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Objective: Accurate identification of surgical phases during cataract surgery is essential for improving sur-
gical feedback and performance analysis. Time spent in each surgical phase is an indicator of performance, and
segmenting out specific phases for further analysis can simplify providing both qualitative and quantitative
feedback on surgical maneuvers.

Study Design: Retrospective surgical video analysis.
Subjects: One hundred ninety cataract surgical videos from the BigCat dataset (comprising nearly 4 million

frames, each labeled with 1 of 11 nonoverlapping surgical phases).
Methods: Four machine learning architectures were developed for segmentation of surgical phases. Models

were trained using cataract surgical videos from the BigCat dataset.
Main Outcome Measures: Models were evaluated using metrics applied to frame-by-frame output and,

uniquely in this work, metrics applied to phase output.
Results: The final model, CatStep, a combination of a temporally sensitive model (Inflated 3D Densenet) and

a spatially sensitive model (Densenet169), achieved an F1-score of 0.91 and area under the receiver operating
characteristic curve of 0.95. Phase-level metrics showed considerable boundary segmentation performance with
a median absolute error of phase start and end time of just 0.3 seconds and 0.1 seconds, respectively, a
segmental F1-score @70 of 0.94, an oversegmentation score of 0.89, and a segmental edit score of 0.92.

Conclusion: This study demonstrates the feasibility of high-performance automated surgical phase identi-
fication for cataract surgery and highlights the potential for improved surgical feedback and performance analysis.
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Cataract surgery is an essential part of ophthalmic surgical
training and practice. Although advances in cataract surgery
technology such as foldable intraocular lenses and active
fluidics have led to decrease in complication rates, existing
methods of providing feedback to trainee surgeons on sur-
gical performance remain limited.

Because patients are typically awake for cataract surgery,
providing verbal intraoperative feedback to trainee surgeons
is problematic. Providing postoperative feedback is chal-
lenging due to the need to move between cases efficiently.
Furthermore, verbal feedback from faculty is usually qual-
itative in nature, may lack objectivity, and often lacks a
longitudinal perspective on trainee progress. Accordingly,
simplifying and automating approaches to providing
objective feedback on trainee surgical performance is likely
to be of value.
ª 2023 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
Identifying surgical phase from video recordings offers 4
key potential applications in improving surgical feedback and
performance analysis. First, it offers the ability to quantify the
time spent in each surgical phase, which itself can be an
important indicator of how well a surgeon is performing.1

Second, the ability to segment out specific phases for
further analysis can simplify the process of providing both
qualitative and quantitative analyses of specific surgical
maneuvers. For example, a trainee struggling with
performing the capsulorrhexis, a delicate and challenging
step in cataract surgery, could easily obtain a “supercut” of
each capsulorrhexis they have performed for their own
review as well as review by their surgical mentors. Third,
surgical phase identification is a fundamental building
block for providing more complex automated surgical
feedback for an individual phase of surgery across a large
1https://doi.org/10.1016/j.xops.2023.100405
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set of surgeries. To provide automated longitudinal feedback
on the fluidity of anterior capsulotomy creation to a resident,
for example, identification of the start and end times of the
capsulorrhexis phase must be performed for hundreds of
surgical recordings. Fourth, surgical phase identification is
essential for the tracking of general metrics of surgical skill
(e.g., eye centration and operating microscope focus) to
assess their changes during various steps of surgery.
Accordingly, we sought to develop and validate a system
for automating the segmentation of raw ophthalmic surgical
video into its component steps or phases.

Although the use of machine learning (ML) models to
identify surgical phases has been attempted in various
forms, each approach has had limitations that would prevent
their application for the purposes described above. The
primary limitation among these prior efforts has been the
lack of automated detection of phase start and end times, in
favor of focusing on the more straightforward task of frame-
level classifications of surgical phase. The true segmentation
of raw video into component steps with a system that out-
puts phase start and end times is a necessary step toward
automating surgical phase-level analyses. Noise in frame-
level classifications makes the task of outputting phase
start and end times substantially harder than outputting
frame-level classifications alone.

A prior study by Yu et al,2 used human-defined phase
start and end times to analyze phase classification perfor-
mance of 5 ML models. Using a dataset of 100 cataract
surgery videos, the classifiers were trained to perform a
single-class classification among 10 surgical phases at the
frame level, with performance ranging from area under the
curve of 0.712 to 0.773 using 5-fold cross-validation. The
use of human-defined phase start and end times precluded
the calculation of phase-level segmentation performance
metrics.

