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As increasing experimental studies have shown that microRNAs (miRNAs) are closely
related to multiple biological processes and the prevention, diagnosis and treatment of
human diseases, a growing number of researchers are focusing on the identification
of associations between miRNAs and diseases. Identifying such associations purely
via experiments is costly and demanding, which prompts researchers to develop
computational methods to complement the experiments. In this paper, a novel
prediction model named Ensemble of Kernel Ridge Regression based MiRNA-Disease
Association prediction (EKRRMDA) was developed. EKRRMDA obtained features of
miRNAs and diseases by integrating the disease semantic similarity, the miRNA
functional similarity and the Gaussian interaction profile kernel similarity for diseases
and miRNAs. Under the computational framework that utilized ensemble learning and
feature dimensionality reduction, multiple base classifiers that combined two Kernel
Ridge Regression classifiers from the miRNA side and disease side, respectively, were
obtained based on random selection of features. Then average strategy for these base
classifiers was adopted to obtain final association scores of miRNA-disease pairs. In the
global and local leave-one-out cross validation, EKRRMDA attained the AUCs of 0.9314
and 0.8618, respectively. Moreover, the model’s average AUC with standard deviation in
5-fold cross validation was 0.9275± 0.0008. In addition, we implemented three different
types of case studies on predicting miRNAs associated with five important diseases.
As a result, there were 90% (Esophageal Neoplasms), 86% (Kidney Neoplasms), 86%
(Lymphoma), 98% (Lung Neoplasms), and 96% (Breast Neoplasms) of the top 50
predicted miRNAs verified to have associations with these diseases.

Keywords: miRNA, disease, association prediction, ensemble, kernel ridge regression

INTRODUCTION

MicroRNAs (miRNAs), known as the member of short non-coding RNA family, are found in
eukaryotic organisms including viruses, plants and animals. They negatively regulate the expression
of messenger RNA (mRNA) and the protein translation of their target genes (Bartel, 2004). In
addition, miRNAs could also play a role of positive regulators demonstrated in some previous
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studies (Jopling et al., 2005; Vasudevan et al., 2007). Under
normal physiological conditions, miRNAs function in feedback
mechanisms by safeguarding key biological processes including
cell proliferation, differentiation and apoptosis (Bruce et al., 2015;
Reddy, 2015). Many researchers have studied and validated the
dysregulation of miRNA expression in various disease conditions
(Esquelakerscher and Slack, 2006; Latronico et al., 2007; Lynam-
Lennon et al., 2009; Meola et al., 2009; Wilczynska and Bushell,
2015). For example, Jeong et al. (2011) clarified that let-7a was
under-expressed in the blood, cells and tissues of non-small cell
lung cancer (NSCLC) patients compared to normal controls;
and that the possibility of using let-7a as a serologic marker
for lung cancer detection needed further study. Liang et al.
(2012) reported that 66 miRNAs were differentially expressed
in denatured dermis compared with those in normal skin;
and the most significantly up-regulated miRNA was miR-663,
while miR-203 was the most significantly down-regulated one.
They further pointed out that identifying different miRNA
expressions could enhance the understanding the mechanisms
behind the functional recovery of the denatured dermis. Besides,
miR-23/27/24 cluster has been shown by experiments to be
involved in angiogenesis and endothelial apoptosis in cardiac
ischemia and retinal vascular development (Bang et al., 2012).
Hence, it is necessary and urgent to discover more miRNA-
disease associations, contributing the prevention, diagnosis and
treatment of complex human diseases. Nevertheless, it costs
much time and money to discover true disease-related miRNAs
from a mass of candidates by traditional biological experiments
(Calin and Croce, 2006). Nowadays, many computational models
of predicting miRNA-disease associations were developed based
on some biological datasets, which could be used as an important
complement to biological experiments (Chen et al., 2015).

Considering the hypothesis that functionally similar miRNAs
tend to be related to similar diseases (Wang et al., 2010;
Chen et al., 2019), some scoring function-based methods have
been established to reveal new miRNA-disease associations. For
example, Jiang et al. (2010) designed an initial computational
model to infer potential disease-associated miRNAs. The
approach integrated miRNA functional similarity network, the
disease phenotype similarity network and the known miRNA-
disease association network to prioritize the entire human
miRNAome for the investigated disease with a cumulative
hypergeometric distribution. But, the model failed to achieve
excellent results because only neighbor information of miRNAs
was used in the model. Moreover, Xuan et al. (2013) presented
a prediction method of Human Disease-MiRNA association
Prediction (HDMP) based on weighted k most similar neighbors
of unlabeled miRNAs that have no known associations with
disease d. However, HDMP could not predict related miRNAs
for new diseases having no known association information.
Additionally, the model also only used local network similarity.
Furthermore, Chen et al. (2016b) proposed a new computational
approach of Within and Between Score for MiRNA-Disease
Association prediction (WBSMDA), which integrated known
miRNA-disease associations, the miRNA functional similarity,
the disease semantic similarity and the Gaussian interaction
profile (GIP) kernel similarity for diseases and miRNAs. The

authors first defined Within-Score and Between-Score in the side
of miRNAs and diseases, respectively. Then the association score
of the investigated miRNA-disease pair could be obtained by
combining the corresponding Within-Score and Between-Score.
However, WBSMDA did not exhibit outstanding performance
because it was difficult to integrate Within-Score and Between-
Score in reasonable way. Pasquier and Gardes (2016) introduced
the MiRAI model that concatenated multiple miRNA-related
association networks. Then dimensionality reduction technique
was conducted for the combined network with Singular Value
Decomposition (SVD). The final miRNA-disease association
scores were attained by calculating cosine similarity between
miRNA vectors in the miRNA space and disease vectors in
the disease space.

