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Abstract: Functional systemic and local immunity is required for effective anti-tumor responses.
In addition to an active engagement with cancer cells and tumor stroma, immune cells can be affected
and are often found to be dysregulated in cancer patients. The impact of tumors on local and systemic
immunity can be assessed using a variety of approaches ranging from low-dimensional analyses that
are performed on large patient cohorts to multi-dimensional assays that are technically and logistically
challenging and are therefore confined to a limited sample size. Many of these strategies have been
established in recent years leading to exciting findings. Not only were analyses of immune cells in
tumor patients able to predict the clinical course of the disease and patients’ survival, numerous
studies also detected changes in the immune landscape that correlated with responses to novel
immunotherapies. This review will provide an overview of established and novel tools for assessing
immune cells in tumor patients and will discuss exemplary studies that utilized these techniques to
predict patient outcomes.
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1. Introduction

Described as “wounds that never heal” [1], tumors are intimately associated with inflammation
and immune cells that can both promote and suppress cancer growth. Numerous strategies that
aim to modulate immune cells and inhibit tumor growth have been tested pre-clinically and
clinically. In the last decade, the re-activation of “exhausted” endogenous tumor-reactive immune
cells or administration of ex vivo expanded cells gained much attention and numerous patients
already benefited from these approaches. In addition to the therapeutic potential, peripheral and
tumor-infiltrating immune cells react to local and systemic signals caused by malignant growth, and
can, therefore, be used as a proxy for disease course. Indeed, a large number of studies described
immune cells in cancer patients as being dysregulated. Investigating immune cell dysregulation
is complicated by the variety of methods used, a considerable intratumoral heterogeneity, and the
impact of tumor environment. In addition to the heterogeneous nature of tumors, various immune cell
populations have the potential to both be affected by and actively engage with tumor cells. Accordingly,
cells from the adaptive (T and B cells) and innate immunity (macrophages, dendritic cells, natural
killer cells and others) have been studied in cancer patients and in animal models. However, in line
with the heterogeneity of “inflammation”, conclusions about the prognostic value of distinct immune
processes in cancer are often contradictory. In addition, a considerable proportion of published data
describing the biological role of a specific immune population in tumor regression or progression has
not been reproduced by independent investigators.
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Historically, the knowledge about a specific immune cell population that has been collected
in a non-malignant setting, such as in infection, has often been transferred to cancer. Due to the
non-malignant nature of immune cells and absence of “micro-evolution” through mutation as known
from cancer cells, it is often assumed that the phenotype and biology of immune cells are stable.
Therefore, the most widely used approaches in monitoring immune cells in cancer patients involve
an assessment of single or low-number of markers at a defined time-point. While highly accessible,
technically and logistically feasible, these approaches may fail to describe the biological processes
and to identify future therapeutic targets. In contrast, novel tools that aim to assess the complexity
of immune cells in cancer are more capable of capturing the heterogeneity and diverse functionality
of cells of interest. Indeed, in recent years, the establishment of high-dimensional assays such as
numerous–omics (e.g., proteomics, metabolomics, and others) as well as single cell approaches (such as
single-cell RNA sequencing) allowed insights of unprecedented depth and of high biological relevance
(Figure 1). Here, we will focus on the immune system as a proxy for tumor biology and as a tool
to predict or monitor immunotherapy response. Due to the extent of available data, we will mostly
discuss studies involving T cells.
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Figure 1. Overview of current tools to assess phenotype, function, and identity of immune cells in
cancer. Multiple tools that differ in their accessibility, feasibility and relevance are available to study
immune cells that infiltrate human tumors or are found in the periphery. Techniques such as genome
or transcriptome sequencing provide deep insights into the identity, function and phenotype of studied
targets, they are however technically and logistically challenging and often an inadequate data analysis
and interpretation prevent a high information yield. On the contrary, low-dimensional assays (e.g.,
immunohistochemistry or low-parameter flow cytometry) are broadly accessible, while insufficient
to capture the biological complexity. In addition, immune cells in the cancer environment are highly
heterogeneous and often no linear relationship between cellular identities, function and phenotype
exist due to cellular plasticity and context (e.g., tissue) specificities. Data from [2,3] were used to
prepare this figure.

