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Abstract

Background: The universal stress proteins (USP) family member UspE is a tandem-type USP that consists of two
Usp domains. The UspE expression levels of the Escherichia coli (E. coli) become elevated in response to oxidative
stress and DNA damaging agents, including exposure to mitomycin C, cadmium, and hydrogen peroxide. It has
been shown that UspA family members are survival factors during cellular growth arrest. The structures and
functions of the UspA family members control the growth of £ coli in animal hosts. While several UspA family
members have known structures, the structure of E. coli UspE remains to be elucidated.

Results: To understand the biochemical function of UspE, we have determined the crystal structure of E. coli UspE at
3.2 A resolution. The asymmetric unit contains two protomers related by a non-crystallographic symmetry, and each
protomer contains two tandem Usp domains. The crystal structure shows that UspE is folded into a fan-shaped
structure similar to that of the tandem-type Usp protein PMI1202 from Proteus mirabilis, and it has a hydrophobic cavity
that binds its ligand. Structural analysis revealed that £. coli UspE has two metal ion binding sites, and isothermal
titration calorimetry suggested the presence of two Cd** binding sites with a Kq value of 38.3-242.7 uM. Structural
analysis suggested that £. coli UspE has two Cd** binding sites (Site I: His117, His 119; Site II: His193, His244).

Conclusion: The results show that the UspE structure has a hydrophobic pocket. This pocket is strongly bound to an
unidentified ligand. Combined with a previous study, the ligand is probably related to an intermediate in lipid A
biosynthesis. Subsequently, sequence analysis found that UspE has an ATP binding motif (Gly*®*- Xo-Gly*’*-Xg-Gly***-Asn)
in its C-terminal domain, which was confirmed by in vitro ATPase activity monitored using Kinase-Glo® Luminescent
Kinase Assay. However, the residues constituting this motif were disordered in the crystal structure, reflecting their intrinsic
flexibility. ITC experiments revealed that the UspE probably has two cd** binding sites. The His117, His 119, His193, and
His244 residues within the B-barrel domain are necessary for Cd®* binding to UspE protein. As mentioned above, USPs
are associated with several functions, such as cadmium binding, ATPase function, and involvement in lipid A biosynthesis
by some unknown way.
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Background

The universal stress proteins (USP) superfamily is a group
of conserved proteins that play an important role in E.
coli. USPs’ expression levels become elevated in response
to a bewildering variety of stress conditions, such as heat
shock, nutrient starvation, the presence of oxidants,
DNA-damaging agents (including exposure to mitomycin
C, cadmium, and hydrogen peroxide), as well as others,
that may arrest cell growth. Proteins in the UspA family
constitute a natural biological defense mechanism [1, 2].
Despite considerable research on the behavior of UspA
family members, the biological and biochemical roles of
these proteins remain largely uncharacterized. Very few
details were available to help decipher their roles in the
aforementioned cellular processes [1]. A better under-
standing of the molecular mechanisms of E. coli’s UspA
proteins is important for establishing effective therapeutic
strategies. In particular, establishing the three-dimensional
structural model of the UspE protein can provide hints to
explore the function(s) of the UspA family.

E. coli has six small UspA superfamily genes: uspA, -C
-D, -E, -F, and -G. To date, these proteins have been ex-
tensively investigated. Previous studies have shown that
UspA family members show immaculate similarity. They
encode either a small USP protein (approximately 14 to
15 kDa) that consists of two USP domains in tandem or a
larger version (approximately 30 kDa) that consists of two
peptides attached as a single functional protein [3, 4].
UspA, UspC, and UspD belong to class I; UspF and UspG
belong to class II; two Usp domains of UspE belong to
class II and IV based on the sequence and structural ana-
lysis [3, 5, 6]. Previous works have found that while Usp
family members have partially overlapping functions, the
functions of class I, II, and IV Usps are distinct [7]. UspA
proteins differ in their responses to protect cells from oxi-
dative stress and DNA damage agents; UspA, UspC,
UspD, and UspE are induced by exposure to mitomycin
C, cadmium, and hydrogen peroxide. However, class II
proteins, UspG and UspF, were associated with iron scav-
enging in the cell [4]. As mentioned before, UspE is a
tandem-type USP. When UspE proteins are split apart
and treated separately, the UspE2 domain is more closely
related to UspF and UspG. This is clearly visible in both
the clustering analysis and the reconstructed cladogram.
In contrast, UspE1 groups are more closely related to class
I UspA proteins (UspACD) [1].

