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Abstract: Human activities, such as mining and manufactur-
ing, expose society and the natural environment to harmful
levels of metal ions. Recently, optical sensor arrays for metal
ion detection have become popular owing to their favourable
features, such as facile sample preparation and the require-
ment of less expensive instrumentation compared to tradi-
tional, spectrometry-based analysis techniques. Sensor arrays
usually consist of numerous optical probes that are used in
combination to generate unique analyte responses. In
contrast, here we present an array that comprises a single

fluorescent sensor, Coum4-DPA, that produces unique
responses to metal ions in different pH environments. With
this simple sensing platform, we were able to classify 10
metal ions in different water sources and quantify Pb2+ in tap
water using just one fluorescent sensor, a few pH buffers and
two sets of spectral data. This novel approach significantly
decreases time and costs associated with probe synthesis and
data collection, making it highly transferrable to real-world
metal sensing applications.

Introduction

In modern times, human industrial activity, such as burning
fossil fuels and refining minerals, has amplified the abundance
of toxic metals in the environment.[1] To reduce the harm of
metal pollutants, there is a need to not only decrease their
production in industrial processes, but also to monitor their
occurrence in the environment to minimise contact. Over the
past two decades, fluorescent chemosensors have proved to be
useful tools for monitoring toxic metals in the environment and
biology owing to their high sensitivity and the relative low cost
of spectroscopy compared to spectrometry-based methods.[2]

However, many fluorescent chemosensors suffer from a lack of
selectivity for a single metal analyte. For example, first row

transition metal ions such as Co2+, Ni2+ and Cu2+ are
notoriously difficult to sense selectively, due to their similar
effective ionic radii,[3] and preferred ligands.[4]

An alternative strategy to selective sensing is the use of
cross-reactive, non-selective probes in a sensor array. Sensor
arrays use a combination of sensor elements, or probes, and
experimental conditions that generate a unique set of re-
sponses for a particular analyte, also known as a fingerprint
response.[5] Multivariate statistical techniques, such as linear
discriminant analysis (LDA) or principal component analysis
(PCA), make it possible to interpret this fingerprint response
and classify similar analytes that would usually not be able to
be distinguished by a single fluorescence measurement. Due to
the multidimensional nature of the generated data set and
machine-learning processes, analytes can be identified without
an in-depth understanding of each unique sensor-analyte
interaction, making it a “hypothesis-free” analytical technique.

For metal ion sensor arrays reported to date, the most
common strategy for achieving diversity is the use of multiple
fluorescent probes.[5a] However, other reported approaches to
adding diversity to arrays include collection of optical outputs
at different fluorescence/absorbance wavelengths,[6] applying
different stimulus light wavelengths to photo-switchable
probes,[7] different sensor concentrations,[8] and the use of
different solvents.[9] Another option is to change the pH of the
sample solution, as protonating or deprotonating various
sensor functional groups can have a significant influence on
fluorescence output.[10] This strategy has been reported in
combination with other diversification strategies in arrays for a
variety of applications such as identifying lanthanide ions in tap
water,[11] distinguishing various protein populations and human
cell lines,[12] discriminating between ion pairs,[13] and identifying
amino acids.[14] In these studies, multiple sensors were used
alongside a set of pH conditions. However, to the best of our
knowledge, pH alone has not yet been employed as the
diversification agent in small-molecule sensor arrays for toxic
and essential metal ions.
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By using this single-sensor array approach, we can signifi-
cantly decrease time and costs associated with synthesising and
analysing numerous probes, while retaining high classification
accuracy. We chose pH as the diversification agent in our
single-sensor array because pH buffers are inexpensive, widely-
available, safe to handle, effective in low concentrations and
they eliminate the need to add large quantities of organic
solvent to the sample.

Here we report the use of a fluorescent coumarin sensor,
Coum4-DPA, as a single sensor element in an array to
discriminate between biologically-essential and toxic metal
ions. We use the fluorescence intensity responses of Coum4-
DPA to the metal ions in various pH conditions and the
statistical method, LDA, to predict group membership and to
discriminate between the metal ions (Figure 1). A highlight of
this single-sensor pH array is that it is non-responsive and
therefore robust to high levels of commonly-occurring cations
such as Ca2+ and Mg2+. As a result, the array was successfully
applied to analyse a variety of sample environments including
tap water and dam water.

