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Abstract: Mechanical ventilation is an essential life-support treatment for patients who cannot
breathe independently. Patient–ventilator asynchrony (PVA) occurs when ventilatory support does
not match the needs of the patient and is associated with a series of adverse clinical outcomes. Deep
learning methods have shown a strong discriminative ability for PVA detection, but they require
a large number of annotated data for model training, which hampers their application to this task.
We developed a transfer learning architecture based on pretrained convolutional neural networks
(CNN) and used it for PVA recognition based on small datasets. The one-dimensional signal was
converted to a two-dimensional image, and features were extracted by the CNN using pretrained
weights for classification. A partial dropping cross-validation technique was developed to evaluate
model performance on small datasets. When using large datasets, the performance of the proposed
method was similar to that of non-transfer learning methods. However, when the amount of data
was reduced to 1%, the accuracy of transfer learning was approximately 90%, whereas the accuracy
of the non-transfer learning was less than 80%. The findings suggest that the proposed transfer
learning method can obtain satisfactory accuracies for PVA detection when using small datasets.
Such a method can promote the application of deep learning to detect more types of PVA under
various ventilation modes.

Keywords: mechanical ventilation; transfer learning; deep learning; patient–ventilator asynchrony;
convolutional neural network

1. Introduction

Mechanical ventilation (MV) is one of the most important life-support treatments
for patients who are unable to breathe on their own. It is used to assist patients during
rest and recovery from their primary diseases [1]. Patient–ventilator asynchrony (PVA)
occurs when the phases of the breath delivered by the ventilator do not match that of the
patient’s respiratory center output or when there is a mismatch between the demands of
the patient and the assistance offered by the ventilator [2,3]. This phenomenon is associated
with a series of adverse clinical outcomes, such as the failed liberation of patients from
ventilators [4,5], extended stays in intensive care units (ICU), increased likelihood of
respiratory-muscle and diaphragmatic injuries, and increased consumption of sedatives
and paralytics [6]. Studies have demonstrated that PVA can be detected by analyzing
airway pressure, flow velocity, and tidal volume sequences [3,7]. Traditional PVA detection
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methods involve observing and evaluating the respiratory sequences at the bedside [8].
However, because many clinicians have insufficient recognition ability [9] and cannot
remain at the bedside long-term, this detection method still has clinical limitations.

Some computerized algorithms have been developed for PVA detection over the past
decade [10]. Early efforts include rule-based algorithms that computed features from the
respiratory sequences and set thresholds to identify PVA cycles [1,11]. In recent years,
machine learning has been used for the detection of PVA. By manually selecting valuable
features and inputting them into machine learning models, such as random forest and
support vector machine (SVM) models, a high classification accuracy can be achieved [12].
However, the accurate extraction of features from respiratory sequences is challenging,
especially when dealing with highly noisy signals [13]. Deep learning (DL) models have
exhibited superior performance over conventional rule-based algorithms and machine
learning models in medical applications, such as arrhythmia detection and diagnosis
of retinal diseases from electrocardiogram and retinal images, respectively [14,15]. We
previously developed deep learning models to recognize four main types of PVA: double
triggering (DT), ineffective inspiratory efforts during expiration (IEE), delayed cycling,
and premature cycling under pressure-controlled MV [16,17]. These methods achieved
superior classification accuracies compared with conventional methods. However, the
model had to be trained with a large amount of labeled data to guarantee its performance,
limiting its application to the detection of other types of PVA under different modes of MV.
Therefore, developing a high-performance DL model based on a small amount of labeled
data remains a challenging task.

Transfer learning, which borrows knowledge from a source domain to facilitate the
learning problem in a target domain, provides an effective framework for DL small datasets.
In particular, most studies have made use of models pretrained from the large-scale
ImageNet database [18], containing 1.2 million images. These models trained from the
ImageNet have a strong capability for feature extraction. Thus, they are suitable to be
transferred to other fields having small number of image data. Transfer learning has
been widely applied to computer vision. However, only a few studies have applied these
methods to time series problems in the medical field [19]. These studies require complex
time–frequency transformations to convert the one-dimensional (1D) time series to two-
dimensional (2D) images, which hampers the application of the algorithm in real time and
lacks interpretability [20]. Additionally, such methods have never before been applied to
PVA detection.