This paper includes structural and functional studies
on UspE from E. coli. Specifically, it presents the three-
dimensional X-ray crystal structure of the recombinantly
produced UspE from E. coli at 3.2 A resolution. Add-
itionally, through the use of structural biochemical ana-
lyses, the UspE mechanisms were determined. In terms
of its overall structure, UspE was found to be similar to
the tandem-type Usp protein PMI1202 from Proteus
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mirabilis, which has a hydrophobic cavity that binds an
unidentified ligand. It was also observed that UspE has
an ATP binding motif (Gly***-Thr-Val-Gly*”-X,-Gly***-
Asn) in its C-terminal domain. The ATPase activity was
then measured to determine if UspE had ATPase activity
and to characterize UspE activity. Because previous re-
search found that UspE is critical for Cd** defense, we
characterized the role of UspE as part of the Cd** bind-
ing process by ITC and structural analysis and found
that UspE has two Cd** binding sites in its tandem USP
domain. These observations suggest that UspE performs
several distinct functions, such as ATP hydrolysis and
cadmium defense. Although the molecular function of
this protein remains unknown, our three-dimensional
structures of UspE offer valuable clues to understand its
potential biochemical mechanisms.

Methods

Structure determination, refinement and protein data
bank accession number of UspE

We have previously reported the crystallization and
preliminary X-ray analysis of E. coli UspE [8]. Data
collection and refinement statistics are summarized in
Table 1. The structure of the E. coli UspE protein
was determined by molecular replacement (MR) using
the program CCP4 package [9]. We used the coordi-
nates of the structures of P. mirabilis PMI11202
(78.5 % sequence identity; PDB code: 30LQ) as a ref-
erence. To build our protein model, we first removed
model bias by rounds of simulated annealing per-
formed with the program PHENIX [10], followed by
calculating the differences using Fourier maps. Then,
the UspE model was rebuilt in the graphic program
COOT [11]. The model was finally refined using the same
programs by iterative rounds of energy minimization, B-
factor, and anisotropic refinements. Then, the composite
omit and differences were calculated by Fourier maps.
UspE coordinates and structure have been deposited in
the Protein Data Bank [12] under accession code: 5CBO
(www.rcsb.org/pdb).

Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) measurements
were performed on a Microcal iTC 200 (GE Healthcare)
VP-ITC microcalorimeter at 298 K. The protein was dia-
lyzed against 20 mM Hepes (pH 7.0) and 150 mM NaCl.
The titration CdCl, solution was prepared with 20 mM
Hepes (pH 7.0) and 150 mM NaCl by adding 2 mM
CdCl,. Both the protein and the titrant CdCl, solutions
were thoroughly degassed in a ThermoVac apparatus
(Microcal). The titration reaction was performed by
sequential injections of 40 pl CdCl, solution into the
sample cell. The duration of the injection was 120 s. The
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Table 1 Diffraction statistics

X-ray source

Beamline 5C, Pohang
Accelerator Laboratory

PDB code 5CBO
Wavelength (A) 1.000
Space group 14,22
Resolution (A) 19.9-32

Parameters (A) a=b=1211A c=2417 A, a=B8=y=90°

Rsym (%) 15.3 % (334 %)
Completeness (%) 92.7 (90.2)
Redundancy 53 (36)
Average /o (I) 92 (3.3)
R-factor (%) 2431
Rfree (%) 30.06
Rmsd for bonds (A) 0.007
Rmsd for angles () 1.393
Ramachandran plot (%)

Favored regions 93.64 %

Allowed regions 512 %

Disallowed regions 1.24 %
Number of atoms

Protein 4630

Ligand 34
Average B factor (A%) 7054

tRmerge=ZniiXi | 1i(hkl)-<I(hkl) > | Lna%: | 1(hk) , where I(hkl), where I(hKI) is the
intensity of reflection hkl, Sp4 is the sum over all reflections and 3, is the sum
over i measurements of reflection hkl. #Ruwork =Shit | Fo-Fe | /Sha | Fo | for all
data with F, >20(F,), excluding data used to calculate Rgee. SRiree =St | For

Fe | /5 | Fo | for all data with F, >20(F,) that were excluded

from refinement

syringe was rotated at 600 rev min™. Triplet measure-
ments were collected in each case.