Results and Discussion

Small molecule sensors that are capable of producing a wide
range of fluorescence responses to different analytes are highly
useful in sensor arrays. We identified Coum4-DPA as an
“always-on” probe that can experience both increases and
decreases in fluorescence intensity in response to stimuli.
Coum4-DPA is a 7-hydroxy-4-methylcoumarin with a dipicolyl-
amine (DPA) metal-chelating group at the 8-position (Figure 2a).
The hydroxyl group functions as the internal charge transfer
(ICT) donor, while the DPA group partially quenches the
fluorescence of the coumarin fluorophore via a photoinduced
electron transfer (PET) mechanism, evidenced by the lower
fluorescence intensity of Coum4-DPA compared to Coumarin 4
(Figure S1). In this way, both pH fluctuations and metals ions
can interfere with the hydroxyl group to quench fluorescence
via inhibited ICT, whereas any interaction of analytes at the DPA group could decrease PET and enhance fluorescence

(Scheme S1).

Figure 1. A schematic representation of a single-sensor array using pH environment as a diversification agent for the discrimination of metal ions. Pb2+, Hg2+

and Cd2+ are given as example analytes and pH 3, 7 and 10 are given as example pH buffer variables.

Figure 2. (a) Structure of Coum4-DPA. (b) Normalised excitation
(λem=435 nm) spectra of Coum4-DPA (10 μM) in buffered Milli-Q water
(20 mM buffer). (c) Emission (λex=335 nm) spectra of Coum4-DPA (10 μM)
in buffered Milli-Q water (20 mM buffer). (d) Normalised fluorescence
emission responses of Coum4-DPA (10 μM) to metal ions (50 μM) in 1 :99
DMF/pH buffer (20 mM) λex=335 nm, λem=355–600 nm. Error bars repre-
sent standard deviation, n=5.
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We first synthesised and used Coum4-DPA as a sensor
element in a three-sensor array for heavy metals previously
reported by our research group.[15] It was synthesised in a single
step from commercially-available starting materials, 7-hydroxy-
4-methylcoumarin (Coumarin 4) and 2,2’-dipicolylamine.[15] The
excitation maximum of Coum4-DPA shifts from 325–365 nm
with increasing pH from 3.2 to 10.0 (Figure 2b), due to the
deprotonation of the hydroxy group in basic conditions, pKa=

9.4 (Figure S2). Regardless of pH, the emission maximum
remains at 435 nm, although intensity varies, with neutral pH
values aligning with highest fluorescence output (Figure 2c,
photophysical summary provided in Table S1).

Fluorescence responses of Coum4-DPA to metal ions varied.
Most metal ions quenched the fluorescence intensity of
Coum4-DPA; some metals, such as Zn2+ and Cd2+, enhanced
the fluorescence intensity (Figure 2d), while highly-abundant
group I and II metal ions had minimal influence on fluorescence
and cannot be distinguished from a blank sample (Figure S3).
We speculate that fluorescence turn-on responses occur when
the metal ion, such as Zn2+, binds to the DPA receptor group,
lessening the PET quenching of the DPA group (Figure S1).
Alternatively, it is likely that quench responses result when the
metal ion binds directly to the hydroxyl group of Coum4-DPA,
reducing ICT efficiency, decreasing fluorescence. These turn-on/
off responses of hydroxy-coumarins have been suggested by
Kobayashi et al. in their solvent-dependent metal sensor.[16]

Encouragingly, the five buffered pH environments clearly
changed the fluorescence response of individual metal ions,
generating several different fingerprint responses. Some metals,
such as, Ag+, Hg2+ and Ni2+ displayed an increasing trend in
normalised fluorescence with pH, while other metal ions, such
as Pb2+, Fe3+, Zn2+ Mn2+ and Cd2+ displayed higher normalised
fluorescence values at lower pH environments, a trough in
intensity at neutral pH, then an increase at higher pH values
(Figure 2d). The fluorescence response of a single metal ion
varies across pH buffers because fluctuations in the concen-
tration of hydrogen ions in the analysis environment change
the ability of metal ions to interact with the heteroatoms
responsible for influencing the fluorescence output of Coum4-
DPA.