To develop a DL model for PVA detection based on a small, labeled dataset, we
proposed a transfer learning approach. The approach identified PVA from the 1D respi-
ratory sequences using the 2D–CNN. The 1D breathing cycles were first converted into
images. Then, features were extracted from the converted images using pretrained CNN
architectures to feed to an SVM for PVA classification.

2. Methods
2.1. Overview of the Method

The formal definition of transfer learning involves the concepts of domains and tasks.
A domain D consists of a feature space X and an edge probability distribution P(X)
denoted by D = {X, P(X)}, where {x1, . . . ., xn}∈ X. The target domain T consists of a label
space Y and an objective predictive function f (·), denoted by T = {Y, f (·)}, which can be
regarded as a conditional probability function P(y|x) . It can be learned from the training
data, which consist of pairs {xi, yi|xi ∈ X, yi ∈ Y}. Given a source domain Ds, a learning
task Ts, a target domain Dt, and a learning task Tt, transfer learning aims to help improve
the learning of the target predictive function f (·) in Dt using the knowledge in Ds. In most
cases, the size of Ds is significantly larger than that of Dt. In this work, Ds represents the
ImageNet dataset and Dt represents the respiratory sequence dataset.

We proposed a transfer learning approach for PVA classification. Figure 1 shows the
schematic of the transfer learning framework. First, the airway pressure, flow velocity, and
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tidal volume recording were cut into segments, and each data instance was transformed
into a red–green–blue (RGB) image via preprocessing. Then, the images were fed into
the pretrained deep CNN to extract the features. The features were processed by a global
averaging pooling (GAP) layer to generate class activation maps for visual interpretation
of the results and fed to an SVM or a dense layer classifier for classification.
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Figure 1. Schematic of PVA identification based on the transfer learning method. The input sequence is handled in the
preprocessing section. GAP: global average pooling. SVM: support vector machine.

2.2. Data Collection and Annotation

Data collection and annotation were performed as described in our previous study [17].
Briefly, adult patients who were admitted to the ICUs of Sir Run Run Shaw Hospital of
Zhejiang University and accepted invasive MV were included. Raw respiratory waveform
data, including airway pressure sequence and flow velocity sequence, were collected
using a ventilator information system (RespCare™, ZhiRuiSi Co. Ltd., Hangzhou, China).
The data sampling frequency was 50 Hz. The tidal volume sequence was computed
by integrating the flow velocity over time for each breath. All patients were ventilated
with PB840 (PB840, Covidien, U.S.) ventilator under assist/control ventilation mode and
pressure control type. The study was approved by the ethics committee of Sir Run Run
Shaw Hospital of Zhejiang University (No. 20190916-16).

The raw dataset is too large to annotate. We first screened the dataset by selecting ~2%
of the recording from each patient to form a dataset with a reasonable size for annotation.
The selection ensures that all the subjects contribute to the dataset fairly, according to their
MV duration. Details have been described in our previous study [17]. The screened dataset
was annotated first by eight junior professionals and finally reviewed by two leading senior
professionals. Self-developed software was used for data review and manual labeling. To
facilitate annotation, continuous time-dependent respiratory sequences (pressure, flow,
and tidal volume) were visualized together with synchronous ventilator settings. Two
types of PVA, i.e., DT and IEE, were considered, because they account for most PVA
events [21]. DT usually occurs when a patient’s ventilatory center desires a larger breath
or a longer inspiratory time than the ventilator setting [22,23]. IEE usually occurs when
the patient’s inspiratory effort fails to trigger the ventilator [24]. The information on the
screened dataset is summarized in Table 1. The dataset includes three types of sequences,
DT, IEE, and OTHER, which include both normal breaths and those showing other types
of PVA, condensation, suctions, etc. Figure 2 depicts typical examples of annotated DT and
IEE events.
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Table 1. Respiratory sequences data description.

Pretrained Model No. of Respiratory Sequences

PVA–DT a 20,398

PVA–IEE 26,453

OTHER b 470,770

Total c 516,210
a Two consecutive breaths with a DT label form a DT event. b Include normal sequences, other PVA types (flow
and cycling asynchronies), and other problems such as condensation, elevated airway resistance, and active
exhalation. c The sum of PVA–DT, PVA–IEE, and OTHER does not equal to Total, because some cycles have two
labels. For example, the second breath of a DT event could also be a PVA–IEE.
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Figure 2. Typical respiratory sequences of (a) IEE and (b) DT events. The PVA events are indicated
in red.