2. Phenotype and Function of Peripheral Blood Immune Cells as an Outcome Predictor

It has been long known that systemic immunosuppression induced in patients after organ
transplant can increase the incidence of cancer. Furthermore, patients with established tumors still
profit from a functional immune system [4]. The most widely used source of immune cells from cancer
patients is peripheral blood as it is highly accessible and can be processed with high consistency across
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patients and institutions. As opposed to immune cells infiltrating tumor tissues, blood immune cells
can be assessed repeatedly, allowing dynamic measurements during disease progression/regression
and under systemic immunotherapy. The accessibility of peripheral blood warrants a high yield
of data that can be used to generate biomarkers and stratify patients; however, analyses of blood
immune cells may not allow deep insights into the tumor-immune cell interactions. Here we will
address how immune populations in patients’ blood can be used to predict survival or immunotherapy
response. Exemplary studies will be discussed and the pitfalls of the proposed diagnostic strategies
will be considered.

Several investigators correlated changes in peripheral blood immune populations with prognosis
of cancer patients. Due to an overwhelming amount of collected data, exemplary studies that focused
on T cells will be discussed. T cells develop and differentiate to different subtypes. While CD8+ T
cells are mostly pro-inflammatory, CD4+ T cells can be both pro- and anti-inflammatory. As opposed
to “effector” CD4+ T cells that are often described as T-helper (Th)-1, Th-2 and Th-17 based on the
expression of key T cell cytokines, the immunosuppressive regulatory CD4+ T cells (Treg) are mostly
defined by expression of CD25 and the transcription factor forkhead-box-protein P3 (FOXP3). In line
with the hypothesis that Treg may inhibit anti-tumor immunity and contribute to cancer progression,
increased percentages of Treg were observed in a poor-prognosis subgroup of patients with resectable
pancreatic cancer [5]. Similarly, early-stage treatment-naïve non-small cell lung cancer (NSCLC)
patients showed an increased percentage of CD4+ FOXP3+ T cells in peripheral blood [6]. Interestingly,
NSCLC patients presented lower percentages of cells expressing the immune inhibitory receptor
programmed cell death protein 1 (PD-1) as compared to healthy controls. Nevertheless, the PD-1
expression on CD4+ T cells within the NSCLC patient group correlated with poor outcomes in the
NSCLC group and a low CD4/CD8 ratio predicted a better prognosis [6]. Ihara et al. analyzed a
cohort of head and neck squamous cell carcinoma (HNSCC) patients and found similar percentages
of CD4+ FOXP3+ T cells in HNSCC patients as compared to benign tumor patients. Looking at the
expression of CD45RA on this T cell subpopulation, however, increased percentages of CD45RA- CD4+
FOXP3+ cells correlated with poor outcomes in HNSCC patients [7]. T follicular helper (Tfh) cells and
T follicular regulatory (Tfr) cells are emerging as critical regulators of systemic immunity in various
contexts. A recent study assessed circulating Tfh and Tfr in NSCLC patients. Both Tfh and Tfr were
increased in NSCLC patients, as compared to healthy controls. In addition, lower percentages of
Tfh were found in early stages, but no relationship for Tfr in regard to disease stage was observed.
Interestingly, Tfh were preferentially found in patients with a squamous cell carcinoma histology as
compared to adenocarcinoma [8]. Immune cells other than T cells may associate with the disease course
of tumor patients and have been assessed by a large number of studies so far. For example, solid data
are available showing a predictive potential of the neutrophil-to-lymphocyte ratio in several tumor
entities [5,9–11]. It is however unknown if changes in the neutrophil/lymphocyte cell compartments
reflect a specific tumor biology and the biological and translational relevance of these observations
remains unclear.

3. The Phenotype-Function Discrepancy and Its Implications for Cancer Immune Monitoring

A basic phenotype of an immune cell subpopulation provides only limited information about
the specific function (Figure 1). For example, human CD4+ T cells express FOXP3 upon activation
and FOXP3 expression may not be sufficient to link a Treg phenotype to a suppressive function. This
phenomenon may play a role in the prognostic relevance of peripheral blood Treg in cancer patients.
While increased Treg correlate with decreased survival of patients with several tumor entities, they can
also be associated with improved prognosis. A meta-analysis by Shang et al. that included 17 tumor
types showed a survival advantage of colorectal, head and neck and oesophageal cancer patients with
increased Treg infiltration [12]. Although no meta-data are available addressing the prognostic role
of peripheral blood Treg across multiple tumor types, investigators observed an association between
Treg frequencies in peripheral blood and a worse prognosis of patients in some tumor entities [13,14].
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Vetsika et al. discriminated peripheral blood Treg of NSCLC patients as naïve, effector and terminal
effector Treg. Interestingly, naïve Treg were increased in NSCLC patients and correlated with poor
outcome. On the contrary, an increased percentage of terminal effector Treg was associated with an
improved survival, suggesting that terminal differentiation may lead to a decreased Treg function and
thus to an improved survival [15].