Kinase-Glo® luminescent kinase assay

The in vitro ATPase activity of UspE was measured by
quantifying the amount of ATP remaining in the solu-
tion following a kinase reaction using a Kinase-Glo® Lu-
minescent Kinase Assay Kit (Promega, Fitchburg, WI,
USA). The assay was performed in a 96-well plate in a
kinase reaction volume of 50 pl containing 10 mM
MgCl,,5 puM ATP10 mM HEPES (pH 8.0) and 150 mM
NaCl. The reaction was initiated by adding the protein
to a final concentration of 0.4 mg/ml-3.2 mg/ml. The re-
action mixture was kept at 310 K for 20 min in a water
bath. Reaction mixtures containing no UspE were used
as negative controls. The kinase reaction mixture was in-
cubated with 50 pl of ATP detection reagent. The plates
were then incubated for another 10 min at 310 K. The
Synergy2 Multi-Mode Microplate Reader (BioTek, Wi-
nooski, VT, USA) was used to collect the relative light
unit (RLU) signal. The luminescent signal was positively
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correlated with the amount of remaining ATP and in-
versely correlated with the amount of kinase activity.

Results and discussion

Overall structure

To examine the biochemical mechanisms responsible for
UspE function, we determined the crystal structure of
the UspE by the molecular replacement method with the
synchrotron data set at a resolution of 3.2 A. The final
model refined to a R-factor of 0.24 (Rg.ee = 0.30). The ini-
tial solution suggested the presence of two monomers per
asymmetric unit, which is consistent with the Matthews’
coefficient of 3.1 A®> Da™ (60.37 % solvent). The tertiary
structure of the UspE is very similar to that of the previ-
ously described P. mirabilis Usp protein PMI1202 (PDB
code: 30LQ), which was used as a search model in mo-
lecular replacement [13, 14]. UspE exists as a monomer,
and the structure reveals a compact and 2-fold symmetric
dimer in the crystal. Each monomer consists of two USP
domains, and the final model contains two homologous
subunits related by a non-crystallographic symmetry
(Fig. 1a). The E. coli UspE has a high structural similarity
compared with the P. mirabilis USP (PDB code: 4WY2)
(Fig. 1b). The crystal structure shows that UspE is folded
into a fan-shaped structure similar to that of the tandem-
type Usp protein USP from P. mirabilis (Fig. 1c). In a
Ramachandran plot, 93.82 % of the model residues were
found in favored regions, 5.72 % in allowed regions, and
1.06 % in the disallowed regions. Their structures are vir-
tually identical with a root-mean-square deviation
(RMSD) value of 0.40 A for a 244 Ca atom. UspE is com-
posed of ten B-stranded mixed -sheet and nine a-helices.
In the core structure, ten -strands form a central parallel
B-sheet (Fig. 1d). Significant density was observed for all
residues in the final electron density map except 163-170,
202-215, and 270-282. Table 1 provides refinement sta-
tistics and structure solution for all structures.

E. coli UspE accommodates an unidentified ligand

More importantly, we found an unambiguous stick-like
electron density in the hydrophobic pocket of E. coli
UspE throughout the refinement process. It looks like
that the UspE carries the unidentified ligand. The
crystal structure of P. mirabilis USP suggested that
Uridine-5"-diphosphate-3-O-(R-3-hydroxymyristoyl)-
N-acetyl-D-glucosamine was tightly bound to P. mir-
abilis USP. We found that the Uridine-5"-diphosphate-
3-O-(R-3-hydroxymyristoyl)-N-acetyl-D-glucosamine
binding pocket of P. mirabilis USP was very similar
to the hydrophobic pocket of E. coli UspE (Fig. 2a)
and that the hydrophobic pocket of E. coli UspE was appro-
priate for binding Uridine-5’-diphosphate-3-O-(R-3-hydro-
xymyristoyl)-N-acetyl-D-glucosamine. In addition, the
stick-like electron densities were very similar to a 3-
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A chain