In another study, Zisimopoulos et al3 trained a residual
neural network followed by a recurrent neural network
(RNN) to identify surgical phases with a training set of
25 cataract surgery videos, achieving a maximum
accuracy of 78% in frame-level classification. In a more
recent study, Garcia Nespolo et al4 trained a convolutional
neural network (CNN)-based model on 6 surgical videos to
identify 3 surgical phases as part of a larger resident
feedback system. Both studies were limited by small
datasets and the lack of phase-level start and end time
predictions.

Recently, work has also been reported on surgical phase
identification in nonophthalmic surgery. In a study by Sahu
et al5 from 2020, 80 laparoscopic surgery videos were used
to develop a 7-class surgical phase classifier. Their approach
utilized surgical tool data passed into a long short-term
memory-based architecture (ZIBNet), though again was
limited to frame-level predictions. In another study focusing
on laparoscopic surgery, Zhang et al6 created a 3-
dimensional convolutional neural network (3D-CNN)
combined with a sequence-to-sequence model capable of
calculating timestamp-based predictions for 5 phases.
However, frame-level performance was limited, with a
maximum F1-score of 0.74 across all architectures studied.
This translated into limited phase-level segmentation
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performance, with an event ratio (closer to 1 indicating
better performance) of 0.342.

In the present work, we describe the development and
validation of a system for automating the segmentation of
raw cataract surgery video into component phases. In this
work, we have attempted to overcome limitations of prior
efforts in 3 primary ways. First, we developed the largest
cataract surgery phase annotation dataset (BigCat), con-
taining nearly 4 million frames, reported to date. Second, we
attempted to improve classification performance through the
use of ML architectures capable of modeling both spatial
and temporal relationships in the data. In particular, we
investigated if inflation of 2-dimensional convolutional
networks into 3 dimensions would allow for the learning of
spatiotemporal feature extractors from video while
leveraging architectures and parameters successful in our
prior work on cataract surgical instrument identification.7

Third, we sought to more thoroughly analyze the phase-
level segmentation performance of our models and pro-
vide a sense of the direct applicability of these models to the
task of fully automated surgical phase segmentation from
raw surgical video.
Materials and Methods

Data Collection

Cataract surgical videos were collected at the University of
Michigan Kellogg Eye Center between 2020 and 2021. Institu-
tional review board approval was obtained for the study
(HUM00160950), and it was determined that informed consent
was not required because of its retrospective nature and the ano-
nymized data utilized in this study. The study was carried out in
accordance with the tenets of the Declaration of Helsinki. The
BigCat database was developed from the surgical videos gathered
and was described in detail previously.7 The BigCat database
consists of a fully annotated set of cataract surgeries performed
by attending surgeons at the University of Michigan Kellogg Eye
Center. For this study, femtosecond laser cataract surgeries and
complex cataract surgeries (those qualifying for Current
Procedural Terminology code 66982) were excluded so as to
ensure a standardized set of surgical phases. Cases with
incomplete recordings were also excluded. Segments from before
surgery and after surgery were trimmed, but video during
surgery was otherwise completely unedited. The source
resolution was 1920 � 1080 pixels at a frame rate of 30 frames
per second. A total of 208 videos were selected for annotation of
surgical phase ground truth (GT) for every frame. Eleven distinct
nonoverlapping surgical phases (listed in Table 1) were
annotated with a binary designation for each phase for each
frame. Phase annotations were performed (after training by NN)
by a third-party annotation services provider (Alegion Inc). All
phase annotations were validated manually by the research team
prior to inclusion in the dataset. One hundred ninety videos passed
annotation validation checks to ensure appropriate and complete
annotations for all available frames. Table S2 provides a
comparison of BigCat with other reported cataract surgery video
datasets.8e14

Data Processing

Videos were resized to 3 different resolutions (135 � 68, 240 �
135, and 480 � 270 pixels) to explore the tradeoffs among video



Table 1. Phases and Their Durations Within the BigCat Dataset

Phase
Average Time

Spent in Phase, s

Average Phase
Length as

Percentage of
Total Video

No Activity 74 11%
Paracentesis 11 2%
General Injection 51 8%
Main Wound 16 2%
Capsulorrhexis Initiation 25 4%
Capsulorrhexis Formation 38 5%
Hydrodissection 40 6%
Phacoemulsification 244 35%
Cortical Removal 88 13%
Lens Insertion 29 4%
Viscoelastic Removal 49 7%
Wound Closure 27 4%
Total 692 100%