Moreover, some network-based models were put forward. For
example, Chen et al. (2012) proposed the model of Random
Walk with Restart for MiRNA-Disease Association prediction
(RWRMDA). The model was the first to adopt global network
similarity measures and carried out random walk on the miRNA
functional similarity network. However, the model also had the
important limitation that it was not applicable to new diseases
having no known association information. Another model
named MIDP was presented by Xuan et al. (2015) for miRNA-
disease association prediction. The model also performed
random walk on the miRNA functional similarity network. To
predict miRNA-disease associations for new diseases having
no association information, the miRNA-disease bilayer network
was built and MIDP could implement walk on this network.
Furthermore, Chen et al. (2016c) presented the computational
method of Heterogeneous Graph Inference for MiRNA-Disease
Association prediction (HGIMDA), the inputs of which was same
as WBSMDA. HGIMDA implemented an iterative process on the
constructed heterogeneous graph to predict potential miRNA-
disease associations. The model’s performance was better than
many previous models. In order to obtain better performance,
Chen et al. (2018f) constructed Matrix Decomposition and
Heterogeneous Graph Inference (MDHGI) to infer disease-
related miRNAs. Before implementing heterogeneous graph
inference similar to HGIMDA, the authors employed matrix
factorization for miRNA-disease adjacent matrix to remove
redundant information. Gu et al. (Gu et al., 2016) proposed
another method named Network Consistency Projection for
miRNA-Disease Associations (NCPMDA). Firstly, the authors
constructed similarity network for miRNAs and diseases,
respectively, by integrating multiple heterogeneous biological
data. Secondly, the authors performed network consistency
projection from the miRNA (disease) similarity network to the
miRNA-disease association network, respectively. Lastly, scores
of both network consistency projections were combined as
the final miRNA-disease association score. Yu et al. (2017)
introduced a prediction method named MaxFlow for miRNA-
disease association prediction. In this method, miRNAome-
phenome network was constructed by combining multiple
heterogeneous network. For an investigated disease, the authors
adopted push-relabel maximum flow algorithm to compute the
maximum information flow from the source node over all links
to sink node, and used the flow quantity leaving a miRNA node
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as the association score between the investigated disease and
miRNA. In addition, You et al. (2017) developed the model of
Path-Based MiRNA-Disease Association prediction (PBMDA).
This model constructed a heterogeneous graph, adopted depth-
first search algorithm to traverse all paths between a miRNA node
and a disease node, and used the product of all the edges’ weights
as path score in each path. The miRNA-disease association score
could be obtained by summing all path scores between the
miRNA node and disease node. In this model, distance-decay
function was used for further weakening the score contribution
of longer path. In addition, Chen et al. (2018e) presented the
method of Bipartite Network Projection for MiRNA–Disease
Association prediction (BNPMDA), which built bias ratings for
miRNAs (diseases) by using agglomerative hierarchical clustering
and improved traditional bipartite network recommendation.
Although BNPMDA obtained better prediction accuracy than
many previous models, it is not applicable for new diseases
without known related miRNAs.

In fact, many previous studies were carried out with the
addition of other association networks. For instance, Shi
et al. (2013) developed a method to exploit associations
between miRNAs and diseases by implementing a random
walk analysis that focused on the functional links between
the miRNA targets in the protein-protein interaction (PPI)
network and the disease genes. Because of involving the PPI
network, the model’s prediction performance was improved
and better than that of many previous models. In addition,
Mørk et al. (2014) proposed a model named miRPD that
integrated the protein-disease relations and the miRNA-protein
interactions, and could effectively predict new associations
between miRNAs and diseases.

With the development of machine learning algorithms,
many researchers have begun to use this technology to solve
various biological problems, such as prediction of drug-target
interactions (Chen et al., 2016d), synergistic drug combinations
(Chen et al., 2016a), disease related long non-coding RNAs (Chen
et al., 2017c), miRNA-small molecule associations (Chen et al.,
2018b), genome-wide features (Xu et al., 2018) and functional
impact of variants (Milanese et al., 2019; Rojano et al., 2019;
Xu et al., 2019). Of course, some machine learning models
were developed for predicting potential associations between
miRNAs and diseases (Chen et al., 2018a,c,g; Wang et al.,
2019). For example, the model of Restricted Boltzmann Machine
for Multiple types of MiRNA-Disease Association prediction
(RBMMMDA) was proposed by Chen et al. (2015). It was
worth noting that RBMMMDA could reveal association types
for predicted miRNA-disease associations, which was different
from other prediction models. However, RBMMMDA only
took the advantage of the information of known multiple
types of miRNA-disease associations, which hindered it from
achieving an excellent performance. Xu et al. (2011) introduced
a model based on a heterogeneous MiRNA-Target Dysregulated
Network (MTDN). Features were extracted based on the
network and a support vector machine (SVM) classifier was
constructed to differentiate positive miRNA–disease associations
from negative associations. However, the performance of this
method was significantly influenced by an inaccurate selection

of negative samples. In addition, another computational model
of Regularized Least Squares for MiRNA-Disease Association
prediction (RLSMDA) was proposed by Chen and Yan (2014).
RLSMDA could implemented prediction for new miRNAs
and new diseases without known association information.
Moreover, negative samples were not needed in the model
because RLSMDA was based on a semi-supervised learning-
based model. However, the selection of parameter values limited
the performance of RLSMDA. For a further improvement, Chen
et al. (2017a) developed a computational model based on Super-
Disease and MiRNA for potential MiRNA–Disease Association
prediction (SDMMDA). In order to obtain more accurate
miRNA (disease) similarity measures, the concepts of “super-
miRNA” and “super-disease” were introduced into the model.
Furthermore, Chen et al. (2017b) constructed a computational
method of Ranking-based K-Nearest-Neighbors (KNN) for
MiRNA-Disease Association prediction (RKNNMDA). The KNN
of miRNA and diseases were obtained from their similarity
scores. Then these KNN were reranked with a Support
Vector Machine (SVM) ranking model, and finally, voting
was weighted and final ranking of all possible miRNA-
disease pairs was obtained. However, RKNNMDA did not
show excellent prediction performance with an AUC (Area
Under the ROC Curve) of 0.8221 in leave-one-out cross
validation (LOOCV). Li et al. (2017) proposed the method of
Matrix Completion for MiRNA-Disease Association prediction
(MCMDA). In the model, the adjacency matrix of known
miRNA-disease associations could be updated based on matrix
completion technology, without requiring negative associations
as needed by several previous models. Furthermore, Chen
et al. (2018d) proposed another matrix completion-based
method named Inductive Matrix Completion for MiRNA-
Disease Association prediction (IMCMDA), which utilized
miRNA (disease) similarity as features to train the model and
complete the missing miRNA-disease associations. Furthermore,
Chen and Huang (2017) developed the novel prediction
method of Laplacian Regularized Sparse Subspace Learning
for MiRNA-Disease Association prediction (LRSSLMDA). First,
the model extracted feature profiles for miRNAs/diseases and
formed graph Laplacian matrices. Second, a common subspace
for the miRNA/disease feature profiles, a L1-norm constraint
and Laplacian regularization terms were joint to construct
the objective function from miRNA and disease perspective,
respectively. Third, the projection matrices in objective functions
were iteratively updated and we obtained the final project matrix.
Fourth, the association score between the miRNA and disease
was computed using final projection matrix and feature profiles
from miRNA and disease perspective respectively, and then the
average of these two scores was the final prediction result. In
addition, Zhao et al. (2019) further proposed the model named
Adaptive Boosting for MiRNA-Disease Association prediction
(ABMDA). In order to balance positive samples and negative
samples, all unknown samples were divided into k clusters with
k-means clustering and the same amount of negative samples
were randomly selected from each cluster, and the number
of total negative samples was almost equal to the positive.
Then the authors integrated multiple weak classifiers (decision
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trees) to build a strong classifier based on corresponding
weights for prediction.