With some promising, well-resolved fingerprint responses
across the five pH buffers tested, we proceeded with array-
based sensing of 10 metal ions including: toxic metal ions, Pb2+,
Ag+, Hg2+ and Cd2+; and essential transition metal ions, Co2+,
Fe3+, Zn2+, Ni2+, Mn2+ and Cu2+. The fluorescence emission
spectra of Coum4-DPA in the presence of metal ions were
collected, integrated and normalised against the fluorescence
of Coum4-DPA alone. LDA was performed on five replicate
normalised fluorescence responses of Coum4-DPA to 10 metal
ions. The first two generated discriminant functions contributed
to 99.7% of the variance, while the three remaining functions
were less useful in discriminating between metal ions (Fig-
ure 3a, for 95% confidence ellipses see Figure S4). The analysis
was able to correctly classify 100% of the metal ions with five
pH buffers. Leave-one-out cross validation was 98% accurate,
with only one Hg2+ sample being incorrectly classified as Ni2+

in this more robust test (Table S2).

Reducing the number of sensor elements or assay con-
ditions in an array significantly decreases the time and costs of
identifying metal ions. In a single-sensor array such as this, the
only way to simplify the array is to decrease the number of pH
conditions. Upon interpretation of the metal fingerprint
responses to five buffers (Figure 2d), it is visible that for most
metals, buffered environments at pH 5.3 and 6.3 produced very
similar normalised fluorescence responses of Coum4-DPA. This
is to be expected, considering that the pKa of Coum4-DPA is
9.4, resulting in similar ratios of protonated and deprotonated
species at these low pH values. As a result, pH 5.3 was omitted
from the array.

Furthermore, most metal ions also produced similar results
at pH 7.4 and pH 8.0 for the same reasons. Owing to this, pH 7.4
was also omitted from the array. LDA of the resulting three-
buffer array (pH 6.3, 8.0 and 9.5) classified metal ions with 100%
and 98% accuracies for the original test and the cross-validation
test respectively (Table S3), despite visible clustering of metals
ions such as Hg2+, Co2+, Ni2+ and Cu2+ (Figure 3b, for 95%
confidence ellipses see Figure S4). To further validate the
success of the three-buffer array, data was also analysed by a
support vector machine with Gaussian kernel. The confusion
matrix output gave 100% correct predictions of 10 metals

Figure 3. LDA score plots for the analysis of 10 metal ions (50 μM metal ion,
10 μM Coum4-DPA (λex=335 nm, λem=355–600 nm)) in buffered Milli-Q
water (20 mM, pH 5.3–9.5), and DMF (1%( v/v)), n=5: a) using five pH
buffers (5.3, 6.3, 7.4, 8.0, 9.5); and b) using three pH buffers (pH 6.3, 8.0, 9.5).
Insets: magnifications of the Hg2+, Co2+, Ni2+ and Cu2+ clusters.
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(Table S4) and the 2D projection of the classifiers on the data
set shows good division between 10 metal analytes, as well as
division from Ca2+ and Mg2+ interferants (Figure S5).

In addition to the 100% accuracy of the three-buffer array,
another notable feature is that commonly occurring metal ions,
such as Ca2+ and Mg2+, have a minimal impact on the
fluorescence Coum4-DPA (Figure S3) compared to essential
transition metals and toxic metals. This creates the possibility
for the array to function in other environments where Ca2+ and
Mg2+ levels are naturally high, such as tap water. Prior to tap
water testing, the three-buffer array was trialled in Milli-Q water
spiked with low and high levels of Ca2+ and Mg2+ to replicate
soft and hard water respectively. The array performed well in
these initial tests, with LDA classifying all 10 metal ions correctly
with 100% accuracy in the initial analysis and the leave-one-out
cross-validation test (Tables S5 & S6). Furthermore, visualisation
of both LDA score plots showed excellent separation of Ca2+

and Mg2+ from essential and toxic metals (Figure S6). This
ensures that high levels of Ca2+ and Mg2+ will not produce a
false positive result for the presence of other metal ions.