2.3. Preprocessing

Because the network used to extract features requires image data as input, we con-
verted the 1D ventilation airway pressure sequence (P), flow velocity sequence (F), and
tidal volume sequence (V) into an airway pressure diagram (Pdiag), flow velocity diagram
(Fdiag), and tidal volume diagram (Vdiag), accordingly. Preprocessing was performed in the
following steps:

(1) Standardization. First, the P, F, and V of each breath were interpolated and resampled
to a uniform length of 224. Then, each respiratory sequence was normalized according
to Equation (1), where Xnorm denotes the normalized data, X denotes the original
data, and Xmax and Xmin are the maximum and minimum values of the original data
set, respectively.

Xnorm =
X− Xmin

Xmax − Xmin
(1)

(2) Dimensional Transformation. Each 1D respiratory sequence was plotted in a 224 ×
224 grayscale image, as shown in Figure 3.

(3) Multichannel Fusion. The Pdiag, Fdiag and Vdiag were treated as three respective
channels and combined into an RGB image.

2.4. Pretrained Models for Feature Extraction

The CNN-based transfer learning framework was used in this study as a pretrained
model. We adopted three types of CNN models (i.e., MobileNet, VGG 16, and Inception–
ResNetV2) for feature extraction, as they represent light-weighted, moderate-weighted,
and heavy-weighted feature extractors, respectively. MobileNet is a light-weight model de-
signed to run DL models on mobile devices [25]. It uses depth-wise separable convolution
to increase the computing efficiency with only a small reduction in accuracy. VGG 16 is pro-
posed by the Oxford University Visual Geometry Group (VGG) in the context of ILSVRC
in 2014. It has been greatly improved for the width and depth of the AlexNet network [26].
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In the VGG network, the concept of a convolutional layer is upgraded to the concept of a
convolutional group [27]. Inception–ResNetV2 is a hybrid inception module proposed by
Szegedy et al. [28]. The architecture significantly improves the recognition performance of
ResNetV2 and Inception V4, and the training speed is significantly improved when tested
on the ImageNet dataset.
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Figure 3. Schematic of the preprocessing. (a) Typical Pdiag represents airway pressure sequence. (b) Typical Fdiag represents
flow velocity sequence. (c) Typical Vdiag represents tidal volume sequence. (d) Typical RGB image after multichannel fusion.

The fine-tuning retained the feature extractor of the pretrained network including
its weights and trained the network together with task-specific classifier. To visualize the
networks for better interpretability, we replaced the last three fully connected layers with
GAP layers. The GAP outputs the spatial average of the feature map of each unit in the
last convolutional layer. Then, it computes a weighted sum of the feature maps of the
last convolutional layer to obtain class activation maps [29]. The model was optimized to
obtain the best PVA classification performance. This fine-tuning process enables the new
network to learn the advanced features of the target domain. In particular, to accelerate the
convergence speed of the VGGNet, we added a batch normalization layer [30] between the
convolutional layer and the max-pooling layer of the VGG 16 network, similar to the other
two pretrained models.

Table 2 shows the feature extractor of the three pretrained models. We chose the
same input size in the experiment for a more reasonable comparison. The feature sizes of
MobileNet, VGG 16 and Inception–ResNetV2 are 1024, 1024, and 1536, respectively.

Table 2. Three pretrained networks used in the study.

Pretrained Model No. of Weights No. of Features Input Image Size

MobileNet 3,230,914 1024 224 × 224

VGG-16 network 14,721,602 1024 224 × 224

Inception–ResNetV2 54,339,810 1536 224 × 224

2.5. Performance Evaluation

We used three types of baselines for performance evaluation. The frameworks are
shown in Figure 4. First, we compared the evaluation using the CNN networks initialized
with random weights rather than pretrained weights. Second, we evaluated whether our
method outperformed conventional machine learning methods. The conventional method
took 34 time–domain handcrafted features as inputs following the literature [31] and made
the classification decision using an SVM with Gaussian kernel. Third, we compared it with
our previous study that used a two-layer LSTM network for PVA recognition [17]. The
specific feature extractors and classifiers used in this paper are listed in Table 3.
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Table 3. Feature extractors and corresponding classifiers used in this paper. Pr: use pretrained parameters for the feature
extractors. Rd: use randomly initialized weights for the feature extractors. Mobile, VGG, and InceRes represent MobileNet,
VGGNet, and Inception–ResNetV2 as the feature extractor, respectively. DC: dense classifier. SVM: SVM classifier.