Bolded values show the average total length of a surgical video.
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size, model training and inference time, and model phase recog-
nition performance. To improve the generalizability of the models
studied, input data were augmented by applying random trans-
formations, including rotations, shifts, shears, zooms, horizontal
flips, and rescales. Of the 190 videos that passed validation checks,
114 videos (2 282 382 frames) were allocated for training, 38
videos (838 005 frames) were allocated for validation, and 38
videos (826 266 frames) were held out for testing.

To construct the sequences of frames, or clips, to be used as
input to the 3D-CNN based inflated 3-dimensional (I3D) model, a
30-frame look-back window was taken before each frame, and the
stride of the look-back window was seen as a hyperparameter and
tuned.

Model Development

As mentioned above, the problem of phase identification was
defined at both the frame and phase level. Frame-level identifica-
tion was defined as the task of predicting the phase for a given
frame of surgical video utilizing only that frame or a sequence of
frames leading up to and including the frame in question. This task
could be considered a multi-class single-label classification task
with 12 possible classes, 11 active phases, and a “No Activity”
phase indicating the absence of active surgical activity. Phase-level
segmentation was defined as the task of identifying start and end
times for each of the 11 active cataract surgery phases listed in
Table 1 for a given complete raw surgical video.

The primary hypothesis guiding our approach to model devel-
opment for the aforementioned tasks was that both spatial and
temporal features are relevant for phase identification. This hy-
pothesis is founded on the knowledge that certain cataract surgery
instruments are present in multiple phases, including cannulas
(injections, hydrodissection, and wound closure) and the irrigation-
aspiration handpiece (cortical removal and viscoelastic removal).
Accordingly, it would be expected that instrument trajectories
through the surgical field would be valuable in distinguishing
phases with similar frame-level spatial characteristics. To test this
hypothesis, we developed a total of 4 model architectures for
frame-level identification. For phase-level segmentation, all archi-
tectures leveraged the “No Activity” label as a way to determine
phase start and end times.

The first algorithm considered consisted of a CNN, a dense
neural network (NN), and a softmax function. The CNN was used
to draw spatial patterns from the input images, whereas the dense
NNs were meant to make predictions on the input images.

The softmax mapped these predictions into a probability be-
tween 0 and 1. The output was a vector indicating the probabilities
that each of the 11 surgical phases were represented by the input
frame. The CNN used was the Densenet169 because of its densely
connected network, which mitigates the vanishing gradient prob-
lem and promotes feature reuse.5 Weights from ImageNet
pretraining were used to initialize the Densenet169 model. To
incorporate time dependencies and address smoothness of the
CNN predictions, our second approach involved the addition of a
recurrent neural network (RNN) on top of our CNN model. The
RNN implemented consisted of a fully connected Simple-RNN
followed by a dense NN layer and a softmax function.

To incorporate both temporal and spatial information into a
single model, a 3D-CNN was considered as our third architecture.
The 3D-CNN architecture was based on the I3D model.15 The I3D
approach applies an inflation process to a deep CNN allowing for
the learning of spatiotemporal feature extractors. In this process,
each individual filter in the CNN is inflated by duplicating the
weights of the filter and stacking them as a 3-dimensional filter.
We applied this inflation process to our pretrained phase detection
Densenet model to generate a 3D-CNN capable of learning directly
from video clips (Fig. 1). Data blocks were then generated from the
video frame data, with the third dimension of the block acting as
the time dimension. A single label was assigned to the block
using the value of the last frame in the 3D block. Frame rate,
image size, and number of frames per block were varied and tuned.

The fourth model considered was an ensemble combining the
Densenet and I3D models. The data pipeline for the ensemble
model is depicted in Figure 2. The input to the Densenet model was
a single frame of resolution 240 � 135, whereas the input to the
I3D model was a 30-frame clip of the same resolution, ending
with the same frame as the input to the Densenet model. This
design ensured that the frame label was consistent across both
inputs, enabling the consolidation of the output from each model
into a single ensemble model. The ensemble was constructed by
passing the output of the second to last layer of each model
(vectors of size 256) and a normalized frame number through a
fully connected NN. The fully connected network consisted of 2
layers with 128 and 32 nodes each. A grid search was performed to
optimize learning rate and clip frame rate. Learning rates of 1e-4,
5e-4, 1e-3, and 5e-3 and frame rates of 30, 15, 10, 5, 3, and 1 frame
per second were tested.