As mentioned above, there were various limitations on
previous prediction methods. Developing new and effective
computational methods for potential miRNA-disease association
prediction is in urgent need. Some computational methods
have been proposed based on the assumption that functionally
similar miRNAs tend to relate to similar diseases (Wang
et al., 2010; Chen et al., 2019). Therefore, we considered
using miRNA functional (disease semantic) similarity as miRNA
(disease) features to develop a machine learning-based method
for miRNA-disease association prediction. In addition, given
that miRNA functional and disease semantic similarity was not
complete, GIP kernel similarity for miRNAs and diseases could
be utilized to supplement similarity information. Therefore, we
obtained integrated miRNA (disease) similarity features and
introduced a framework based on ensemble learning and feature
dimensionality reduction to construct prediction model. In
each base learning process, a feature subspace was firstly built
by randomly choosing a set of integrated similarity features.
Secondly, a dimensionality reduction method called Truncated
Singular Value Decomposition (TSVD) was used to reduce the
number of features in the feature subspace. Finally, we used
Kernel Ridge Regression (KRR) to construct two classifiers in
the miRNA space and the disease space, respectively, and they
were integrated as the base classifier. The above base learning
process was conducted repeatedly to yield many base classifiers
based on random selection of features. The average of all
the association scores from base classifiers was computed to
obtain the final prediction results. This new model was named
as Ensemble of Kernel Ridge Regression based on MiRNA-
Disease Association prediction (EKRRMDA). In our work,
EKRRMDA showed sound performance in cross validation and
case studies. The AUCs were 0.9314 and 0.8618 in global and
local LOOCV, respectively, and in 5-fold cross validation, the
average and standard deviation of AUCs was 0.9275 ± 0.0008.
Furthermore, we implemented three types of case studies: (1)
using known miRNA-disease associations in the HMDD V2.0
database, (2) simulating new diseases that have no known
association information by removing known associations for the
investigated disease in the HMDD V2.0 database, and (3) using
known miRNA-disease associations in HMDD V1.0 database
to test model’s prediction performance in different datasets.
The results showed that most miRNAs in top 50 predicted list
were confirmed by experimental literature in case studies, which
indicated that reliable prediction performance for the model.

MATERIALS AND METHODS

Human miRNA-Disease Associations
In our study, the dataset of human miRNA-disease associations
came from HMDD V2.0 database (Li et al., 2014), covering 5430
known miRNA-disease associations between 495 miRNAs and
383 diseases. An adjacency matrix A ∈ Rm×n (Variables m and n
represent the number of miRNAs and diseases, respectively) was
used to describe all information of miRNA-disease associations.

If miRNA mi was associated with disease dj, then A(mi, dj) was
equal to 1, and 0 otherwise.

miRNA Functional Similarity
Under the assumption that functionally similar miRNAs tend
to be relate to semantically similar diseases, the method for
calculating the miRNA functional similarity was proposed by
Wang et al. (2010). MiRNA functional similarity could be
obtained from http://www.cuilab.cn/files/images/cuilab/misim.
zip and matrix FS was constructed to represent it.

Disease Semantic Similarity Model 1
Disease semantic similarity were computed according to the
methodology adopted in the literature (Xuan et al., 2013). At first,
we obtained the relationship among various diseases from the
Mesh database1 (Lipscomb, 2000; Wang et al., 2010). Then, we
could use a graph DAG(d) = [d, T(d), E(d)] to describe disease
d. Here, T(d) represented node set of all ancestor nodes of d and
d itself, and E(d) was the corresponding direct edges set. Each
disease t in DAG(d) has the contribution to the semantic value of
disease d and we calculated the contribution as follows:{

D1d (t) = 1 if t = d
D1d (t) = max {1∗ D1d

(
t′
) ∣∣t′ ∈ children of d

}
if t 6= d

(1)
The semantic value of disease d could be defined as follows:

DV1
(
d
)
=

∑
t∈T(d)

D1d (t) (2)

where 1 was the semantic contribution decay factor. The above
formula shows that diseases in different layers of DAG(d) had
different contributions to the semantic value of disease d. For
diseases that locate in different layers, their contributions to the
semantic value of disease d decreased as distance between these
diseases and disease d increased. Specially, it is easy to understand
that we defined the contribution of disease d to semantic value
of itself as 1. Based on the assumption that two diseases sharing
a larger part of their DAGs have a larger similarity score, the
semantic similarity score between disease di and dj was defined
as follows:

SS1
(
di, dj

)
=

∑
t∈T(di)

⋂
T(dj)

(
D1di (t)+ D1dj (t)

)
DV1

(
di
)
+ DV1

(
dj
) (3)

where SS1 was disease semantic similarity matrix.

Disease Semantic Similarity Model 2
The point that diseases in the same layers of DAG(d) have the
same contribution to semantic value of disease d was adopted
in disease semantic similarity model 1, however, it was not
always reasonable. According to the literature (Xuan et al., 2013),
another method of measuring disease semantic similarity was
adopted. For example, if two diseases, t1 and t2, were located in
the same layer of DAG(d) and disease t1 appeared in less DAGs

1http://www.nlm.nih.gov/
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than t2, disease t1 could be considered as a more specific disease
and its contribution to semantic value of disease d should be
higher than disease t2. So we defined the contribution of disease t
in DAG(d) to the semantic value of disease d as follows:

D2d (t) = − log
[

the number of DAGs including t
the number of diseases

]
(4)

Similar to disease semantic similarity model 1, we could define
the semantic similarity between disease di and dj as follows:

SS2
(
di, dj

)
=

∑
t ∈ T

(
di
)⋂

T
(
dj
) (

D2di (t)+ D2dj (t)
)

DV2
(
di
)
+ DV2

(
dj
) (5)

where DV2(di) and DV2(dj) were semantic value of disease di and
dj in semantic similarity model 2, respectively.

Gaussian Interaction Profile Kernel
Similarity
Considering that not all miRNAs has functional similarity and so
do diseases, the GIP kernel similarity for diseases and miRNAs
were calculated according to van Laarhoven et al. (2011). By
observing association information between miRNA mi and each
disease, binary vector IV(mi) was defined to represent the
interaction profiles of miRNA mi. The GIP kernel similarity
between miRNA mi and mj could be computed as follows:

GM
(
mi, mj

)
= exp

(
−βm||IV (mi)− IV

(
mj
)
||

2) (6)

βm = β′m/

(
1
m

m∑
i=1

||IV (mi) ||
2

)
(7)

where adjustment coefficient βm for the kernel bandwidth and
β′m was the original bandwidth. Similarly, disease GIP kernel
similarity between disease di and dj was computed as follows:

GD
(
di, dj

)
= exp

(
−βd||IV

(
di
)
− IV

(
dj
)
||

2) (8)

βd = β′d/

(
1
n

n∑
i=1

||IV
(
di
)
||

2

)
(9)

Integrated Similarity for miRNAs and
Diseases
According to the literature (Chen et al., 2016b), the integrated
disease (miRNA) similarity was attained by combining the
disease semantic (miRNA functional) similarity with GIP kernel
similarity. Taking disease as an example, if there was semantic
similarity between disease di and dj, then their integrated
similarity was the mean of SS1(di, dj) and SS2(di, dj), otherwise
we used GIP kernel similarity as the integrated disease similarity.
The final integrated similarity between disease di and dj, was
computed as follows:

SD
(
di, dj

)
=

{
SS1(di,dj)+SS2(di,dj)

2 di and dj has semantic
GD

(
di, dj

)
similarityotherwise

(10)

where SD represented integrated disease similarity matrix. For
miRNAs, we defined the integrated miRNA integrated similarity
between miRNA mi and mj as follows in the same way:

SM
(
mi, mj

)
=

{
FS
(
mi, mj

)
mi and mj has functional

GM
(
mi, mj

)
similarityotherwise

(11)
where SM was denoted as integrated miRNA similarity matrix.