To further test the robustness of the single-sensor array
system, the analysis was conducted in a tap water sample.
Inductively-coupled plasma mass spectrometry (ICP-MS) and
anion chromatographic analysis was performed to determine
inherent levels of metal ions and common anions respectively
(Tables S7 & S8). The total hardness of the tap water sample
was determined to be 13.1 ppm, and it can therefore be
classified as soft water under Australian and WHO drinking
water guidelines.[17] The tap water was then spiked with 10
metal ions and subjected to array analysis. For tap water
analysis we did not add any organic solvent to the sensing
matrix in order to better replicate real-world testing conditions.
Initial analysis in three pH buffers (6.3, 8.0 and 9.5) gave 90%
correct classification, dropping to 76% accuracy with cross-
validation (Figure 4a, Table S9). Errors included misclassifying
Ag+ as Fe3+ and Hg2+ as Ni2+. The array did not perform as well
in tap water because the metal analyte fingerprint responses to
Coum4-DPA were less distinguishable than in the Milli-Q water
analysis (Figure S7). This is likely because the pre-existing
chemical and biological components of tap water may interfere
with the ability of the metal ions to interact with Coum4-DPA.
Unsurprisingly, the tap water had significant, high micromolar
concentrations of Na+, Ca2+ and Cl� (Tables S7 and S8).
Furthermore, inherent levels of Cu2+ in the tap water sample
will also interact with Coum4-DPA, dampening the response of
Coum4-DPA to the metal analyte in the discrimination analysis.

A common strategy for increasing the discrimination power
of a sensor array is to include more spectroscopic data in the
analysis. We had previously observed that the excitation
maximum of Coum4-DPA undergoes a red shift with increasing
pH (Figure 2b). By collecting two emission spectra (λex=

335 nm, λem 355–600 nm and λex=355 nm, λem 375–600 nm) of
tap water buffered at pH 6.3, 8.0 and 9.5, we obtained a six-
variable dataset without any extra sample preparation. LDA of
this six-variable data set led to 100% correct classification of all
10 essential and toxic metals (Table S10). However, the more
robust, leave-one-out cross-validation test dropped to 92%

(Table S10). The first three discriminant functions contributed
94.9%, 3.8% and 0.8% of the variance respectively. Plotting the
metal scores of these functions against each other shows good
resolution of some metal ions like Zn2+ and Cd2+ (Figure 4b, for
95% confidence ellipses see Figure S8). However, other metals
that typically generate a fluorescence quenching response to
Coum4-DPA were less well-resolved visually on the LDA score
plot in tap water compared to the more controlled analysis
matrices. This is not surprising because tap water is a complex
mixture containing a variety of biological and chemical
components that can interfere with the sensing ability of the
array. Fortunately, a second application of LDA for only the
metal ions in this cluster (Hg2+, Co2+, Ni2+ and Cu2+) produces
excellent discrimination (Figure S9, Table S11), and we were
nevertheless pleased by the marked improvement in discrim-
inating power achieved simply by using an additional excitation
wavelength.

The three-pH array was also successfully applied to discrim-
inate 10 metal ions in an environmental, dam water sample.
LDA correctly classified five replicates of each metal ion with
100% accuracy in both the initial analysis and the leave-one-out
cross-validation test (Figure S10, Table S12). Unlike tap water

Figure 4. LDA score plots for the analysis of 10 metal ions (50 μM metal ion,
10 μM Coum4-DPA) in buffered tap water (20 mM, pH 6.3, 8.0, 9.5) without
organic solvent, n=5: a) using a single spectrum analysis (λex=335 nm,
λem=355–600 nm); and b) using double spectrum analysis (λex=335 nm,
λem=355–600 nm, λex=355 nm, λem=375–600 nm).
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analysis, this sample did not require data from the additional
excitation wavelength to obtain 100% accuracy.

We have, so far, been able to demonstrate that the three-
buffer pH array scaffold using Coum4-DPA is a useful tool for
distinguishing harmful metals, such as Pb2+ and Cd2+, from
essential metal ions. As a result, we decided to test the ability of
our array platform to quantify Pb2+ in tap water. Pb2+ was
chosen as the example analyte owing to the real possibility of
Pb2+ exposure from tap water, such as the occurrence of the
Flint Water Crisis in Michigan, United States.[18] In these experi-
ments, eight different micromolar concentrations of Pb2+ were
analysed with LDA, which achieved a high classification
accuracy of 88.8%. This value only dropped slightly to 87.5%
upon cross-validation (Table S13). Visualisation of the LDA score
plot of this analysis shows good clustering of each concen-
tration group (Figure 5a). The only misclassifications made by
the array were of neighbouring concentrations, such as 100 μM
samples being misclassified as 120 μM (Table S13). Furthermore,
when five test samples containing 85 μM Pb2+ were added to
the analysis as unknowns, they were all classified as 70 μM, the
closest training concentration available (Figure 5a, Table S13). In
this way, the three-buffer array can be used as a semi-
quantitative method for Pb2+ detection.