Ideally, the suppressive function of these T cells would be consequently assessed to confirm
a “Treg identity”. However, this is not yet technically feasible and the mechanisms how Treg may
suppress anti-tumor immunity are insufficiently explored. Nevertheless, several studies assessed
both phenotype and in vitro function of effector immune cells from tumor patients [16–18], but only
limited data are available to date in regard to cancer patient prognosis in correlation to peripheral
blood immune cell function. One study analyzed the function of peripheral Treg in melanoma patients
receiving ipilimumab. Although no significant differences were observed when comparing Treg
function before and after 6-week ipilimumab treatment, an increase of Treg suppressive function
was associated with poor survival [19]. Another study addressed the relevance of interleukin-17
(IL-17) producing cells in gallbladder cancer patients. Interestingly, IL-17 secreted by a specific T cell
subset, the T
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ex vivo function of immune cells from tumor patients. For example, in vitro culture of immune cells
is strongly affecting their biology and numerous studies confirmed the differences of in vivo versus
in vitro function of specific human immune populations. Therefore, investigators often verify the
in vitro results in animal models, link the observed in vitro features to in situ assessments and analyze
more than one tumor entity [21–26].

4. Peripheral Immune Cell Subsets in Tumor Patients Receiving Immunotherapy

Pharmacological and cellular therapies that aim to induce an anti-tumor immune response have
received high attention in recent years. However, many patients are unresponsive or relapse after
immunotherapy. It is therefore critical to (1) identify the poor responders in order to adjust the
treatment protocols and (2) analyze the resistance mechanisms in order to prevent resistance and
improve responses. Peripheral blood offers an easily accessible source of patient immune cells and
may be used for immune monitoring und immune therapies.

Indeed, numerous studies assessed the status and function of peripheral blood immune cells
in patients treated with immune therapies such as an immune checkpoint blockade (ICB). Other
than in patients with lung cancer where data are limited about peripheral blood immune cells as
predictors of immunotherapy response [27,28], investigators repeatedly addressed this question
in melanoma, an entity where ICB, especially through a pharmacological blockade of cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), is widely established. Several immune populations
have been assessed and correlated with the response to ipilimumab, a CTLA-4 blocking antibody, in
melanoma patients. For example, a higher response to ipilimumab has been associated with increased
frequencies of peripheral blood CD8+ effector memory T cells [29,30]. Interesting results have been
obtained measuring Treg in melanoma patients before and under ipilimumab treatment. High Treg
numbers might lead to decreased anti-tumor immunity and could counter-act the activation of the
immune system through blockade of the inhibitory receptor CTLA-4. However, Treg express CTLA-4
and might, therefore, be an additional target of CTLA-4 directed therapy. An increased Treg frequency
might thus provide high target cell amount and could positively correlate with a response to CTLA-4
blockade. Indeed, Treg frequencies in peripheral blood were associated with better survival and
improved response to ipilimumab in melanoma patients [31]. Interestingly, Tarhini et al. observed
an increase of Treg in peripheral blood of ipilimumab treated patients, which was associated with
improved survival [32]. Specific anti-tumor immunity is critical for tumor rejection and the effects of
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ICB may be mediated through expansion of tumor-specific T cells. In agreement with this, it has been
described that tumor antigen-specific T cells expand in blood of ipilimumab-treated patients [32,33].

5. Immune Cells Provide Critical Information about the Tumor Microenvironment

Peripheral blood is technically easy to obtain and process, can be repeatedly accessed over longer
time periods and mostly provides a sufficient sample volume. For these reasons, peripheral blood will
most likely remain a highly-utilized material for immune population monitoring in tumor patients in
the future. While changes in phenotype, function and metabolism of peripheral immune cells may be a
critical readout for changes in systemic immunity, they are unlikely representative of changes directly
induced by tumors. Since the variability of relevant tumor antigens is high both among tumor entities
and among patients with the same tumor type, the identification of tumor-specific cells of the adaptive
immunity in peripheral blood will remain highly challenging. Therefore, immune cells that physically
reside inside tumors are likely the best source of information about the tumor-immune cell interactions.
However, due to advances in cancer diagnostics and improved surgical techniques, tumors are detected
at earlier stages and therefore smaller sizes and are often removed using a minimal-invasive approach.
All of these factors contribute to technical and logistic challenges in tumor tissue processing and
analysis with a broad range of assays. Nevertheless, a wide range of studies across all available tumor
types focused on tumor-infiltrating immune cells and provided deep insights in tumor biology and in
some cases also allowed prediction of patient’s prognosis and response to therapy.