EKRRMDA

Ensemble of Kernel Ridge Regression based MiRNA-Disease
Association prediction was implemented by integrating known
miRNA-disease association, miRNA functional similarity, disease
semantic similarity and GIP kernel similarity for miRNAs and
diseases. As formula (Wilczynska and Bushell, 2015) and (Jeong
et al., 2011) showed, GIP kernel similarity was employed to
supplement missing miRNA functional similarity and disease
semantic similarity so that complete similarity information for
miRNAs and diseases was obtained, respectively. Integrated
similarity was used for miRNA and disease features that were the
inputs to training model. Based on random selection of features,
multiple base learnings were carried out to yield many base
classifiers. Then average strategy was adopted to integrate these
classifiers and get final prediction results [see Figure 1, motivated
by important study from Ezzat et al. (2017)].

In each base learning, every row of similarity matrix SM
(SD) is feature vector for the corresponding miRNA (disease).
For example, SM (mi,

∗ ) (SD
(
di,
∗
)
) represents feature vector

miRNA mi (disease di), which reflects similarity information
between miRNA mi (disease di) and other each miRNA (disease).
During base learning, a set of features were firstly randomly
selected for miRNAs and diseases. Here, we used parameter r
(0 < r < 1) to determine number of selected features, which
denotes proportion of selected features among all the features
(r = 0.2 in our work). Here ms, (ms = br ×mc represents the
largest integrate that is not larger than r ×m) miRNA features
and ns (ns = br × nc) disease features were randomly sampled
for each miRNA and disease, respectively. SM1 ∈ Rm×ms and
SD1 ∈ Rn×ns denotes feature matrix of miRNAs and diseases after
random feature selection, respectively.

Secondly, feature dimensionality reduction for miRNAs
and diseases was further implemented to eliminate noises,
redundancy, or irrelevant information and also improve
computation efficiency. For method of dimensionality reduction,
we chose TSVD that was developed from standard SVD (Xu,
1998). It took a given matrix SM1 and decomposed the matrix
into U ∈ Rm×km , S ∈ Rkm×km and V ∈ Rms×km such that SM1 =
USVT , where km is truncation parameter and S was a diagonal
matrix containing the largest km singular value of SM1. In our
method, km = b0.2×msc indicated that top 20% larger singular
value of SM1 was saved and others were ignored. The reduced
miRNA feature matrix could then be obtained as SM2 = US
which realized the compression of the column for the matrix
SM1. Similarly, reduced disease feature matrix SD2 ∈ Rn×kd

could be obtained from SD1 (kd = b0.2×mdc). Finally, km and
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FIGURE 1 | Flowchart of EKRRMDA to predict the potential miRNA-disease associations based on the known associations in HMDD V2.0 database.

kd is 19 and 15, which represented the number of miRNAs
features and disease features after dimensionality reduction.

Thirdly, based on the known miRNA-disease associations and
the dimensionally-reduced features, we used KRR to build two
classifiers in the miRNA space and disease space, respectively.
KRR was kernel-based classifier, where Least Squares was used
in the kernel-induced space (Vovk, 2013). At first, we computed
Gaussian kernel matrices for the miRNA and disease from SM2
and SD2, respectively. For example, for a pair of miRNA mi and
mj, their Gaussian kernel similarity was computed as follows:

KM
(
mi, mj

)
= exp

(
−
||SM2(mi,

∗ )− SM2(mj,
∗ )||2

km

)
(12)

where SM2(mi,
∗ ) and SM2(mj,

∗ ) are reduced feature vectors for
miRNA mi and mj, respectively. Analogically, Gaussian kernel
similarity for the pair of disease di and dj were computed as
follows:

KD
(
di, dj

)
= exp

(
−
||SD2(di,

∗ )− SD2(dj,
∗ )||2

kd

)
(13)

Then two KRR classifiers could be established with Gaussian
kernel matrixes in different spaces, respectively. Taking miRNA
space as an example, for each the investigated disease, the KRR
was trained using the miRNA kernel matrix KM and adjacency
matrix A to obtain association score between every miRNA and
the investigated disease. Considering all diseases in the manner
of matrix, the least-squares solution could be obtained as follows:

SM = KM (KM + λI)−1 A (14)

where λ was a regularization parameter and we set its value as
λ=1, referring to the previous work (van Laarhoven et al., 2011),
and I ∈ Rm×m is the identity matrix. However, above formula
could not work for new diseases that had no known associations
with miRNAs. we inferred association scores between the new
disease and miRNAs according to integrated disease similarities.
For new disease dt , association scores were recalculated by

SM
(
∗, dt

)
=

∑
du∈Dp

SD
(
dt, du

)
× SM

(
∗, du

)∑
du∈Dp

SD
(
dt, du

) (15)
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where Dp represented sets of diseases that have at least one
known associations with miRNAs: Dp =

{
dj
∣∣∑m

i=1 A
(
i, j
)
6= 0

}
.

Similarly, in the disease space, SD was calculated as follows:

SD = KD (KD+ λI)−1 AT (16)

For new miRNA mt , association scores were inferred as follows:

SD
(
∗, mt

)
=

∑
mu∈Mp

SM (mt, mu)× SD (∗, mu)∑
mu∈Mp

SM (mt, mu)
(17)

The prediction scores in each base learning were obtained as
follows:

S = 0.5SM + 0.5ST
D (18)

In base learning, the base classifier that combined two classifiers
from miRNA and disease spaces was named as KRR-avg. Above
base learning containing three steps was implemented M times
to yield M KRR-avg. The final miRNA-disease association
scores could be obtained with average strategy. Figure 2 shows
pseudocode of EKRRMDA. For all predicted scores of miRNA-
disease pairs with unknown associations, we ranked them
and thought that pairs with higher scores were more likely
to be associated.

RESULTS

Performance Evaluation
In order to assess performance of EKRRMDA, LOOCV and
5-fold cross validation were carried out based on the known
miRNA-disease associations from the HMDD V2.0 database (Li
et al., 2014), and prediction performance was measured in terms
of AUC. Cross validation experiments and AUC measurement
were usually used for evaluating methods of miRNA-disease
association prediction in many previous important studies (Chen
and Huang, 2017; Xiao et al., 2017; You et al., 2017; Chen et al.,
2018e; Yang et al., 2018). Particularly, LOOCV was divided into

FIGURE 2 | The pseudocode of EKRRMDA.

global LOOCV and local LOOCV. In global LOOCV, we selected
each known miRNA-disease association as test sample in turn
and changed its label “1” to “0” in the adjacency matrix so
that the association was hidden. Base on predicted association
scores given by EKRRMDA, the test sample was ranked with
all miRNA-disease pairs without association evidences. While
in local LOOCV, for each given disease d, the test sample was
one of the miRNAs associated with d, and the test sample was
ranked with all the unassociated miRNAs for d. If the ranking of
the test sample exceeded a pre-determined threshold, the model
was considered to make a correct prediction for the sample. At
different thresholds, the true positive rate (TPR) and the false
positive rate (FPR) were calculated to plot the Receiver Operating
Characteristic (ROC) curve, where TPR was used as the variate
for the vertical axis and FPR for the horizontal axis in ROC. We
evaluated the performance of EKRRMDA by calculating the area
under ROC curve (AUC).