While determining approximate concentrations of Pb2+ with
LDA is a useful and valid technique, using a machine-learning
regression analysis technique allows for more precise unknown
concentrations to be resolved. The three-buffer training data
from the semi-quantitative Pb2+ array was modelled using the
Gaussian Process Regression (GPR) method, giving an excellent
fit of actual versus predicted concentrations (Figure 5b). When
tested with the GPR model, test concentrations of 85 μM gave
an average prediction of 83.2�3.6 μM (standard deviation, n=

5), demonstrating that the array is able to act as an accurate
quantification tool when used in this way. Notably, when the
same regression analysis was repeated with fewer pH buffers,
the model was less successful at predicting trained data, as well
as the unknown test cases (Figure S11), highlighting the utility
of a cross-reactive array approach for quantifying toxic metals
in tap water.

Conclusion

In summary, we have devised a robust sensor array for the
identification of essential and toxic metal ions using a single,
fluorescent probe, Coum4-DPA. The sensor, Coum4-DPA,
satisfies the criteria of a single sensor element in a pH-based
array. It is synthetically-accessible, being prepared through a
simple, single-step synthetic procedure and is water soluble,
forgoing the need of including large proportions of organic
solvents in the analysis mixture. It is an ideal probe for sensor
arrays because it produces a variety of turn-on and turn-off
fluorescence emission intensity responses across all 10 metal
analytes. Furthermore, it is inherently pH-sensitive, shifting
fluorescence spectral windows in different pH conditions. This
enables more data to be collected, thus adding more variation
into the array without additional sample preparation.

Initial arrays in Milli-Q water only required three variables
(three different pH buffers) in order to discriminate 10 metal
ions. This is a promising result for environmental applications of
sensor arrays; saving time and costs associated with statistical
analysis. Furthermore, the limited response of Coum4-DPA to
Ca2+ and Mg2+ allows for the single-sensor array system to be
used in a wide variety of analysis media, such as tap water
samples. The three-buffer sensor array achieved 100% correct
classification in both artificial soft and hard water samples, as
well as a real tap water sample. This is important for potential
applications of this system, as the water quality, including water
hardness, can vary greatly within a single city. Finally, the three-
buffer array proved a useful tool for quantifying toxic Pb2+,
which could accurately be measured in tap water samples with
machine-learning regression analysis.

Figure 5. Semi-quantitative and quantitative analysis of Pb2+ in tap water.
(a) LDA score plot for the semi-quantitative analysis of Pb2+ with (10 μM
Coum4-DPA) in buffered tap water (20 mM, pH 6.3, 8.0, 9.5) (no DMF) using
a single integrated fluorescence measurement (λex=335 nm, λem 355–
600 nm). Circles are training data used in the LDA (n=10), crosses are test
data (n=5), entered as unknowns in the analysis and assigned function
scores. (b) Plot of predicted vs. actual concentrations Pb2+ given by GPR
analysis (rational quadratic kernel) of the three-buffer array (pH 6.3, pH 8.0,
pH 9.5, 20 mM) in tap water (no DMF) using a single integrated fluorescence
measurement (λex=335 nm, λem 355–600 nm) for train (black) and test (red)
data. y ¼ x is plotted for reference, the regression produced root mean
squared error and R-squared values of 8.02 and 0.98 respectively. Error bars
represent the standard deviation of ten (black) or five (red) replicate
samples, error bars were not drawn where the standard deviation was less
than the length of the symbol.
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Experimental Section
Coum4-DPA was synthesised according to previously-published
procedures.[15]

