <10−5) on the entire PFAM database (3.1b2)
(El-Gebali et al. 2019).

The M16 peptidase families was visualized by CLAN
(Frickey and Lupas 2004) with the log(E-value) of the “all
against all” BLAST between each pair of sequences.

Motif Analysis

Logos of the multiple sequence alignments of the M16 and
M3 motifs were generated with WebLogo 3.7.4 (Crooks
et al. 2004).

List of AMP-Resistant Bacteria

We performed a bibliographic screening for papers describ-
ing bacteria with a documented resistance to AMP. The
genus from the identified bacteria is considered as an
AMP-resistant bacterial genus. The list of the retrieved
genus is given in supplementary data S1, Supplementary
Material online, with corresponding references.

Sample Set

To reduce the size of our dataset, a sample of homologs
was generated by randomly picking one organism in each
of the considered taxonomical group indicated in figure
2. All the peptidases from selected species are included in
the sample set. One species per group of AMP-resistant
bacteria was chosen. All homologs from Chlamydomonas
reihardtii and A. thaliana were added.

Species Tree

The phylogenetic relationships between the organisms in-
cluded in our analysis were taken from the literature. The
phylogeny of the Archaea as well as the placement of eukar-
yotes is based on Spang et al. (2017). The Eukaryota phyl-
ogeny is taken from Burki et al. (2020) and Torruella et al.

(2015) for Opistokontha. The bacterial phylogeny is extracted
from Castelle and Banfield (2018) and Zhu et al. (2019).

Peptidase Tree

The concatenation of the aligned PFAMmotifs identified in
each peptidase family was performed with MAFFT v7.450
(Katoh and Standley 2013). Trees were reconstructed
with the Approximately Maximum-Likelihood method
FastTree (Price et al. 2010) (v2.1.11) with the JTT +CAT
model. The local support values given by FastTree are based
on the Shimodaira–Hasegawa (SH) test (Price et al. 2010).

We used the NCBI taxonomy retrieved with ETE3 toolkit
to perform trees annotation. Tree display was performed
with iTOLwebsite (Letunic and Bork 2019). The phylogenet-
ic analysis of theM16 familywas performedwith the sample
set, using only the twofirstmotifsM16andM16C shared by
the three M16 peptidases. For each family, MPP, SPP, PreP,
and OOP, the alignments were performed with only the
conserved motifs given in table 1. The sequences used as
outgroups for the M16 peptidases are given in
supplementary data S1, Supplementary Material online.
The OOP tree was rooted with the midpoint method.

Minimal Distance to Eukaryote

The evolutionary distance is estimated by the sum of the
branch length between a given bacteria and its closest eu-
karyotic homolog. The topological distance corresponds to
the number of internal nodes separating a bacterium to its
closest eukaryotic homolog. Both distanceswere computed
with python ETE3 toolkit (3.1.1). The pairwise distance cor-
responds to the log(E-value) Blastp between a bacterial se-
quence and its eukaryote best hit, with the BLAST version
2.6.0 (Altschul et al. 1997).

Supplementary Material
Supplementary data are available at Genome Biology and
Evolution online.
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