We compared EKRRMDA with several previous prediction
methods in terms of AUC measurement. The overview of
these methods was showed in Supplementary Table S1, which
briefly provided the characteristic, input data as well as type
(Scoring function-based, network-based or machine learning-
based) of these models. Figure 3 shows the results of performance
comparisons in global and local LOOCV. As a result, EKRRMDA,
HDMP, MaxFlow, NCPMDA, PBMDA, LRSSLMDA, ABMDA,
BNPMDA, MDHGI, and IMCMDA obtained AUCs of 0.9314,
0.8366, 0.8624, 0.9073, 0.9169, 0.9178, 0.9170, 0.9028, 0.8945,
and 0.8380 in global LOOCV, respectively. In local LOOCV, they
achieved AUCs of 0.8618, 0.7702, 0.7774, 0.8584, 0.8341, 0.8418,
0.8220, 0.8380, 0.8240, and 0.8034, respectively. In addition,
MIDP and MiRAI, obtained AUCs of 0.8196 and 0.6299 in
local LOOCV, respectively. MIDP was a local approach that
could not predict miRNAs for all diseases simultaneously so that
global LOOCV could not evaluate performance of the model. In
MiRAI, association scores of samples were closely related to the
number of miRNAs associated with the diseases and for a disease
with more known associated miRNAs, association scores for its
candidate miRNAs tend to be higher. So it was not reasonable
to implement prediction for all diseases simultaneously in global
LOOCV. Additionally, MiRAI had a low AUC of 0.6299 which
was worse than the AUC of 0.867 in Pasquier and Gardes
(2016) literature, because MiRAI was a collaborative filtering-
based model which was impacted by data sparsity problem. Our
training data was HMDD V2.0 containing 383 diseases, where
the average number of miRNAs related with a disease was 14,
which was sparser than in the dataset in Pasquier and Gardes
(2016) study containing 83 diseases with at least 20 known
associated miRNAs. From the above comparisons, it is obvious
that EKRRMDA has a more reliable performance.

Furthermore, we adopted 5-fold cross validation to evaluate
performance of EKRRMDA. At First, we randomly partitioned
all known miRNA-disease associations into five equal-sized
parts. Each part was taken as the test set in turn, and the
remaining four were used for model training. Then, samples
in the test set were ranked against the miRNA-disease pairs
without known association evidences. Finally, we obtained
the rankings of all known associations, and TPR and FPR
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FIGURE 3 | Performance comparisons between EKRRMDA and other 11 prediction models (HDMP, MiRAI, MaxFlow, NCPMDA, PBMDA, LRSSLMDA, ABMDA,
BNPMDA, MDHGI, IMCMDA, and MIDP) in terms of ROC curve and AUC based on local and global LOOCV, respectively. As a result, EKRRMDA obtained AUCs of
0.9314 and 0.8618 in the global and local LOOCV, which exceed all the previous classical models.

were calculated at various ranking thresholds to plot ROC
and compute AUC. We repeated 5-fold cross-validations 100
times because of random division of known associations. As
a result, EKRRMDA, PBMDA, NCPMDA, MaxFlow, HDMP,
LRSSLMDA, ABMDA, BNPMDA, MDHGI, and IMCMDA
obtained AUCs of 0.9275 ± 0.0008, 0.9127 ± 0.0007, 0.8763 ±
0.0008, 0.8579 ± 0.001, 0.8342 ± 0.0010, 0.9181 ± 0.0004,
0.9023 ± 0.0016, 0.8980 ± 0.0013, 0.8794 ± 0.0021, and
0.8367 ± 0.0005, which further shows the superior performance
of our model.

In addition to prediction accuracy, we implemented
cumulative distribution function (CDF) for the ranks of
predicting samples based on LOOCV results to evaluate the
model’s prediction ability, which referred to the (Natarajan and
Dhillon, 2014) work on predicting gene-disease associations.
Figure 4 showed CDF for the ranks of miRNA-disease
associations for different models based on global LOOCV.
The vertical axis in the plots gives the probability that a
hidden miRNA-disease association is recovered in the top-
k predictions for various k values in the horizontal axis.
EKRRMDA outperformed most competitive models under
global LOOCV. In the Figure 5, CDF for the miRNA ranks
for different models based on local LOOCV was shown. The
vertical axis in the plots gives the probability that a hidden
miRNA associated with the investigated disease is recovered in
the top-k predictions for various k values in the horizontal axis.
EKRRMDA outperformed most competitive models from top
1 to 100 predictions. Specially, the performance of EKRRMDA
was weaker than HDMP from top 1 to 10 predictions and
NCPMDA from top 1 to 44 predictions, but surpassed HDMP
from top 11 to 100 predictions and NCPMDA from top 45 to
100 predictions. However, NCPMDA and HDMP are network-
based methods which need reliable similarity measurement

for miRNAs and diseases to construct network for prediction.
Moreover, it is a significant limitation for HDMP that it could
not implement prediction for new diseases having no known
association information.

Model Analysis
In this paper, we constructed prediction model by utilizing
random selection of features for ensemble learning, TSVD
for feature dimensionality reduction, Gaussian kernel for KRR
and average strategy for combining two prediction scores in
miRNA and disease space. The section was used to evaluate the
effect of these steps.

In our work, KRR-avg as base classifier was constructed
by introducing Gaussian kernel which is one of the most
popular choices for constructing a kernel from feature vectors.
We also compared Gaussian kernel with other two kernel

FIGURE 4 | Performance comparisons between EKRRMDA and other
prediction models in terms of CDF of ranks based on global LOOCV.
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FIGURE 5 | Performance comparisons between EKRRMDA and other
prediction models in terms of CDF of ranks based on local LOOCV.

functions used in KRR, Poly(1) and Poly(2) in the literature
(Exterkate et al., 2016), both of which are polynomial kernel
functions and their corresponding kernel function is κ

(
x, y

)
=

1+ x′y and κ
(
x, y

)
=
(
1+ x′y

)2, respectively. The results of
comparison were shown in Table 1, which indicated that
Gaussian kernel performed better than polynomial kernel Poly(1)
and Poly(2) in our model.

We constructed Gaussian kernel for KRR in miRNA and
disease space, respectively, and averaged two predictions as final
result. An alternative is to combine the kernels into a larger kernel
that directly relates miRNA-disease pairs. We employed the
Kronecker product kernel to realize it, referring to the literature
(Chen and Li, 2017). The Kronecker product KM ⊗ KD of the
miRNA and disease kernel is

K
((

mi, dj
)
,
(
mk, dl

))
= KM (mi, mk) KD

(
dj, dl

)
(19)

With this kernel, we can implement predictions for all pairs as
follows:

vec
(

ST
)
= K (K + σI)−1 vec

(
AT
)

(20)

where vec (·) is the vectorization operator that stacks all columns
of a matrix into a column vector. To solve the optimization
problem more efficiently, some transformations were made and
we can get the prediction in the form of Chen and Li (2017).