Type Model Name Feature Extractor Classifiers

Pr_CNN_DC
Pr_Mobile_DC Pretrained MobileNet extractor Dense
Pr_VGG_DC Pretrained VGGNet extractor Dense

Pr_InceRes _DC Pretrained Inception–ResNetV2 extractor Dense

Pr_CNN_SVM
Pr_Mobile_SVM Pretrained MobileNet extractor SVM
Pr_VGG_SVM Pretrained VGGNet extractor SVM

Pr_InceRes _SVM Pretrained Inception–ResNetV2 extractor SVM

Rd_CNN_DC
Rd_Mobile_DC MobileNet extractor with r.i.w. * Dense
Rd_VGG_DC VGGNet extractor with r.i.w. Dense

Rd_InceRes_DC Inception–ResNetV2 extractor with r.i.w. Dense

Rd_CNN_SVM
Rd_Mobile_ SVM MobileNet extractor with r.i.w. SVM
Rd_VGG_ SVM VGGNet extractor with r.i.w. SVM

Rd_InceRes_ SVM Inception–ResNetV2 extractor with r.i.w. SVM

Manual_SVM Manual feature design SVM
LSTM 2-layer LSTM network Dense

*: r.i.w. randomly initialized weights.

General k-fold cross-validation is a technique of stabilizing the performance of sta-
tistical models. The entire dataset was divided into k different subsets, and training was
repeated with k − 1 subsets, and evaluation was performed with one subset until all k
subsets were evaluated. To examine the influence of the number of training samples on the
experimental results, we proposed a partial dropping cross-validation strategy to evaluate
the performance of the transfer learning framework. This strategy is illustrated in Figure 5.
First, we divided the dataset into k folds and took the data of k − 1 folds to form a subset
M. The left fold was used for the testing. Then, part of subset M was dropped (M2), and
the retained part was denoted as M1. There is a partial retention rate (PRR) such that
i = [PRR× n ], where [·] means taking an integer. i is the size of M1, and n is the size of
M. The model was further trained using M1, with 70% used for training and 30% used for
validation. This procedure was repeated k times for cross-validation. In this study, we set k
to 5.

Categorical cross-entropy was adopted as the loss function, and the labels of all data
were one-hot encoded. Early stopping and batch normalization were applied to avoid
overfitting the model. Batch normalization [30] allows us to use much higher learning rates.
Early stopping [32] is an effective strategy of preventing overfitting. During the training
phase, 30% of the training data was reserved as a validation dataset. When the validation
loss did not decrease for 10 consecutive epochs, the learning rate was automatically reduced.
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If the validation loss no longer decreased, the training was stopped, and the model was
saved as the best one.
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The classification accuracy, sensitivity, specificity, and F1 score were calculated to
evaluate the performance of the networks:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

F1 = 2× Sensitivitiy× Speci f icity
Sensitivity + Speci f icity

(5)

where TP, TN, FP, and FN denote the number of true positive, true negative, false positive,
and false negative samples, respectively. These classifiers and CNN models were deployed
in the Python language with TensorFlow [33]. The network’s fine-tuning was implemented
with Keras, with TensorFlow backend.

3. Results

Figure 6 shows the results of identifying the IEE for the Pr_CNN_DC and Rd_CNN_DC
models. When PRR = 1, the performances using the pretrained models and the randomly
initialized models were comparable (F1 score: 0.958, 0.968, and 0.984 for Pr_VGG_DC,
Pr_Mobile_DC, and Pr_InceRes_DC, respectively and 0.95, 0.977, and 0.983 for Rd_VGG_DC,
Rd_Mobile_DC, and Rd_InceRes_DC, respectively). As shown in Figure 6d, the F1 scores
of the Rd_CNN_DC model decreased significantly when PRR dropped, whereas the F1
scores of the Pr_CNN_DC model did not fluctuate. With the decrease in PRR, the gap in
accuracy between the Pr_CNN_DC and Rd_CNN_DC models is widened. When PRR
dropped to 0.1, the F1 scores of the Pr_VGG_DC, Pr_Mobile_DC, and Pr_InceRes_DC
models were 0.948, 0.950, and 0.935, respectively, whereas the F1 scores of Rd_CNN_DC
were 0.5, 0.563, and 0.506, respectively. When PRR was further reduced to 0.01, the transfer
learning method obtained F1 scores of 0.835, 0.846, and 0.772, respectively, whereas the
Rd_CNN_DC model failed to converge.