Tumors form unique environments in terms of cellular composition, tissue architecture and
metabolic milieu. All of these features are highly relevant for intratumoral immune cells. Furthermore,
these factors can determine the effectivity of anti-tumor immune responses. In addition to expression
of immune modulatory molecules such as programmed cell death 1 ligand 1 (PD-L1) that can directly
impair activation of tumor-infiltrating T cells, the ability of tumors to use metabolic changes to affect
anti-tumor immunity has gained high attention in recent years. As an example, high expression of the
glucose transporter Glut1 in renal cell carcinoma (RCC) tumors correlated with decreased infiltration
with CD8+ T cells [34], suggesting that tumors may deplete critical nutrients such as glucose to impair
immune cell activity. In this regard, tumor metabolic activity may be seen as a barrier to effective
immune cell engagement [35], reviewed in [36].

Intratumoral immune cells are often being described by “classical” lineage and differentiation
patterns. However, the unique character of the intratumoral environment most likely results in changes
in immune cell phenotype, function and metabolism, that are both highly variable and tumor specific.
Here we will discuss studies that aimed to describe tumor-infiltrating immune cells using various
approaches and highlight those where the intratumoral immune landscape allowed prediction of
patients’ prognosis or treatment response.

6. Frequency and Phenotype of Tumor-Infiltrating Immune Cells as a Prognosis Predictor

It was with great enthusiasm when tumor biologists first described immune cells in human tumors.
In line with the concept of cancer as a site of chronic inflammation [1], it has often been observed
that highly inflamed tumors are biologically and clinically more aggressive [37–39] and accordingly,
inflammation was found to promote cancer growth [40,41], reviewed in [42,43]. It soon became obvious,
that cells of both innate and adaptive immunity can be found in tumors. In addition to cells of the
myeloid lineage such as macrophages and dendritic cells, CD3+ T cells became an extensively studied
immune cell subtype in solid cancers [44]. Here, increased T cell tumor infiltration correlated with a
better prognosis in most studies [45,46]. In a recent study, Denkert and colleagues analyzed tumor
biopsies from 3771 breast cancer patients and found that high T cell infiltration predicted a better
survival for patients with human epidermal growth factor receptor 2 (HER2)-positive tumors and
increased tumor-infiltrating lymphocyte (TIL) concentrations predicted a response to neoadjuvant
chemotherapy in all tumors. In contrast, high TIL concentrations were negatively prognostic for
the subgroup of patients with luminal-HER2-negative tumors [47]. Similarly, some studies reported
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about an unfavorable prognosis of breast tumors with high T cell infiltration [48], while others
described specific breast cancer subtypes, where CD8+ T cell infiltration associates with an improved
survival [49]. In another gynecologic malignancy, CD4+ Treg infiltrating cervix carcinomas predicted
a worse survival, while infiltration with CD8+ T cells, as well as with Perforin-1 and Granzyme-B
positive cells had no prognostic value [50].

Overall, the majority of studies reports improved survival of patients that show high intratumoral
CD8+ T cell infiltration [51,52]. However, exceptions to this “dogma” have been repeatedly described
for various tumor entities, including gastric cancer [53] and renal cell carcinoma [45,54,55]. Interestingly,
CD8+ T cells can promote cancer growth in hepatocellular tumors as a consequence of a metabolic
dysregulation [56]. Similarly, melanoma-associated CD8+ T cells induce expression of the immune
suppressive factors indoleamine 2,3 dioxygenase, PD-L1 and a Treg recruitment to the tumor
microenvironment [57]. As opposed to other genitourinary cancers such as testicular tumors [3], CD8+
T cell infiltration seems to correlate with worse prognosis in RCC [45,54]. RCC CD8+ TIL are highly
heterogeneous [2] and accessing the bulk CD8+ T cell population may be an inadequate prognostic
tool. We and others have observed an increased differentiation of intratumoral RCC CD8+ TIL towards
a memory phenotype [2,58]. Correlating with the percentage of memory T cells among RCC TIL, Hotta
et al. observed in a multivariate analysis that an increased percentage of intratumoral memory T cells
was an independent negative prognostic factor for patient overall survival [58]. The high infiltration
and negative prognostic value of T cells in RCC tumors could partially be explained by high RCC
vascularization, leading to a decreased density of tertiary lymphoid structures, resulting in recruitment
of CD4+ Treg and presence of polyclonal CD8+ T cells with limited cytotoxicity [59]. In a study by
Giraldo et al., CD8+ TIL, as well as increased expression of the inflammatory molecules Perforin-1 and
Granzyme-B, predicted a shorter survival of RCC patients. However, the subgroup of CD8+ TIL-high
RCC tumors that showed a lower expression of the T cell “exhaustion” markers combined with an
increased presence of dendritic cell signatures in peritumoral immune aggregates showed a more
favorable prognosis [54]. In line with the metabolic barriers to immune cell engagement in tumors,
the localization of infiltrating T cells appears to be relevant for their effective activation. Mei et al.
compared 30 studies involving 2988 colorectal cancer (CRC) patients and observed that a generalized
tumor inflammation associated with an improved survival. While in the infiltration with CD3+, CD8+,
or FOXP3+ cells in the tumor center did not affect survival, CD8+ T cell infiltration in the tumor
stroma and at the invasive margin correlated with an increased patients’ survival [60]. In addition to
immune cells of adaptive immunity, natural killer (NK) cells can be found in tumors and high NK cell
infiltration correlated with improved survival in several tumor entities [61–65]. Interestingly, Gentles et
al. analyzed several tumor types and observed favorable outcomes with high NK cell infiltration only
in solid tumors, with the exception of glioblastoma. A pan-cancer approach in this study, however,
did not find a positive role of NK cell signature in tumors [52].