Data collection for array-based sensing

All array data was collected on a PerkinElmer EnSpire Multimode
Plate Reader in 300 μL, 96-well polypropylene microplates (Item
No.: 655209, greiner Bio-One). Samples were prepared by mixing
aqueous metal salt stock solutions (2 mM) and freshly-prepared
aqueous Coum4-DPA stock solution (2 mM) in pH buffers (20 mM).
The final concentrations of Coum4-DPA and metal ions were 10 μM
and 50 μM respectively for qualitative analysis and 10 μM and
5 μM–150 μM respectively for quantitative metal analysis. Buffers
for analysis (20 mM) were prepared by diluting aqueous buffer
stocks (100 mM) in one of five water sources: Milli-Q water, artificial
soft water, artificial hard water, tap water (Camperdown, Sydney,
Australia) and water collected from Manly Dam, Sydney, Australia. A
buffer concentration of 20 mM was chosen based on a buffer
capacity experiment that demonstrated sufficient pH-buffering at
20 mM (Figure S12). Arrays in Milli-Q, artificial soft and artificial hard
water also contained 1% (v/v) DMF to aid the solubility of Coum4-
DPA. No DMF or other organic solvent was added to any tap water
or dam water samples. For each buffer replicate, a control well
containing no metal ion was included to normalise the data prior
to statistical analysis. The microplate was shaken for 5 s and
incubated at 25 °C for 1 h. A 1 h incubation time was selected to
ensure adequate mixing and signal stabilisation before data was
collected (Figure S13). Each well was excited at 335 nm and
fluorescence emission spectra were collected from 355–600 nm at
5 nm increments. An additional data set was collected by exciting
at 355 nm and collecting the fluorescence emission spectra from
375–600 nm at 5 nm increments for qualitative tap water data
analysis only. For all qualitative array analysis the experimental
design consisted of five replicates of each unique metal/buffer
combination (1 sensor×3(5) pH buffers×10 metal ions×5 repeti-
tion per analyte=1×3(5)×10×5 data points=150(250) data
points); for tap water analysis only, an additional variable of
emission spectrum was added (1 sensor×3 pH buffers×2 spectral
windows×10 metal ions×5 repetition per analyte=1×3×2×10×5
data points=300 data points) For quantitative analysis, ten
replicates of each unique concentration/buffer combination was
used for the training set (1 sensor×3 pH buffers×1 spectral
window×8 Pb2+ concentrations×10 repetition per concentration=

1×3×1×8×10 data points=240 data points) and five replicates
were used for the test set (1 sensor×3 pH buffers×1 spectral
window×1 Pb2+ concentration×5 repetition per concentration=

1×3×1×1×5 data points=15 data points).

Data handling and statistical analysis

All data for qualitative analysis were analysed in SPSS Statistics
version 26 (IBM). Normalised integrated emission spectra were
subjected to linear discriminant analysis (LDA) in which the metal
analytes were input as the grouping variable and normalised sensor
responses as independent variables. The data were classified as all
groups being equal. Combined groups plots and classification with
leave-one-out cross-validation summary tables were produced for
interpretation. Discriminant scores and predicted membership were
also recorded. For unknown sample classification, data was
excluded from the grouping variable and LDA was used to predict
group membership by assigning discriminant function values for
each replicate and assigning them a location on the territorial map.
A second method of metal classification was performed on the
three-buffer, 10 metal data set in Milli-Q water using the

classification learner app in MATLAB R2019b, training for all support
vector machine (SVM) models. An SVM model with a fine Gaussian
kernel was selected, as it had the highest accuracy (100%). Pb2+

quantification regression analysis was performed in MATLAB
R2019b, using the regression learner app, training for all regression
models. A Gaussian Process Regression (rational quadratic) was the
chosen regression model as it had the lowest root mean squared
error for the Pb2+ concentration training data.

Analysis matrix preparation

According to the World Health Organisation (WHO), total water
hardness below 60 mg/L is soft; between 60–120 mg/L is moder-
ately hard; between 120–180 mg/L is hard; and above 180 mg/L is
very hard.[17a] Artificial soft and hard water samples were prepared
by dissolving quantitative masses of calcium nitrate tetrahydrate
and magnesium nitrate hexahydrate in Milli-Q water (1 L). Total
hardness (in CaCO3 equivalents) calculations were performed on all
water samples used in array analysis (Section 1.2).

Tap and dam water analysis

Metal concentrations in tap water and dam water were determined
by ICP-MS in triplicate (PerkinElmer Nexion 300X) with instrument
specifications outlined in the in supporting information (Table S14).
Anion concentrations in tap water were analysed by ion chroma-
tography (Dionex ICS 1000). Water samples were centrifuged
(4000 rpm, 10 minutes) and filtered through nylon 0.22 μM mem-
brane filters prior to ICP-MS and anion chromatography analysis.
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