The trade-off between various model architectures’ perfor-
mance on the validation set and model complexity was quantified.
To speed up model development, only 25% of our training set (still
representing over 500 000 frames) was utilized during model se-
lection. Once the optimal model and hyperparameters were found,
we trained our final model with all available training data.

Phase Start and End Times

Because noise in frame-level phase predictions could lead to frag-
mentation of phase-level predictions, a mean filter was applied to the
predictions generated by each ML model for phase-level predictions.
A sliding window of 30 frames was utilized. All phases were
bounded between regions with “No Activity,” allowing for seg-
mentation of each phase and determination of start and end times.
Start and end times for each of the 11 active phases were determined
by first identifying and segmenting contiguous “Activity” phases. To
accomplish this, the frame-level predictions of “No Activity” from
each model were utilized. Every set of contiguous frames with a “No
Activity” label were considered as the boundaries for the “Activity”
phases. The regions containing activity were then assigned a label
corresponding to the most common label between the activity’s start
3
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Figure 1. Densenet inflation process, showing convolution layers expanded by adding an additional symmetric dimension (e.g., 7 � 7 to 7 � 7 � 7), that gets
filled by duplicating the weights across the additional dimension. Pooling layers are unaffected by the inflation operation (e.g., 3 � 3 to 1 � 3 � 3).
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and end time, as identified by the phase prediction model. If a
“No Activity” phase separated 2 activity phases with the same
predicted label, the 2 phases were treated as a contiguous phase
and collapsed into a single phase.

Model Evaluation

Model performance was evaluated using a wide range of metrics.
Frame-level prediction metrics included class accuracy, recall,
precision, F1-score, and area under the receiver operating charac-
teristic curve (AUROC). Class-level recall refers to the proportion
of instances within a specific surgical phase that the model
correctly classifies among all instances of that phase, providing
insight into the model’s ability to capture true positives for that
phase. Precision, on the other hand, denotes the fraction of in-
stances classified as a particular surgical phase that are actually
accurate, aiding in understanding the model’s capacity to minimize
false positives for that phase. The F1-score combines both preci-
sion and recall, offering a single metric that balances these 2
aspects and provides an overall assessment of the model’s frame-
level performance in identifying the surgical phases.

To assess a model’s phase-level segmentation performance
from a variety of different perspectives, 5 different metrics were
considered. The first 2 were the mean absolute error (MAE) and
median absolute error in the predicted start/end time of each phase
compared to the true start/end time of each phase. These metrics
4

provide a sense of the offset between predicted and GT phase
boundaries and are most relevant when a high level of accuracy in
human phase annotation is expected, as with BigCat.

The third phase-level metric considered was the Over-
Segmentation Score (SO). The Over-Segmentation Score mea-
sures the extent of overlap between GT and predicted segments.16

This score is a function of the predicted segment with a maximum
intersection over union for a given GT segment and is given by:

SOðG;PÞ ¼ 1
N

XN

i¼ 0

max

����
GiXPj

GiWPj

����

where G ¼ {G0 . Gi . GN} is the sequence of GT phases, and
P ¼ {P0 . Pj . PN}is the set of phase predictions. The Over-
Segmentation Score lies within [0, 1] and a higher value
indicates better performance. As the name indicates, this score
penalizes over-segmentation errors, in which there are multiple
predicted segments within 1 true segment.

The fourth phase-level metric considered was the segmental F1-
score (F1@k). The F1@k metric is calculated by first computing
the intersection over union for each predicted phase with respect to
its corresponding GT phase and subsequently using the given
intersection over union threshold, k, to determine whether each
predicted phase is considered a true positive or a false positive.17

Those GT phases without a corresponding prediction are
considered false negatives. The precision and recall with
threshold k are then computed by summing true positives, false
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positives, and false negatives across all classes. The F1@k is then
computed in the traditional manner from the summed precision and
recall determined using threshold k:

P@k ¼
PC

c¼1TPcPC
c¼1TPc þ

PC
c¼1FPc

R@k ¼
PC

c¼1TPcPC
c¼1TPc þ

PC
c¼1FNc

F1@k ¼ 2 � P@k � R@k

P@k þ R@k

The magnitude of the reduction in F1@k as k increases indicates
the degree of overlap between the predicted phases and the GT
phases. Smaller reductions in F1@k as k grows indicate greater
overlap.