In summary, an extensive amount of data has been collected on the basic phenotype of
tumor-infiltrating immune cells; these parameters may however be insufficient to provide a robust
prognostic tool, as the tumor-immune cell interaction is dynamic and highly heterogeneous. More
information might be gained if the traditional subpopulation phenotyping is combined with spatial
distribution. It may, therefore, be critical not to interpret the extent of the tumoral immune cell
infiltration, but rather its “quality”, such as biological identity and function.

7. Function and Metabolism of Immune Cells Dictate the Outcome of Tumor-Immune
Cell Interactions

Assessment of phenotype and identity of an immune cell, such as through mono- or
multi-parametric approaches mentioned above provides useful information about the lineage
commitment and about the basic biology. Nevertheless, it is the function and the dynamic biologic
behavior of these immune cells that affects cancer growth. A simple but highly relevant readout of the
immune cell “fitness” is the ability to proliferate. T cell proliferation guarantees a high T cell pool for
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the necessary function. With the commitment to a specific function throughout differentiation however,
the ability of T cell to proliferate decreases. Nevertheless, confronted with a growing number of tumor
cells, a proliferative potential of intratumoral T cells may be necessary for an effective anti-tumor
immune response. As mentioned above, several studies detected a negative correlation of CD8+ T cell
infiltration in RCC tumors with patient prognosis. A study by Nakano et al. confirmed these data, but
also observed an improved prognosis of RCC patients where CD8+ TIL showed a preserved ability to
proliferate, compared to patients with non-proliferative CD8+ TIL [55].

Another readout of immune cell functionality is the production of effector molecules after
appropriate stimulation. In agreement with studies in other tumor entities, Singer et al. observed a
decreased T cell cytokine production in RCC tumors [34]. While intratumoral tumor necrosis factor
alpha (TNF-α) did not show a prognostic value in melanoma [66], the capacity of tumor-specific T
cells to secrete the pro-inflammatory cytokine TNF-α and a TNF-α accumulation in tumor tissue has
been associated with good prognosis of colorectal cancer patients [67]. In contrast, accumulation
of IL-17, typically produced by CD4+ Th17 cells, correlated with worse prognosis in colorectal
tumors [68] and cholangiocarcinoma [69]. In line, the expression of receptors for the anti-inflammatory
transforming growth factor beta (TGF-β) in tumor tissues associated with a bad prognosis of breast
cancer patients [70].

A key prerequisite for immune cell function is the availability of basic nutrients to fuel the
changing metabolic demands but also an intact metabolic machinery is necessary to process these
nutrients [71,72]. Several, mostly pre-clinical studies assessed the metabolic fitness of intratumoral
immune cells. A metabolic dysfunction of immune cells in cancer has been recently described for
some tumor entities [2,73–75]. The causes of the metabolic dysfunction of tumor-associated immune
cells are not sufficiently explored to date. Moreover, no data are available on the possible prognostic
relevance of the metabolic status of immune cells. However, tumors and immune cells are interacting
metabolically [36,76,77], and assessment of immune cell metabolism may therefore be an attractive tool
to assess both the fitness of the immune system and the biology of tumors to predict patient outcomes
and therapy response.