EcUspE. d Secondary structural elements of UspE are numbered

B chain

Fig. 1 Overall structure of the UspE. a Structure of EcUspE in the tetragonal crystal form, displayed as ribbons. The asymmetric unit contains two
protomers colored blue and green. b Structural comparison of the cartoon traces of £cUspE and P. mirabilis USP (PDB code: 4WY2). EcUspE is
colored green, and the P. mirabilis USP is colored yellow. The disordered regions are shown with dashed lines. ¢ The monomer structure of

hydroxymyristoyl group of Uridine-5"-diphosphate-3-O-(R-
3-hydroxymyristoyl)-N-acetyl-D-glucosamine. Thus, this
group was placed at density result. Despite the fact that
EcUspE crystals were obtained in the absence of 3-
hydroxymyristoyl group molecules in both media and
buffers, these positions could be successfully refined with
no significant residual difference density and with associ-
ated B-factors comparable with those of the surrounding

atoms. The characteristic hydrophobic environment in the
pocket indicates that UspE can bind unidentified ligand
with a 3-hydroxymyristoyl group in the cavity. This pocket
was surrounded by hydrophobic residues in 6, 39, p10,
and a6 (Fig. 2b and c). This finding indicates that hydro-
phobic interactions are involved in the binding of this lig-
and. A previous study using mass spectrometric and
surface analyses showed that the UspE homologue protein

3-hydroxymyristoyl group

Uridine-5'-diphosphate-
3-0-(R-3-hydroxymyristoyl)-
N-acetyl-D-glucosamine

Fig. 2 Unidentified ligand bound in the crystal structure of UspE. a Structural comparison of the surface traces of EcUspE and P. mirabilis USP

(PDB ID: 4WY2). EcUspkE is colored green, and the P. mirabilis USP is colored yellow. Uridine-5 -diphosphate-3-O-(R-3-hydroxymyristoyl)-N-acetyl-D-
glucosamine and 3-hydroxymyristoyl group are colored magentas and yellow, respectively. b The 2F, - F. map around the ligand is contoured at
the 1 sigma level (gray). (C) The 2F, - Fc map around the ligand is contoured at the 2 sigma level (gray)
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YdaA from Salmonella enterica serovar Typhimurium
might bind a large, non-polar ligand in its N-terminal
domain; however, YdaA was not bound to any ligand
in crystal structure [15]. The ligand bound to P. mir-
abilis USP was tentatively identified as UDP-(3-O-(R-
3-hydroxymyristoyl))-N-acetylglucosamine. The pub-
lished crystal structures of the LpxA and LpxC from
E. coli contain UDP-(3-O-(R-3-hydroxymyristoyl))-N-
acetylglucosamine and its deacetylated product, re-
spectively [16, 17]. These proteins catalyze the first
committed step of lipid A biosynthesis [18]. Com-
bined with these data, the unidentified ligand bound
to E. coli UspE is probably related to an intermediate
in lipid A biosynthesis, similar to UDP-(3-O-(R-3-
hydroxymyristoyl))-N-acetylglucosamine deacetylases.

E. coli UspE has an ATP binding motif and ATPase activity
Previous studies show that USPs can be divided into
groups: those that bind ATP (UspFG-type), those that
do not bind ATP (UspAs and UspA-like group), and
those that hydrolyze adenine nucleotide substrates. USPs
that bind ATP may function as an ATP-dependent sig-
naling intermediate in a pathway that promotes persist-
ent infection. Furthermore, it was suggested that USPs
contain a conserved-sequence Gly-X,-Gly-Xo-Gly (Ser/
Thr/Asn) motif that is needed for binding ATP [3, 5, 6,
15, 19, 20]. However, the ATP binding motif of UspE
was disordered in the crystal, due to the intrinsic flexi-
bility of these regions (Fig. 3a). Therefore, it is likely that
the bound ATP is disordered or the protein devoid of
bound ATP was preferentially crystallized. In this struc-
ture, we found the presence of this motif (Gly***- X,-
Gly*"*-Xo-Gly***-Asn) in the C-terminal domain of
UspE, which is similar to other USPs that bind ATP
(Fig. 3b). The in vitro ATPase activity of UspE was deter-
mined by measuring the amount of ATP left in solution
following a kinase reaction using the Kinase-Glo® Lumi-
nescent Kinase Assay. As expected, the decline in lumi-
nescent signal depended on the increasing concentration
of UspE (Fig. 3c). These results indicate that ATPase ac-
tivity from UspE decreases the remaining ATP levels.