The fifth phase-level metric considered was the segmental edit
score (SES). The SES measures how well a model predicts the
ordering of phases independent of slight time offsets.16,18

Specifically, the SES allows for the evaluation of
misclassifications, insertions, and deletions in phase predictions.
To compute the SES, an edit distance is first calculated by
identifying the minimum number of substitutions, deletions, and/
or insertions required to transform the sequence of predicted
phases (P) into the sequence of GT phases (G) using the
WagnereFischer algorithm. This edit distance is then normalized
by the greater sequence length among P and G. That is:

SES ¼ 1� seðG;PÞ ¼ 1� EditDistanceðG;PÞ
maxðjGj; jPjÞ

As with the Over-Segmentation Score and F1@k, the SES lies on
the interval [0, 1], and a higher score indicates better performance.
Table 3. Validation Metrics Comparing Performance of the
Densenet Model With Varying Input Resolution

Input
Resolution F1-Score Accuracy AUROC Precision Recall

120 � 68 0.85 0.98 0.91 0.86 0.83
240 � 135 0.90 0.99 0.94 0.91 0.91
480 � 270 0.91 0.99 0.94 0.91 0.89

AUROC ¼ area under the receiver operating characteristic curve.
Statistical Analysis

Differences in model performance on the validation set were
assessed using the Friedman test, followed by post hoc paired
Wilcoxon signed-rank tests with Bonferroni correction.

Implementation

Data pipelines and ML models were developed and tested in Py-
thon 3.8 with TensorFlow 2.2.0 and Keras 2.3.0. Testing, including
inference time measurements, was performed using a machine with
4 Nvidia RTX 2080 Ti Graphics Processing Units. For each test
run, we utilized 2 Graphics Processing Units to load the model,
load the testing data, and make inferences on the testing data.
Results

Dataset Characteristics

A final dataset consisting of annotated video recordings of
190 cataract surgeries performed at University of Michi-
gan’s Kellogg Eye Center was gathered. The source reso-
lution was 1920 � 1080 pixels at a frame rate of 30 frames
per second with a mean duration of 692 seconds and stan-
dard deviation of 161 seconds. As seen in Table 1, the
longest phase was phacoemulsification, taking 244
seconds or 35% of each surgery on average. The shortest
phase was paracentesis creation, taking approximately 11
seconds or just 2% of the total length of the procedure on
average.
Table 4. Validation Metrics for the Four Models Considered

Model F1-Score Accuracy AUROC Precision Recall

Densenet 0.90 0.99 0.94 0.911 0.89
RNN-densenet 0.88 0.99 0.94 0.85 0.85
I3D 0.91 0.99 0.94 0.91 0.91
I3D-densenet
ensemble

0.91 0.99 0.95 0.91 0.91

AUROC ¼ area under the receiver operating characteristic curve; I3D ¼
inflated 3-dimensional; RNN ¼ recurrent neural network.
Results were obtained using an input resolution of 240 � 135 pixels. Phase
start and end time errors were averaged across all activity phases considered.
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Table 5. Class-wise and Overall Validation F1-Scores for the Models Studied

Phase Densenet RNN-Densenet I3D I3D-Densenet Ensemble

No activity 0.83 0.76 0.81 0.83
Paracentesis 0.86 0.81 0.89 0.88
General injection 0.85 0.76 0.82 0.84
Main wound 0.91 0.86 0.89 0.91
Capsulorrhexis initiation 0.84 0.81 0.87 0.90
Capsulorrhexis completion 0.94 0.93 0.94 0.95
Hydrodissection 0.93 0.90 0.89 0.91
Phacoemulsification 0.99 0.98 0.99 0.99
Cortical removal 0.95 0.97 0.97 0.97
Lens insertion 0.91 0.90 0.88 0.90
Viscoelastic removal 0.96 0.92 0.95 0.96
Wound closure 0.87 0.87 0.89 0.91
Average 0.90 0.88 0.91 0.91

I3D ¼ inflated 3-dimensional; RNN ¼ recurrent neural network.
The highest-performing model or models for each phase are in bold.