8. Tumoral Immune Composition and Therapy Response

Most of the studies that aimed to predict cancer patients’ outcome using immune cell
analyses included patients that were treated with various approaches, including chemotherapy and
radiotherapy. It cannot, therefore, be excluded, that a specific immune feature, in fact, predicts a therapy
response, rather than describing the pro- or anti-tumor potential of an immune population. Few studies
addressed this question and analyses of immune cells in tumor patients were indeed able to predict how
a patient responds to subsequent therapy. In breast cancer, infiltration with T cells, especially with CD8+
T cells predicted good sensitivity to chemotherapy [78]. Similarly, T cell infiltration of tumors predicted
sensitivity of rectal cancer patients to radiotherapy [79]. Beuselinck et al. analyzed 53 metastatic RCC
patients that were treated with sunitinib, a multi-targeted receptor tyrosine kinase inhibitor. Based
on a transcriptome analysis, the patients were segregated into four groups. Interestingly, the group
that presented the shortest survival and was therefore sunitinib-resistant showed a strong tumoral
inflammatory signature and high expression of PD-1, PD-L1 and a sarcomatoid differentiation [80].
Limited data are available about the prognostic role of intratumoral immune cell composition and
function for patients treated with immunotherapies. It has been shown however, that treatment with
ipilimumab induced an increase in intratumoral CD8+ T cells of a memory phenotype in advanced
melanoma patients [32].

9. Novel Tools to Improve Predictive Power of Immune Cell Assessment in Cancer Patients

Although highly accessible and technically robust, the widely used low-dimensional assays, such
as immunohistochemistry or low-parameter flow cytometry to assess immune cells in tumor patients
may not be sufficient to address the heterogeneity of the extratumoral and intratumoral immune
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landscape (Figure 1). Therefore, multidimensional strategies such as high-parameter flow cytometry,
mass cytometry, DNA and RNA sequencing as well as epigenetic approaches have recently been
applied to study cancer-associated immune cells.

9.1. Mass Cytometry

Similar to flow cytometry, mass cytometry uses antibodies to detect antigens expressed by
targets cells, but the employment of metal isotopes for antibody labeling and signal detection allows
a simultaneous analysis of tens (or, theoretically, hundreds) of parameters. Mass cytometry has
been applied to dissect the phenotype of tumor-infiltrating lymphocytes (TIL) in few studies so
far [2,81–84]. Boddupalli et al. assessed TIL of melanoma patients using mass cytometry and observed
a decreased cytokine production and a highly heterogeneous expression of immune checkpoints on
TIL [66]. Similarly, we observed a high heterogeneity of the intratumoral CD8+ TIL population in
RCC tumors. Multi-parametric analysis on single cell level and comparison to resting and activated
peripheral blood T cells allowed differentiation of CD8+ TIL into 3 groups and revealed that the
most enriched CD8+ TIL group highly expressed PD-1 while exhibiting an effector memory like
phenotype [2] that has previously been linked to poor survival of RCC patients [58]. An extensive
mass cytometry-based analysis of RCC TIL has been performed by Chevrier et al. This study broadly
described the innate and adaptive immune landscape of RCC TIL and also allowed outcome prediction
based on patient allocation to one of specific clusters that have been defined by the co-expression
of the pre-defined immune parameters [81]. Using a complex but highly relevant approach, Lavin
et al. analyzed malignant and non-malignant lung tissue and peripheral blood samples from the
same patients with lung adenocarcinoma. Through employment of mass cytometry, the investigators
found significantly altered T and NK cell compartments and identified tumor-infiltrating myeloid
cells that likely compromised anti-tumor T cell immunity [83]. A recent study included advanced
melanoma patients treated with a PD-1 blocking antibody. Using mass cytometry, the authors analyzed
peripheral blood samples before and 12 weeks after initiation of an anti-PD-1 therapy. Interestingly,
this approach was able to separate anti-PD-1 therapy responders and non-responders and a clear
response to immunotherapy was observed in the T cell compartment. In addition, analysis of samples
from untreated patients revealed the frequency of CD14+ CD16− HLA-DRhi monocytes to be a strong
predictor of progression-free survival and overall survival following anti-PD-1 treatment [85].