UspE has putative Cd** binding sites

Cadmium, in a variety of chemical forms, is toxic for the
proper growth of microbial cells. Previous studies
showed that cadmium (273 pM) can cause complete but
transient inhibition of growth accompanied by the syn-
thesis of cadmium-induced proteins (CDPs) [21]. The E.
coli increase synthesis of CDPs (e.g., H-NS, UspA, UspC,
UspD, UspE), which together make up the cadmium
stress stimulon [7]. The UspE can sequester Cd from the
cytosol to protect themselves. To analyze the relation-
ship between UspE and cadmium, we investigated the
cadmium binding ability of UspE by an ITC experiment.
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Fig. 3 ATP binding motif and ATPase activity of UspE. a Close-up view
of the b Alignment of the sequences around the ATP binding motif
from E. coli UspE (Ec UspE), P. mirabilis (Pm UspE), P. aeruginosa UspE
(Pa UspE), and M. tuberculosis (Mt UspE). The conserved residues and
ATP binding motif are highlighted. ¢ Kinase activity of UspE. Varying
concentrations (04, 0.8, 1.6, 3.2, 64, mg/ml) of UspE were used in the
reaction mixture, and the protein are resuspended in 50 pl containing
10 mM MgCl, and 5 uM ATP. The graph represents the mean of three
independent experiments, and the standard deviation is indicated by
error bars

The ITC experiment was carried out using cadmium as
titrant at pH 7.0. Initial attempts to fit the data to a
double site-binding model were not successful. The iso-
therm was best fit when a sequential binding model with
three binding sites was applied. Through analysis of
these ITC data, we observed tight Cd** binding to UspE
with 7 = 3. This suggests a binding stoichiometry of 3 moles
of Cd** to 1 mole of UspE. The two have moderate binding
affinities (Ky of 33.7 and 94.3 uM, respectively), whereas the
other one has low affinity (K4 of 242.7 uM). The K4 value of
site 1 and site 2 are high compared with site 3. At site 1 and
site 2, the binding of Cd** with UspE is favorable, with an
exothermic enthalpy (AH of -18.2 and -9.384 kcal mol
!, respectively) and negative entropy (AS=-12.67 and
-3.25 kcal mol™, respectively). At site 3, the binding of
Cd** with UspE is unfavorable, with an exothermic en-
thalpy (AH =-8.131 kcal mol™") and negative entropy
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Table 2 ITC experiment Cd*" binding to UspE CdCl, inhibited cell proliferation and 10 uM was lethal
Kd H TS G [13, 14]. To regulate the concentration of Cd?*, E. coli
uM keal/mol keal/mol kcal/mol ~ might induce CDPs such as UspE. These results suggest

Site 1 943 182 167 55 that apoUspE and Cd** have a direct relationship. To

understand the relationship between apoUspE and Cd*",
we observed the ability of cadmium to interact with UspE
through the ITC experiment. Our structural analysis
indicates that E. coli has two putative binding sites (Site I:
(AS =-3.19 kcal mol™!). The detailed thermodynamic  His117, His 119; Site II: His193, His244) (Fig. 4b). Add-
parameters are listed in Table 2 and Fig. 4a. Evidence itionally, sequence alignment showed that residues His117,
has been reported that to obtain lethal effects in an ex-  His119, His193, and His244 within the -barrel domain are
ponentially growing culture, 600 uM CdCl, is required.  highly conserved among the UspE proteins (Fig. 4c).
In the lag phase before growth commenced, 3 puM Recently, a study has been performed to observe site I,

Site 2 337 -9.383 -3.25 -6.1
Site 3 2427 -8.131 -3.19 -50

Time (min)
a 0 10 20 30 40 50

0.00 ]