S = VmZTVT
d (21)

where

vec (Z) = (3m ⊗3d) (3m ⊗3d + λI)−1 vec
(

VT
d ATVm

)
,

and 3m, 3d, Vm and Vd come from the eigen decompositions
of the two kernel matrices: KM = Vm3mVT

m and KD =

TABLE 1 | Comparison of global AUC and local AUC between different kernel
functions used in KRR under LOOCV.

Kernel functions Global AUC Local AUC

Gaussian kernel 0.9314 0.8618

Poly(1) 0.9163 0.8436

Poly(2) 0.9023 0.8279

Vd3dVT
d . Under the computational framework of EKRRMDA,

we used Kronecker product kernel to combine two Gaussian
kernels in a single KRR as base classifier, named Ensemble
of Kronecker Kernel Ridge Regression based MiRNA-Disease
Association prediction (EKKRRMDA) for this method. The
results of comparison between EKRRMDA and EKKRRMDA
were shown in Table 2, which showed that the method
of constructing separate KRR in miRNA and disease space,
respectively, outperformed the method of combining two kernels
for a single KRR.

Ensemble of Kernel Ridge Regression based MiRNA-Disease
Association prediction trained multiple classifiers based on
random selection of features, which inevitably brought some
noise or redundancy. To address the issue, we implemented
dimensionality reduction for the feature subset in each base
learning. In addition, dimensionality reduction could reduce
computation complexity for each base classifier. In order to
evaluate the contribution of random selection of features and
dimensionality reduction for EKRRMDA, we implemented three
experiments including no random selection of features (i.e., all
features were training for one classifier in miRNA and disease
space, respectively), no dimensionality reduction and no both (no
random selection of features and dimensionality reduction). The
comparison results were shown in Table 3, which indicated that
both random selection of features and dimensionality reduction
could improve prediction performance and especially, random
selection of features for ensemble learning contribute more.

Sensitivity Analysis
Here, we made sensitivity analysis for Gaussian kernel parameter,
which was vital to the construction of classifiers in our model. The
choice of Gaussian kernel parameter is always important but also
tricky problem. Some methodologies for optimizing the kernel
parameter have been proposed and used in Gaussian kernel
methods. Grid search is often used to optimize the Gaussian
kernel parameter, which choose the optimal parameter that show
best test precision from candidate grid points. The problem of
tuning kernel parameter is also done by minimizing an estimate
of the generalization error or some other related performance

TABLE 2 | Comparison of global AUC and local AUC between EKRRMDA and
EKKRRMDA under LOOCV.

Methods Global AUC Local AUC

EKRRMDA 0.9314 0.8618

EKKRRMDA 0.9093 0.8332

TABLE 3 | Comparison of global AUC and local AUC between EKRRMDA and
variants of EKRRMDA under LOOCV.

Methods Global AUC Local AUC

EKRRMDA 0.9314 0.8618

No dimensionality reduction 0.9211 0.8568

No random selection of features 0.9015 0.8467

No dimensionality reduction and 0.8951 0.8436

random selection of features
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measure (Chapelle et al., 2002; Duan et al., 2003). Moreover,
the optimization criterion based on kernel target alignment is
a widely used method for choice of Gaussian kernel parameter
(Cristianini et al., 2006; Fauvel, 2012).

We provided sensitivity analysis for Gaussian kernel
parameter, which was implemented to investigate the variation of
model’s test precision for different parameter values. The results
of sensitivity analysis were measured with global AUC and local
AUC under the framework of LOOCV, which represented global
prediction ability (for all miRNA-disease candidates) and local
prediction ability (for miRNA candidates to the investigated
disease), respectively. In order to better analyze effect of Gaussian
kernel parameter, we adopted other form of Gaussian kernel:
κ(x, y) = exp(−

||x−y||2

2σ2 ) (σis the bandwidth of Gaussian kernel),

which was equivalent to κ(x, y) = exp(−
||x−y||2

γ
) used in our

model, and made sensitivity analysis for parameter σ. Figure 6
showed that global AUC and local AUC had the same trend
and they reached maximum value when σ was about 2.0, and
then decreased at a slower rate when increased. As mentioned
above, km and kd represented the number of miRNA features and
disease features after dimensionality reduction. For Gaussian
kernel in our model, we made 2σ2equal to km for miRNAs and kd
for diseases, so their corresponding σ is 3.1 and 2.7, respectively.
From the sensitivity analysis results, we think it is sound to
choose Gaussian kernel parameter by setting 2σ2 as number of
features in our model.

Case Studies
To demonstrate the prediction accuracy of EKRRMDA, we
implemented three different types of case studies on five diseases.
The first type of case studies was carried out on three diseases,
namely, Esophageal Neoplasms (EN), Kidney Neoplasms (KN)
and Lymphoma. The known miRNA-disease associations in
HMDD V2.0 were used as the training dataset for our model.

Esophageal Neoplasms, including squamous cell carcinoma
(SCC) and adenocarcinoma (ADC), is one of the most common
digestive cancers and ranks sixth among all cancers in mortality
(Zhang, 2013). It is estimated there are about 15,690 people
dying from EN among 16,940 newly diagnosed EN cases in
2017 in the United States (Siegel et al., 2017). Some miRNAs
have been confirmed to be closely related to EN in previous

FIGURE 6 | Sensitivity analysis for bandwidth of Gaussian kernel.

studies. For instance, one of latest reports suggested that various
miRNAs (miR-144, miR-451, miR-98, miR-10b, and miR-363)
were involved in EN by regulating their target genes (Du and
Zhang, 2017). In our case study of EN, there were total top 10
and 45 out of the top 50 potential EN-related miRNAs confirmed
in dbDEMC and miR2Database (see Table 4).

Kidney Neoplasms, also known as renal cancer, accounts
for about 3% of all adult neoplasms and its incidence rate
is also increasing (Gonzalez-Satue et al., 2015). About 87%
KN cases in adults were Renal cell carcinoma (RCC) that is
the most common malignant epithelial tumor (Mytsyk et al.,
2014). Some miRNA-KN associations have been revealed by
experimental studies. For instance, a recent study indicated
a clear correlation between higher expression of miR-21 and
an aggravation in KN, which showed that miR-21 was useful
in monitoring KN (Zaman et al., 2012). In addition, multiple
miRNAs, including miR-215, miR-200c, miR-192, miR-194, and
miR-141 were found downregulated in KN (Senanayake et al.,
2012). After implementing EKRRMDA to predict potential
KN-related miRNAs, we obtained that 8 miRNAs in top 10
predictions and 43 miRNAs in top 50 predictions were verified by
dbDEMC (Yang et al., 2010) and miR2Disease (Jiang et al., 2009)
(see Supplementary Table S2).