9.2. Assessment of TCR Clonality

For an antigen-dependent activation, T cells require ligation of the T cell receptor (TCR)
through an antigen presenting cell. Presentation of tumor antigens is believed to primarily
occur via antigen-presenting cells in lymphoid structures, but tumor cells may also present major
histocompatibility complex-I (MHC-I) restricted antigens directly to immune cells. In line, a clonal
expansion of tumor-specific T cells is considered necessary for anti-tumor T cell engagement. The
vast majority of solid tumors do not induce a monoclonal T cell expansion, which is in line with the
observation that solid tumors mostly do not provide a single tumor-specific antigen. Interestingly,
a recent study described the phenotype of melanoma CD8+ TIL as typical for tissue resident T
cells and observed an extensive clonal heterogeneity of TIL TCR [66]. Similarly, in RCC, colorectal
pancreatic and breast cancer, the TIL composition in regard of TCR clonality appears to be also
highly heterogeneous [86–88] with an exception in ovarian tumors, where the TCR clonality is
relatively homogeneous both intratumorally and between patients [89]. Nevertheless, the TCR
repertoire of TIL seems to be more narrow than that of peripheral blood T cells from the same
patient and specific TCR clones can be found in blood and tumors that are patient-specific and absent
in healthy donors [86–88,90]. Giraldo et al. analyzed RCC tumors and combined TCR sequencing with
multi-parametric flow cytometry. Comparing two groups of patients with inflamed tumors, those with
oligoclonal intratumoral T cells showed a superior survival relative to a group with inflamed tumors
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but polyclonal TIL. Interestingly, TIL in both groups expressed the “exhaustion” markers PD-1 and T
cell immunoglobulin and mucin-domain containing-3 (TIM3).

9.3. Transcriptomics

Even without a single cell resolution capacity being widely accessible to date, sequencing of
transcribed RNA represents one of the broadest approaches to assess the identity and functional state
of a cellular population. RNA sequencing has been performed on an extensive cohort of patients
throughout most of tumor entities. Lacking single cell data, pre-defined immune signatures are
necessary to study the intratumoral immune infiltration using the RNA transcriptome of human
tumors. Nevertheless, gene expression profiling in combination with immunohistochemistry was able
to provide a more accurate prediction of outcome than a traditional histological approach in colorectal
tumors [91]. Another study used gene transcription data to define immune cell infiltration of head and
neck squamous cell carcinoma tumors and detected a positive correlation of infiltration with NK cells,
CD8+ T cells, but also with Treg and other immune populations with overall survival [92]. Similarly,
Gentles et al. applied a massive approach and analyzed the transcriptome data across 39 tumor entities
and described shared prognostic features of immune infiltrate signatures that have been defined using
the CIBERSORT computational approach [93]. Methods such as CIBERSORT are able to delineate cell
composition of bulk samples. However, the bulk data can be deconvoluted only to a certain level.
Using expression signatures that have been pre-defined using knowledge of specific populations may
only provide read-outs that are fitting the hypotheses, rather than being truly exploratory. The only
solution to this experimental “bias” is the assessment of the transcriptome on a single cell level. While
already available, this approach suffers from low resolution, high reagent costs and is technically
challenging both in data collection and analysis. Recently, several investigators have interrogated
the immune cell landscape of primary human cancers, identifying heterogeneous subpopulations of
cancerous cells and infiltrating immune cells at the same time [94–96].

9.4. Epigenomics

The use of the transcriptome allows a broad assessment of the cellular state in a certain moment.
However, true cell identity, potential and stability is better reflected by a cell’s epigenome. Epigenetic
mechanisms ensure “imprinting” of a certain cell state that may remain stable despite acute changes
in the microenvironment, and thus better reflect the potential of a cell to respond to treatment
or define cellular phenotypes for biomarker development. For example, the expression of the
transcription factor FOXP3 is commonly used alone or in combination with other markers to define an
immunosuppressive phenotype of CD4+ T cells. However, as opposed to murine T cells, FOXP3 is
expressed in human T cells that are both immunosuppressive and inflammatory [97,98]. Epigenetic
analysis of the Treg-specific demethylated region (TSDR) reveals a specific epigenetic state that is
unique to immunosuppressive naïve Treg cells [99]. This phenomenon is very likely also to be
found in other traditional markers of cellular identity. Therefore, epigenetic features such as DNA
methylation, chromatin accessibility and histone modifications may re-define cellular populations
that are established to date. The emerging possibility to assess the epigenome on low cell numbers
will allow deep analyses of the cellular state and identity of TIL in the future. Although technically
challenging, new methodological developments such as ATAC-seq [100] or ChIPmentation [101]
increase the accessibility of the epigenome as a data source by lowering input requirements and
simplifying experimental procedures. As an example, first studies started to interrogate the chromatin
accessibility landscape of TILs in mouse tumor models and/or primary melanoma samples [102,103],
paving the way to connect chromatin signatures in T cells to immunotherapy treatment in the future.
Similar to transcriptomics, epigenomic assays have been and will be further developed to single-cell
resolution. As examples, single cell assays for DNA methylation sequencing [104,105], chromatin
accessibility mapping [106–108], and chromatin immunoprecipitation [109] have been published.
These approaches have a great potential to describe the cell states of heterogeneous tumor-infiltrating
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immune cells in an unbiased manner and might therefore contribute to outcome prediction in cancer
patients in the future.