-1.00 - E

-2.00 A B

ucal/sec

-3.00 - p

-4.00 ——————T T
-2.00 -{[p=pzeion ]

4.00 |

-6.00 -

M
Iz 131 2erzE3 cotmoa

800 —

cal/mol of injectant

¥-10.00

050005101520253035404.5
Molar Ratio

(o]
Ec UspE : 1% TE "v'rpm ATELZERDPSVYNDA GQHLLHM RQKI GINENMT EK 247
Pm UspE : 19 PDj APIN ATELiZDI3DPNLYNNAWRGOHL IIAMIELRQKIS I PEEKTENKE 248
Pa UspE : 167 A iSP-- SSADIFTHOLS---ET EARYREHC\ ATFOAENGFSDEQLEMEE 119

Fig. 4 Representative isotherm for the binding of Cd”* to UspE. a In each panel, top: raw data output of power (heat released) for each of 25
consecutive injections of CdCl, (2 mM) or mitomycin C (2 mM) in to the protein (0.2 uM). Bottom: heat exchange at each injection obtained by
integration of each injection, normalized to kcal/mol of CdCl,. The computer generated titration curve is best fit to a model of sequential binding
with three sites (solid line). b The Cd** binding site | and site Il are shown in the red circle. Close-up view of the cd’t binding site I, His193 and
His 244 is shown as sticks colored orange. ¢ Sequence alignment of the Cd®* binding site Il part of UspE proteins. The key conserved regions are
highlighted in black. In key conserved regions, His 193 and His 244 are denoted with asterisks
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which is known to be crucial for zinc binding in the crystal
structure of YdaA from S. enterica serovar Typhimurim
(PDB ID: 4R2J) [15]. This provides further support for the
original conclusion that cadmium binds at two locations.
Our results clearly demonstrate that E. coli UspE has two
different sets of binding sites and the protein may provide
additional confirmation for the cadmium binding to these
two sites.

In summary, the crystal structure of UspE from E. coli
is representative of a tandem-type USP. The crystal
structure of E. coli UspE reveals a hydrophobic pocket
that moderately binds an unidentified ligand. Combined
with previous studies, we can conclude that UspE is
probably related to an intermediate in lipid A biosyn-
thesis. We subsequently found through the sequence
analysis that UspE has an ATP binding motif (Gly***-
X,-Gly*”%-Xo-Gly***-Asn) in the C-terminal domain and
has ATPase activity, though this did not appear in the
crystal structure. We were also able to perform an ITC
experiment which revealed that UspE probably has two
Cd** binding sites and that the His117, His119, His193,
and His244 residues within the B-barrel domain are crit-
ical for binding Cd**. We believe that this information is
a significant contribution to understanding the molecu-
lar mechanisms of E. coli UspE.

Conclusions

In this study, we have determined the crystal structure
of UspE of E. coli as a representative of a tandem-type
USP. The UspE consists of two tandem USP domains
that are highly conserved in this protein family. We
found a hydrophobic pocket in the UspE structure,
which was strongly bound to unidentified ligand. Com-
bined with a previous study, evidence suggests that the
UspE is related to an intermediate in lipid A biosyn-
thesis. We subsequently found that sequence analysis
suggests that UspE has an ATP binding motif (Gly***-
X2—Gly272—X9—Gly282—Asn) in the C-terminal domain of
UspE and has ATPase activity, but this was not confirmed
by the crystal structure. We were also able to perform the
ITC experiment, which revealed that the UspE probably
has two Cd** binding sites, comprised of the His117, His
119, His193, and His244 residues within the -barrel do-
main. Both of them are essential for Cd** binding to UspE
protein. As discussed before, USPs might be associated
with several functions, such as cadmium binding, ATPase
activity, and an intermediate in lipid A biosynthesis.
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E. coli: Escherichia coli; ITC: isothermal titration calorimetry; MR: molecular
replacement; P. mirabilis: Proteus mirabilis; PDB: protein data bank;

RLU: relative light unit; RMSD: root-mean-square deviation; S. enterica
serovar Typhimurim: Salmonella enterica serovar Typhimurium;

USP: universal stress protein.
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