Lymphoma, a group of blood cell tumors, develops from
lymphocytes and includes two main types, namely, Hodgkin

TABLE 4 | Prediction of the top 50 predicted miRNAs associated with EN.

miRNA Evidence miRNA Evidence

hsa-mir-125b dbdemc hsa-mir-29b dbdemc

hsa-mir-1 dbdemc hsa-mir-9 dbdemc

hsa-mir-17 dbdemc hsa-mir-195 dbdemc

hsa-mir-200b dbdemc hsa-let-7g dbdemc

hsa-mir-221 dbdemc hsa-mir-7 dbdemc

hsa-mir-16 dbdemc hsa-mir-24 dbdemc

hsa-let-7e dbdemc hsa-mir-106a dbdemc

hsa-mir-222 dbdemc hsa-mir-106b dbdemc

hsa-mir-133b dbdemc hsa-mir-199b dbdemc

hsa-mir-30a dbdemc hsa-mir-122 unconfirmed

hsa-mir-18a dbdemc hsa-mir-124 dbdemc

hsa-mir-142 dbdemc hsa-mir-30c dbdemc

hsa-mir-29a dbdemc hsa-mir-429 dbdemc

hsa-mir-182 dbdemc hsa-mir-132 dbdemc

hsa-mir-19b dbdemc hsa-mir-15b dbdemc

hsa-mir-10b dbdemc hsa-mir-335 dbdemc

hsa-let-7f unconfirmed hsa-mir-224 dbdemc

hsa-let-7d dbdemc hsa-mir-127 dbdemc

hsa-mir-146b dbdemc hsa-mir-93 dbdemc

hsa-mir-181a dbdemc hsa-mir-497 dbdemc

hsa-mir-181b dbdemc hsa-mir-137 dbdemc

hsa-mir-125a dbdemc hsa-mir-18b dbdemc

hsa-mir-107 dbdemc; miR2Disease hsa-mir-204 unconfirmed

hsa-let-7i dbdemc hsa-mir-103a unconfirmed

hsa-mir-218 unconfirmed hsa-mir-23b dbdemc

The first column records top 1–25 related miRNAs. The third column records the
top 26–50 related miRNAs.
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Lymphoma and non-Hodgkin Lymphoma (NHL) (Leich et al.,
2011). According to research, about 90 percent of the Lymphoma
cases are NHL (Alizadeh et al., 2000). There are plenty of miRNAs
confirmed to be connected with Lymphoma. For example, miR-
155 (contained in the BIC gene) is strongly up-regulated in
Burkitt Lymphoma and several other types of Lymphomas
(Metzler, 2004). And miRNA hsa-mir-19a exhibited an increased
expression level compared with normal canine peripheral blood
mononuclear cells (PBMC) and normal lymph nodes (LN) in
canine B-cell Lymphomas (Uhl et al., 2011). After implementing
EKRRMDA to predict potential lymphoma-related miRNAs we
obtained that 8 miRNAs in top10 predictions and 43 miRNAs in
top 50 miRNAs were verified by dbDEMC and miR2Disease (see
Supplementary Table S3).

The second type of case study on Lung Neoplasms (LN)
was implemented based on known associations in HMDD V2.0
database to illustrate the ability of EKRRMDA to predict miRNAs
associated with the new disease. We hid all known miRNA-LN
associations by changing their labels to “0” in adjacency matrix
so that the LN could be treated as a new disease. We obtained
a ranking list of miRNA-LN association scores and the top 50
potential miRNAs were shown in Table 5. Verification results
showed that 49 miRNAs in top 50 predictions were confirmed
by the dbDEMC, miR2Disease, and HMDD V2.0 databases. For
example, a study in HMDD V2.0 indicated that expression of
miRNA has-mir-21 (ranked first in the top 50 predictions), was

more than two times in the squamous cell LN tissues compared
with normal tissues (Gao et al., 2011).

Finally, to evaluate performance of EKRRMDA on different
dataset, we implemented the third type of case study on
Breast Neoplasms (BN) based on the known associations in
HMDD V1.0 database that covers 1395 known miRNA-disease
associations between 271 miRNAs and 137 diseases. Respectively,
10, 20, and 48 miRNAs in top 10, 20, 50 predictions were
confirmed by dbDEMC, miR2Disease, and HMDD V2.0 (see
Table 6). For example, has-let-7e, the miRNA ranked first in the
top 50 predictions, was found to have close relationship with the
development of BN in Chinese women (Jiang et al., 2013).

In addition, in order to further assess robustness of the
model, we introduced random noise by randomly removing 20%
known miRNA-disease associations in several case studies, i.e.,
we randomly changed 20% label “1” to “0” in adjacent matrix.
To reduce the bias from random change, we repeated above
experiment 10 times. We compared its average performance
in top 10 and 50 predictions with our model in case studies.
From the Table 7, we can observe that the number of confirmed
miRNAs in top 10 and 50 predictions scarcely changed when
random noise was introduced into case studies, which could show
robustness of the model. To conclude, the case studies discussed
above have demonstrated the outstanding prediction accuracy
of EKRRMDA. In each case study, most of miRNAs in top 50
predictions were validated to be associate with the investigated

TABLE 5 | Prediction of the top 50 predicted miRNAs associated with LN as a new disease by removing all known associations containing LN in HMDD V2.0 database.

miRNA Evidence miRNA Evidence

hsa-mir-21 dbdemc;miR2Disease;HMDD V2.0 hsa-let-7e miR2Disease;HMDD V2.0

hsa-mir-125b miR2Disease;HMDD V2.0 hsa-mir-122 unconfirmed

hsa-mir-155 dbdemc;miR2Disease;HMDD V2.0 hsa-let-7f miR2Disease;HMDD V2.0

hsa-mir-31 dbdemc;miR2Disease;HMDD V2.0 hsa-mir-183 dbdemc;miR2Disease;HMDD V2.0

hsa-mir-375 dbdemc;HMDD V2.0 hsa-mir-148a dbdemc;HMDD V2.0

hsa-let-7a dbdemc;miR2Disease;HMDD V2.0 hsa-mir-222 dbdemc;HMDD V2.0

hsa-let-7b miR2Disease;HMDD V2.0 hsa-mir-200a dbdemc;miR2Disease;HMDD V2.0

hsa-mir-34c dbdemc;HMDD V2.0 hsa-mir-199a dbdemc;miR2Disease;HMDD V2.0

hsa-mir-7 miR2Disease;HMDD V2.0 hsa-mir-214 dbdemc;miR2Disease;HMDD V2.0

hsa-mir-200b dbdemc; miR2Disease;HMDD V2.0 hsa-mir-1 dbdemc;miR2Disease;HMDD V2.0

hsa-mir-15b dbdemc hsa-mir-221 dbdemc;HMDD V2.0

hsa-mir-16 dbdemc;miR2Disease hsa-mir-133a dbdemc;HMDD V2.0

hsa-mir-34a dbdemc;HMDD V2.0 hsa-mir-218 dbdemc;miR2Disease;HMDD V2.0

hsa-let-7g dbdemc; miR2Disease; HMDD V2.0 hsa-mir-146a dbdemc;miR2Disease;HMDD V2.0

hsa-let-7i dbdemc;HMDD V2.0 hsa-mir-26a dbdemc;miR2Disease;HMDD V2.0

hsa-let-7c dbdemc; miR2Disease; HMDD V2.0 hsa-mir-205 dbdemc;miR2Disease;HMDD V2.0

hsa-mir-196a dbdemc;HMDD V2.0 hsa-mir-206 HMDD V2.0

hsa-mir-141 dbdemc;miR2Disease hsa-mir-19a dbdemc;miR2Disease;HMDD V2.0

hsa-mir-34b dbdemc;HMDD V2.0 hsa-mir-200c dbdemc;miR2Disease;HMDD V2.0

hsa-mir-100 dbdemc;HMDD V2.0 hsa-mir-133b dbdemc;miR2Disease;HMDD V2.0

hsa-let-7d dbdemc;miR2Disease;HMDD V2.0 hsa-mir-29c dbdemc;miR2Disease;HMDD V2.0

hsa-mir-203 dbdemc;miR2Disease;HMDD V2.0 hsa-mir-106b dbdemc

hsa-mir-9 miR2Disease;HMDD V2.0 hsa-mir-93 dbdemc;miR2Disease;HMDD V2.0

hsa-mir-145 dbdemc;miR2Disease;HMDD V2.0 hsa-mir-15a dbdemc

hsa-mir-101 dbdemc;miR2Disease;HMDD V2.0 hsa-mir-499a HMDD V2.0

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs.
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TABLE 6 | Prediction of the top 50 predicted miRNAs associated with BN based on known associations in HMDD V1.0 database.