Table 8. Final Model (Ensemble Model With Densenet169
Combined With I3D Model) Performance on Hold-Out Test Set

Metric
Final Model (CatStep)

Performance

Frame-Level Metrics
F1-score 0.91
Accuracy 0.99
AUROC 0.95
Precision 0.90
Recall 0.91

Phase-Level Metrics
Start Time MAE, MedAE (s) 2.3, 0.3
End Time MAE, MedAE (s) 1.6, 0.1
Over-segmentation score 0.89
F1@k

F1@50 0.95
F1@60 0.95
F1@70 0.94

Segmental edit score 0.92

AUROC ¼ area under the receiver operating characteristic curve; MAE ¼
mean absolute error; MedAE ¼ median absolute error.
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Model Performance

Varying image size appeared to have an impact on the
Densenet model’s performance, with validation F1-scores
rising from 0.85 to 0.91 when increasing input image res-
olution from 120 � 68 pixels to 480 � 270 pixels. Although
increasing input image resolution yielded higher perfor-
mance, there were diminishing returns (see Table 3). As
such, the 240 � 135 pixel resolution was selected as the
standard resolution across all models for further testing to
balance space constraints with performance.

All 4 of the models described in the model development
section demonstrated considerable frame-level phase clas-
sification F1-scores (0.88e0.91), accuracies (0.99e0.99),
and AUROC (0.94e0.95) on the validation set, as seen in
Table 4. However, the Densenet slightly outperformed both
the I3D model and the RNN-Densenet model overall. The
various models performed differently in identifying partic-
ular phases of surgery. Although the Densenet outperformed
the I3D model and RNN-Densenet on several phases, the
I3D model outperformed the Densenet and RNN-Densenet
in identifying capsulorrhexis initiation by 7%.

Class-wise frame-level classification performance is
summarized in Table 5.

The I3D-Densenet Ensemble model outperformed the
individual models (Table 4) and as such was chosen for
further development. The difference in performance
between the Ensemble and each of the other models was
statistically significant (see Table S6).

The I3D-Densenet Ensemble model exhibited a longer
training time of 0.054 seconds per instance, in comparison
to the Densenet (0.015 seconds per instance), Densenet-
RNN (0.015 seconds per instance), and I3D model (0.036
seconds per instance). Additionally, it demonstrated longer
inference times. The detailed training and inference times
can be found in Table S7.

After hyperparameter tuning, the optimized I3D-
Densenet Ensemble model was trained on both the
training and validation sets and termed CatStep. The Cat-
Step model was evaluated on a hold-out testing set, the re-
sults of which are presented in Table 8. The CatStep model
6

achieved an F1-score of 0.91, accuracy of 0.99, and an
AUROC of 0.95. The final model demonstrated strong
phase-level segmentation performance as well, with a start
time MAE of 2.3 seconds and end time MAE of 1.6 sec-
onds. Figure 3 depicts a representative surgical video’s
predicted phase segmentation compared with GT. The
CatStep model achieved an Over-Segmentation Score of
0.89, F1@50 of 0.95, and SES of 0.92.

Discussion

Automated segmentation of surgical phases is a crucial step
in the delivery of automated analysis of surgical perfor-
mance at scale. Systems seeking to provide surgical feed-
back to trainees or analyze performance for quality
assurance will require the ability to identify specific surgical
maneuvers for downstream analysis. The CatStep model
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Figure 3. Sample Gantt chart for the final ensemble (CatStep) model. The chart depicts ground truth (green) and predicted (blue) phase identities as time
progresses through the surgical video.
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reported here demonstrates state-of-the-art performance for
cataract surgical phase segmentation.

The BigCat dataset, employed in the training and eval-
uation of our models, offers an advantage over previously
utilized datasets because of its significant size (nearly 4
million frames of surgical video). The variety, deep anno-
tation, and careful curation of the BigCat dataset have likely
contributed to the improvements in performance in surgical
phase segmentation seen in this study.