Simultaneously, the F1 score of the LSTM was only 0.714, which means that the DL
method without transfer learning was not as accurate as the transfer learning method on
small datasets. Similar findings are shown in Figure 7, which shows the results of the DT
identification.
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When the PRR is set to 0.1, Figure 8 shows the performance comparison among
Pr_CNN_DC, Pr_CNN_SVM, Rd_CNN_SVM, and Rd_CNN_DC. It can be seen that the
SVM classifier was slightly better than the dense classifier. We found a trivial difference
between the results under Pr_CNN_DC and Pr_CNN_SVM, implying that the choice of
classifier was not very important in identifying PVA using the transfer learning method.
Figure 9 also illustrates the same conclusion.
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Tables 4 and 5 show the comparison between the models using the SVM classifier.
It was observed that the Pr_CNN_SVM model obtained the best performance, whereas
the Manual_SVM model gave the lowest F1 score. The results indicate that the CNN-
based feature extractor performed better than manual feature selection in the task of
PVA detection.
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Table 4. Results of Pr_CNN_SVM, Rd_CNN_SVM and Manual_SVM model in detection of
DT (PRR = 0.1). The result value of Pr_CNN_SVM model is the average of Pr_Mobile_SVM,
Pr_VGG_SVM, and Pr_InceRes_SVM. The result value of Rd_CNN_SVM model is the average
of Rd_Mobile_SVM, Rd_VGG_SVM, and Rd_InceRes_SVM. ACC: Accuracy, SEN: Sensitivity, SPE:
Specificity, F1: F1-score.

ACC SPE SEN F1

Manual_SVM 0.921 ± 0.004 0.946 ± 0.003 0.895 ± 0.005 0.918 ± 0.004

Pr_CNN_SVM 0.966 ± 0.005 0.958 ± 0.007 0.973 ± 0.009 0.965 ± 0.005

Rd_CNN_SVM 0.949 ± 0.012 0.943 ± 0.009 0.957 ± 0.018 0.949 ± 0.013

Table 5. Results of Pr_CNN_SVM, Rd_CNN_SVM, and Manual_SVM model in detection of
IEE (PRR = 0.1). The result value of Pr_CNN_SVM model is the average of Pr_Mobile_SVM,
Pr_VGG_SVM, and Pr_InceRes_SVM. The result value of Rd_CNN_SVM model is the average
of Rd_Mobile_SVM, Rd_VGG_SVM, and Rd_InceRes_SVM. ACC: Accuracy, SEN: Sensitivity, SPE:
Specificity, F1: F1-score.

ACC SPE SEN F1

Manual_SVM 0.638 ± 0.008 0.628 ± 0.019 0.650 ± 0.008 0.637 ± 0.005

Pr_CNN_SVM 0.949 ± 0.004 0.945 ± 0.005 0.954 ± 0.009 0.949 ± 0.005

Rd_CNN_SVM 0.815 ± 0.040 0.830 ± 0.064 0.799 ± 0.037 0.809 ± 0.037

Figure 10 shows the class activation maps of Pr_VGG_DC and Rd_VGG_DC. The
highlighted part in red represents the region in which the model focused on classification.
It was found that, when PRR = 1, the highlighted parts in Pr_VGG_DC and Rd_VGG_DC
were both positioned in the key area for identifying the IEE. However, when PRR was re-
duced to 0.01, the highlighted part was scattered in Rd_VGG_DC but was still concentrated
in the key area in Pr_VGG_DC. Similar findings were observed for DT classification.
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Figure 10. Class activation maps of Pr_VGG_DC and Rd_VGG_DC in identifying IEE and DT
waveform. (a–f) Class activation maps of IEE color image. (g–l) Class activation maps of DT
color image.
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4. Discussion

There is an urgent requirement for the study of ventilatory support techniques during
the coronavirus disease 2019 (COVID-19) pandemic, and automatic detection of PVA is one
of the challenges faced by clinics worldwide [34]. Using DL approaches to detect PVA is
promising, but it is hampered by the limited number of annotated data [26]. We proposed
and evaluated a method that applies transfer learning to identify PVA. We transferred
three CNN models, which were pretrained based on the large-scale ImageNet database, to
extract features from the 1D respiratory sequences. We then adopted different classifiers to
recognize two types of PVA, i.e., DT and IEE. Using a partial dropping cross-validation,
we found that, with a reduction in the size of the training dataset, the accuracy of PVA
classification dropped significantly when using non-transfer learning. In contrast, the
transfer learning method achieved a high classification accuracy, even when only 1% of
the samples in the original training dataset were involved in training. This indicates the
feasibility of transfer learning for identifying PVA cycles having small, annotated datasets.