miRNA Evidence miRNA Evidence

hsa-let-7e dbdemc;HMDD V2.0 hsa-mir-195 dbdemc;miR2Disease;HMDD V2.0

hsa-let-7b dbdemc;HMDD hsa-mir-196b dbdemc

hsa-let-7i dbdemc;miR2Disease;HMDD V2.0 hsa-mir-203 dbdemc;miR2Disease;HMDD V2.0

hsa-mir-223 dbdemc;HMDD V2.0 hsa-mir-142 unconfirmed

hsa-let-7c dbdemc;HMDD V2.0 hsa-mir-30e unconfirmed

hsa-let-7g dbdemc;HMDD V2.0 hsa-mir-32 dbdemc

hsa-mir-16 dbdemc;HMDD V2.0 hsa-mir-199b dbdemc;HMDD V2.0

hsa-mir-126 dbdemc;miR2Disease;HMDD V2.0 hsa-mir-99a dbdemc

hsa-mir-92a HMDD V2.0 hsa-mir-23b dbdemc;HMDD V2.0

hsa-mir-92b dbdemc hsa-mir-30a miR2Disease;HMDD V2.0

hsa-mir-106a dbdemc hsa-mir-335 dbdemc;miR2Disease;HMDD V2.0

hsa-mir-101 dbdemc;miR2Disease;HMDD V2.0 hsa-mir-532 dbdemc

hsa-mir-29c dbdemc;miR2Disease;HMDD V2.0 hsa-mir-107 dbdemc;HMDD V2.0

hsa-mir-191 dbdemc;miR2Disease;HMDD V2.0 hsa-mir-224 dbdemc;HMDD V2.0

hsa-mir-373 dbdemc;miR2Disease;HMDD V2.0 hsa-mir-98 dbdemc;miR2Disease

hsa-mir-99b dbdemc hsa-mir-27a dbdemc;miR2Disease;HMDD V2.0

hsa-mir-182 dbdemc;miR2Disease;HMDD V2.0 hsa-mir-95 dbdemc

hsa-mir-181a dbdemc;miR2Disease;HMDD V2.0 hsa-mir-128b miR2Disease

hsa-mir-24 dbdemc;HMDD V2.0 hsa-mir-198 dbdemc

hsa-mir-100 dbdemc;HMDD V2.0 hsa-mir-31 dbdemc;miR2Disease;HMDD V2.0

hsa-mir-15b dbdemc hsa-mir-491 dbdemc

hsa-mir-150 dbdemc hsa-mir-193b dbdemc;miR2Disease;HMDD V2.0

hsa-mir-18b dbdemc;HMDD V2.0 hsa-mir-181d dbdemc;miR2Disease

hsa-mir-372 dbdemc hsa-mir-183 dbdemc;HMDD V2.0

hsa-mir-130a dbdemc hsa-mir-135a dbdemc;HMDD V2.0

The first column records top 1–25 related miRNAs. The third column records the top 26–50 related miRNAs.

disease, and we would expect most of the remaining predictions
to be verified in the future.

DISCUSSION

Considering that it costs much time and money to discover more
potential miRNA-disease associations by traditional biological
experiments, many computational models were developed to
predict potential miRNA-disease associations, which could
reduce cost and improve efficiency by preferentially verifying
those promising associations. In this paper, we presented
a machine-based prediction model named EKRRMDA. The

TABLE 7 | The number of validated miRNAs among top 10 and top 50 predicted
miRNAs in case studies between with all known miRNA-disease associations and
with removing 20% associations.

Case study Top 10 and all Top 50 and all
associations vs. associations vs.
removing 20% removing 20%
associations associations

The first type and EN 10 vs. 10 45 vs. 47

The first type and KN 8 vs. 8.7 43 vs. 41.6

The first type and Lymphoma 8 vs. 8.5 43 vs. 43.7

The second type and LN 10 vs. 10 49 vs. 48.9

The third type and BN 10 vs. 9.9 48 vs. 48

novelty of the model was 2-fold. The first novelty was
computational framework based on ensemble learning and
feature dimensionality reduction. Since ensemble learning has
been widely used to improve prediction accuracy, it was
also worthwhile to design an ensemble learning model for
prediction of potential miRNA-disease associations. In our
prediction model, multiple base learnings were constructed
based on random miRNA (disease) feature selection, each of
which generated corresponding base classifier. However, our
proposed ensemble learning model would increase computation
complexity and inevitably brought some noise or redundancy,
which motivated us employ feature dimensionality reduce
techniques to address these issues. The second novelty was base
classifier of the model. In this paper, we chose KRR as base
classifier that always have been applied to drug-target association
prediction and achieved excellent results (van Laarhoven and
Marchiori, 2013), but to our knowledge, it has not been used
for miRNA-disease association prediction. In model evaluation,
Cross validations and case studies on EN, KN, Lymphoma, LN,
and BN have shown the outstanding performance of EKRRMDA.
We conclude that EKRRMDA would be a reliable computational
model to predict disease-related miRNAs and could provide
a substantial help in the prevention, diagnosis and treatment
of human diseases.

The prominent performance of the model could be
attributed to the following points. Firstly, for the base classifier,
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we established a bipartite local model by constructing
two classifiers with KRR in two different spaces (the
miRNA space and the disease space), which could
solve the problem encountered by previous methods
in figuring out a suitable way to merge miRNA and
disease information. Secondly, multiple base classifiers were
trained and integrated with ensemble learning strategy
which generally bring more prediction accuracy than
single classifier. Thirdly, we used the dimension reduction
technique to eliminate noises, redundancy, or irrelevant
information in the computation, which not only decreased the
computational complexity, but also improved the prediction
accuracy of the model.

However, the method had several limitations. First, the
current known miRNA-disease associations were still inadequate
for making much mre accuracy predictions, and with the
increase of biological data in the future, the prediction
performance of this method could be further improved.
Second, similarity calculations for miRNAs and diseases had
important impact on performance of model. We believe that
integrating more biological information would contribute
to obtaining more reliable similarity measures. Third, the
choice of the parameter values remained to be further
studied, such as parameter r used in random feature selection,
truncation parameter km used in feature dimensionality
reduction with TSVD. Especially, how to reasonably integrate
results from different spaces would be a critical problem for
future research.
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