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Abstract

Recently, when studying folding of a SH3 domain, we discovered that the flows of transitions

between protein states can be surprisingly similar to turbulent fluid flows. This similarity was

not restricted by a vortex pattern of the flow fields but extended to a spatial correlation of

flow fluctuations, resulting, in particular, in the structure functions such as in the Kolmogorov

theory of homogeneous and isotropic turbulence. Here, we undertake a detailed analysis of

spatial distribution of folding flows and their similarity to turbulent fluid flows. Using molecular

dynamics simulations, we study folding of another benchmark system—Trp-cage minipro-

tein, which has different content of secondary structure elements and mechanism of folding.

Calculating the probability fluxes of transitions in a three-dimensional space of collective var-

iables, we have found that similar to the SH3 domain, the structure functions of the second

and third orders correspond to the Kolmogorov functions. The spatial distributions of the

probability fluxes are self-similar with a fractal dimension, and the fractal index decreases

toward the native state, indicating that the flow becomes more turbulent as the native state

is approached. We also show that the process of folding can be viewed as Brownian diffu-

sion in the space of probability fluxes. The diffusion coefficient plays a role of the key param-

eter that defines the structures functions, similar to the rate of dissipation of kinetic energy in

hydrodynamic turbulence. The obtained results, first, show that the very complex dynamics

of protein folding allows a simple characterization in terms of scaling and diffusion of proba-

bility fluxes, and, secondly, they suggest that the turbulence phenomena similar to hydrody-

namic turbulence are not specific of folding of a particular protein but are common to protein

folding.

Introduction

Protein folding and hydrodynamic turbulence are two challenging problems that attract atten-

tion of researchers for years. Turbulent motion of a fluid is a stochastic motion, which arises

due to the instability of the fluid flow at large Reynolds numbers, i.e., when the inertia of the

fluid motion dominates over viscosity [1–4]. Typically, the turbulent motion appears as a cas-

cade of eddies of various sizes. One example is when large eddies generated by external forces,

e.g., by the walls of the pipe through which the fluid flows, disintegrate into smaller eddies
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until the latter dissipate due to viscosity (the Richardson cascade [5]). In contrast to the fluid,

which is a collection a large number of atoms (* 1024) and thus can be described in the mac-

roscopic terms such as the average velocity, density, etc., a protein is a system of finite size,

which can be as small as of * 103 atoms, and thus requires the description on atomic level.

Synthesized on the ribosome as a chain of amino acid residues, a protein folds into a compact

functional (native) state. The process of folding is typically very complex, with a variety of fold-

ing pathways and metastable states [6–11]. One essential feature of protein folding that makes

it similar to hydrodynamic turbulence [1–5] is that the process of folding is inherently a cas-

cade process—in the present case, in the form of sequential rearrangement of the protein

structure from an unfolded state to the native state. The cascade nature of the process is also

characteristic of the other known types of turbulence—the wave [12], market [13] and super-

fluid [14] turbulence (see, also, a discussion of the cascades in the latter case [15]).

A detailed analysis of similarity between protein folding and hydrodynamic turbulence

becomes possible if, instead of evolution of protein structure in the multidimensional (all-

atom) conformational space, we consider probability fluxes of transitions between characteris-

tic states of the protein in a reduced space of collective variables. Such is a recently proposed

hydrodynamic description of protein folding [16]. The purpose of that approach was to gain a

closer insight into folding dynamics, because typically employed free energy surfaces (FESs)

display only the probability for the protein to be in a current state but do not show the direc-

tion in which the protein proceeds (folds, unfolds, or dwells in the current state). The process

of “first-passage folding”, i.e., when the folding trajectories are initiated in a unfolded state of

the protein and terminated upon reaching the native state, is of particular interest because it

corresponds to physiological conditions when the native state is stable and unfolding events

are improbable [17]. Having the probability fluxes, the process of first-passage folding can be

viewed as a stationary flow of a “folding fluid” from an unfolded state of the protein to its

native state, with the density of the fluid being proportional to the probability for the system to

be in the current state. The analysis of the first-passage folding of several model proteins (an

α-helical hairpin [16], a SH3 domain [18, 19], and beta3s [17, 20, 21] and 2evq [22] minipro-

teins) has shown that the folding flows do not generally follow the FESs and typically contain

vortices that remind eddies in turbulent flows. To see how the protein folding flows are close

to turbulent fluid flows, the folding flows of SH3 domain were characterized in terms accepted

in hydrodynamic turbulence [19]. Specifically, there were calculated so called structure func-

tions, which represent velocity space correlation functions [2], or, more exactly, flux space cor-

relation functions, because the folding fluid is highly “compressible” [19]. According to the

Kolmogorov theory of isotropic and homogeneous turbulence (K41) [23, 24], the fluctuations

of the flow velocities scale with the space increment l as l1/3, so that the structure functions of

the second and third order vary as l2/3 and l, respectively. Very surprisingly, it was found that

the corresponding structure functions for folding flows of SH3 domain reveal exactly the same

dependence on the increment in the inter-residue contact space [19].