In developing computerized algorithms for PVA detection, feature extraction and
classifier selection are key steps. Sottile et al. proposed using 34 features to classify DT, IEE,
flow-limited, premature ventilator-terminated, and synchronous breaths [31]. We adopted
their respective extracted features and fed them to the SVM model. The performance was
weaker than that of the DL method, probably because the extraction of handcrafted features
is vulnerable to noise. We set up three pretrained CNN having different levels of weight
to extract the features. The difference in the performance of the three models was less
than 5%, which means that even the light-weighted MobileNet could effectively extract the
crucial features for PVA analysis. Its strength in feature extraction mainly benefits from the
complex image classification problem on the ImageNet dataset. The results also imply that
the feature extraction model can be further simplified to achieve satisfactory performance.

Figures 6 and 7 indicate that the complexity of the model structure was more impor-
tant than the number of parameters. The structures of extractor in both MobileNet and
Inception–ResNetV2 contained more regularization and other methods to enhance the
generalization ability of the model. In contrast, although we added the batch normalization
layer to the VGG 16 extractor, the generalization ability of the model was weaker than that
of the MobileNet and Inception–ResNetV2 extractors. The classifier plays only an auxiliary
role in identifying PVA. Figure 8 shows that the models using SVM or dense classifiers
obtained similar results.

The proposed preprocessing method was easy to implement and was reasonable for
our research. There are some methods that converted 1D time series to 2D images for
CNN processing over the past decade. Some of them transformed the 1D time series
into spectrograms using wavelet transforms, Fourier transforms, etc. [19,35], whereas
others obtained time–domain characteristics by plotting the waveforms directly onto a
canvas [36,37]. The former strategy aimed to highlight the time–frequency characteristics,
whereas the latter focused on the original time–domain information. We adopted the
latter type of preprocessing, because PVA occurs because of the asynchronous process of
human–machine interaction and may not reflect specific frequency properties. However, it
has to be pointed out that the resampling procedure is likely to down-sample the waveform
signal and may lose the detailed features in the ventilator waveform, particularly for long
breathing cycles. Moreover, conversion of the 1D waveform into 2D image may distort
the amplitude of the ventilator waveform. Despite of the satisfactory performance of the
proposed approach, the influence of the preprocessing method on the results needs to be
investigated further.

The transfer learning shows superior performance over the compared machine learn-
ing and standard DL models in PVA detection. By embedding the algorithm into a ven-
tilator information system, which collects real-time ventilator waveforms, the algorithm
is promising to detect the occurrence of PVA in real-time under specific ventilation mode
to alert the clinicians to deal with it. However, more efforts are required to apply the
proposed approach in real clinical settings. First, it remains to be investigated whether the
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approach can be extrapolated to more ventilator vendors, more ventilation modes, and
more PVA types. The method is expected to be applicable to these conditions, because the
feature extraction is automatic and thus suitable for detecting other types of PVA under
various ventilation modes. Second, we converted the 1D time series into images having
a unique size as required by the CNN models. This led to distortion of waveforms at
different lengths. Although most breaths last for 4–6 s and 224 samples were sufficient
to represent the characteristics of the normal and PVA cycles (longer than previously
reported 150 samples for CNN [37]), the influence of the resampling processing should
be investigated in the future. Future studies are required to apply this approach in real
clinical settings.

5. Conclusions

We presented a PVA detection and classification method based on MV sequences.
This method exploited CNN-based learning features through transfer learning to fine-tune
the pretrained CNN and then classify the features. The results suggest that transferring
pretrained 2D–CNN to solve the 1D problem is capable of acquiring a high accuracy in
PVA detection with a small dataset. Future application of the transfer learning technology
could assist the detection of other types of PVA cycles under various ventilation modes,
and therefore, rendering better patient–ventilator interaction, which probably benefits the
intubated patients in the ICU, including the COVID-19 patients.
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