In our study, the Densenet169 model demonstrated su-
perior performance when compared to the I3D and
CNNþRNN models on the majority of surgical phases.
However, exceptions were observed in capsulorrhexis
initiation and cortical removal, where the I3D model out-
performed the Densenet169 by 7% and 2%, respectively.
This discrepancy in performance may be attributed to the
I3D model’s inclusion of temporal features, which may aid
in differentiating between the movements of surgical in-
struments that are either present in other phases (irrigation-
aspiration handpiece) or spatially similar to other
instruments (cystotome). It appears that the predictions for
other phases are less reliant on temporal features and can be
accurately predicted using only spatial features, as indicated
by the Densenet169 model’s strong performance. However,
the Densenet was exposed to more individual instances of
the data compared to the I3D model as the Densenet
received individual frames rather than a sequence of 30
frames with a stride of 10 frames. Given that each model
demonstrated strong performance in predicting different
surgical phases, it was hypothesized that an Ensemble
model incorporating features from both models would yield
optimal results. This hypothesis was verified through the
development of an Ensemble model and its evaluation on
the validation set, where the Ensemble outperformed each
individual model. Although the Ensemble model exhibited
the highest performance, its processing time for videos was
approximately 3 times longer than that of the Densenet at
0.054 seconds per frame. Applications focusing on real-time
processing or deployment in resource-limited settings could
reasonably consider the lighter-weight models presented
here. Because the goal in this work was to optimize seg-
mentation performance so as to reliably enable downstream
analyses, however, the Ensemble model was selected as our
final model (and named CatStep). The CatStep model ach-
ieved an F1-score of 0.91 and an AUROC of 0.95 on the
hold-out testing set. These results demonstrate a significant
improvement in surgical phase segmentation compared to
previous studies. The AUROC of 0.95 of our CatStep model
surpasses that of the model proposed by Yu et al,2

which achieved an AUROC of 0.78 when trained on 100
cataract videos. The 0.99 accuracy in testing of CatStep
also outpaced the more complex residual neural
network þ RNN combination proposed by Zisimopoulos
et al,3 which achieved an accuracy of 0.78 in their study.

To examine the influence of spatial features on perfor-
mance, the Densenet was trained on multiple image reso-
lutions and performance of the models was assessed. The
Densenet trained on the highest resolution images (480 �
270) achieved a considerably higher F1-score (0.91) than
those utilizing downsampled images (0.90 for 240 � 135
and 0.85 for 120 � 68). This appears to indicate the
importance of spatial features in the identification and
7
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segmentation of phases. Although the 240 � 135 resolution
was ultimately chosen in this study to address space con-
straints, the results at higher resolution indicate a clear path
toward higher performance in settings in which computa-
tional resources are less of a consideration.

In this work, we sought to focus not just on frame-level
phase classifications but also phase-level segmentations.
Automating the analysis of surgical phases requires the
ability to predict start and end timestamps for each phase,
rather than simply predicting the identity of a single frame at
a time. Accordingly, we reported here several metrics on our
model’s phase-level prediction performance. CatStep ach-
ieved MAEs in phase start and end times of 2.3 seconds and
1.6 seconds, respectively. Median absolute error for phase
start and end times were just 0.3 seconds and 0.1 seconds,
respectively, indicating that outliers affected the MAEs. The
ability to predict phase start and end times within 1 second
of GT for the majority of cases indicates the applicability of
CatStep to surgical analysis automation.

The final CatStep model had a segmental edit score of
0.92, indicating high performance in correctly identifying
the relative ordering of phases. Furthermore, 31 out of 38
predicted surgical sequences in the testing set had � 1 in-
sertions or deletions, showcasing the high accuracy of the
8

model in predicting surgical sequences. The final model’s
Over-Segmentation Score of 0.89 indicates infrequent
fragmentation of phases. The segmental F1-score or F1@k
was also used to assess the final model’s performance on
accurately segmenting phase boundaries. The model ach-
ieved F1@k scores of 0.95, 0.95, and 0.94 for k thresholds
of 50, 60 and 70, respectively. The minimal reduction in F1-
score as the IoU threshold increased indicates that there was
a high degree of overlap between the predicted segmentation
of the phases and the true segmentation.

Limitations of this study include using surgical videos
from a single institution, although 9 different attending
surgeons with varying techniques, illumination preferences,
and instrumentation preferences were included in the data-
set. Because of the sheer quantity of labeled frames (nearly 4
million) as well as the general difficulty in specifying the
exact frame at which a phase transition occurs, a level of
uncertainty regarding human-generated phase labels is ex-
pected at phase boundaries. Furthermore, inclusion of
atypical cataract surgeries will help improve generalizability
to complex cases and varying surgeon training levels. Future
directions of this work will also include postsegmentation
processing and analysis of each surgical phase identified so
as to further expand systems for automated surgical analysis.
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