9.5. Multi-Layer Single Cell Data

Unfortunately, due to the mentioned technical and organizational challenges, studies that deeply
assessed the immune cell infiltrate of human tumors were not yet able to provide a prognostic tool
that would routinely enable to either predict outcome or therapy response. However, through a
multi-parametric approach, they are likely to discover novel targets of prognostic relevance that can
be assessed with broadly accessible technologies. To this end, methods that provide more than one
sort of data from a single cell have high potential to refine predictions to treatment in by an unbiased
assessment the patient’s immune cell status. First studies used single-cell expression data to assemble
TCR sequences of TIL in liver cancer, which gave unprecedented insights into phenotypes and relations
of infiltrating CD4+ and CD8+ T cell subsets [94]. Further, by adding spatial information to single-cell
RNA-profiles important information about the location and interacting cells of the immune infiltrate
can potentially be gained [110]. By labeling antibodies with DNA barcodes, researchers could identify
dozens of surface protein markers along the transcriptome in single blood cells [111,112], an approach
that is highly scalable and therefore a potential alternative to mass cytometry. In addition to those
multi-layer-data-generating approaches that were already applied to immune cells, studies described
the simultaneous analysis of the transcriptome and DNA methylome [113], DNA methylation and
chromatin accessibility [114], selected proteins and transcripts [115], or even transcriptomes, genomes
and DNA methylomes [116] from the same single cell.

9.6. Others

Novel tools based on proteomics, metabolomics and microbiomics allow to broadly assess the
landscape of a specific population or anatomical site. Multiple studies that analyzed the proteome
and lipidome in sera of tumor patients showed promising results in regard to assessment of therapy
response and prognosis [117–122]. However, these techniques are highly challenging due to dynamic
range of substances, especially when applied to different compartments and tissues. Furthermore,
these studies suffer from a low reproducibility due to heterogeneity of the cancer itself, as well as due
to the different techniques utilized for protein identification/quantification [123].

The human microbiome is intimately connected with several compartments, most prominently
with the immune system [124]. An intriguing observation has been made by analyzing the intestinal
microbiome of cancer patients. For example, it has been shown that the efficacy of CTLA-4 blockade
depends on distinct bacterial species, specifically Bacteriodes fragilis [125]. Moreover, melanoma patients
treated with CTLA-4 blockade showed improved survival, if their baseline microbiota were enriched
with Faecalibacterium genus and other Firmicutes. On the opposite, patients whose microbiota were
driven by Bacteroides showed inferior survival under CTLA-4 blockade [126]. Similarly, a successful
treatment with PD-1 based immunotherapy was associated with Akkermansia muciniphila and oral
supplementation with this organism was able to restore responsiveness to PD-1 blockade [127].
The exact mechanisms, how microbiota both react to immune perturbations and affect the immune
system remain insufficiently explored. However, these exciting data highlight the complexity of the
immune-related changes in tumor patients and also identify novel targets that might be used as future
predictive biomarkers.

10. Conclusions

A broad landscape of available technologies that are used to assess immune cells in tumor patients
has led to generation of considerable amounts of data across multiple tumor types. Nevertheless,
the used approaches differ substantially in the technical and logistical feasibility and analytic depth.
The high availability of low-dimensional approaches has allowed for the screening of many patient
samples in recent years. However, insufficient description of the cellular phenotype and function,
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together with high heterogeneity of tumors, led to simplifications and a specific function was often
assigned to a simple phenotype. Moreover, several immune cell phenotypes have been established
and extensively studied in animal models but were not critically and repeatedly evaluated in human
systems. This approach might have contributed to the contradictory results of many human cancer
studies and although technically straightforward, an immune phenotyping of peripheral blood or
tumor tissue is still not used as a prognostic tool in daily clinical practice. Complex tools such as
multi-dimensional cytometry, metabolic assays or approaches based on RNA sequencing are shedding
more light on the function of immune cells in cancer. Through technical progress, these technologies
may become more accessible in the near future and provide solid tools that will both predict disease
outcomes and stratify patients for effective therapies.
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