These results for SH3 domain lead to a natural question of how such turbulence phenom-

ena are common to protein folding. To see that, we consider another benchmark system—the

Trp-cage miniprotein [25–32], whose secondary structure content and mechanism of folding

are essentially different from those for SH3 domain. In particular, the kinetics of Trp-cage

folding are single-exponential, while folding kinetics of SH3 domain were double-exponential,

and the turbulent flow was observed only for slow folding trajectories [19]. Also, we employ an

essentially different approach to study the Trp-cage folding: First, the molecular dynamics

(MD) simulations are performed using an all-atom model (CHARMM program [33]), while

for the SH3 domain a coarse-grained representation of the protein was used, in which the

amino acid residues were considered as monomers placed on positions of Cα-atoms in the
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protein chain (Cα-model) [19]. Secondly, the collective variables are determined with a princi-

pal component analysis (PCA) method [34], while in the case of SH3 domain they were repre-

sented by weakly dependent groups of native contacts, which were considered as “physically”

orthogonal variables [19]. We find that despite such a difference between these proteins and

their characterization, the structure functions of the second and third orders for the Trp-cage

follow the Kolmogorov scaling for isotropic and homogeneous turbulence, similar to those in

the case of SH3 domain. Further, we show that the time-rate of change of the variance of fold-

ing fluxes is approximately constant in the dominant interval of times, so that it can be consid-

ered as a key parameter to characterize folding flows, similar to the rate of energy dissipation

in hydrodynamic turbulence. Accordingly, the process of protein folding can be viewed as

Brownian diffusion in the space of probability fluxes. Finally, we show that the folding flows

are self-similar with a fractal dimension, and the fractal index decreases as the native state is

approached.

The paper is organized as follows. The next section briefly describes the protein model, the

simulation technique, the methods we used to characterize the folding process, and a general

picture of Trp-cage folding (for more details see [32]). The subsequent section presents the

results and their discussion. The last section contains concluding remarks.

Folding of Trp-cage miniprotein

System and simulation method

Trp-cage is a 20-residue miniprotein (Asn1-Leu2-Tyr3-Ile4-Gln5-Trp6-Leu7-Lys8-Asp9-

Gly10-Gly11-Pro12-Ser13-Ser14-Gly15-Arg16-Pro17-Pro18-Pro19-Ser20; 1L2Y.pdb) [25]. It

consists of a N-terminal α-helix (residues 2-8), a 310-helix (residues 11-14), and a C-terminal

polyproline II (PPII) helix (residues 17-19), which form a hydrophobic core with the Trp6 bur-

ied in the center (Fig 1). The interactions between Tyr3, Trp6, Gly11, Pro12, Pro18, and Pro19

lead to formation of the Trp-cage fold. To perform MD simulations, the CHARMM program

[33] was employed. All heavy atoms and the hydrogen atoms bound to nitrogen or oxygen

atoms were considered explicitly; PARAM19 force field [35] and a default cutoff of 7.5Å for

the nonbonding interactions were used. To take into account the main effects of the aqueous

solvent, a meanfield approximation based on the solvent-accessible surface (SAS) [36] was

employed. The simulations were performed with the time step of 2 fs using the Berendsen

thermostat (coupling constant of 5 ps) [37]. Although such an approach overestimates folding

rates, mostly because of the absence of the friction of protein atoms against the solvent, the rel-

ative rates of formation of secondary structural elements are comparable to the values observed

in experiment; i.e., α-helices fold in about 1 ns and β-hairpins in about 10 ns [38] compared to

experimental values of * 0.1μs and * 1μs [39], respectively.

The folding trajectories were initiated in unfolded states of the protein and terminated

upon reaching the native state. The unfolded states were prepared using the standard

CHARMM protocol [33]; i.e., an extended conformation of the protein was first minimized

(200 steps of the steepest descent followed by 300 steps of the conjugate gradient algorithm)

and then heated to T = 300K and equilibrated for 5 × 103 time steps. A native contact was

assumed to be formed if the distance between the Cα-atoms in the residues which are not

neighbors in the sequence is less than 6.5Å in all NMR structures [25], which resulted in 35

native contacts. The simulations were conducted for T = 300K; at this temperature, the mean

first-passage time (MFPT) was minimal and equal to� 36ns, which is in good agreement with

the experimental time (4.1μs [26]), if to take into account that the simulations with implicit

solvent overestimate the rate of formation of secondary structure elements by� 102 times.
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There were simulated 100 folding trajectories. Protein conformations (“frames”) were stored

each 20 ps, which resulted in 229420 conformations in total.

Conformation space and collective variables

To characterize protein conformations, the distances between Cα-atoms in the residues that

formed native contacts were used. This space of the distances was then transformed to a space

of orthogonal collective variables using the PCA method [34]. It was found that the first three

eigenvalues were well separated from the others and captured� 29%,� 21% and� 19% of the

data variation, which resulted in� 69% of information in total. The eigenvectors correspond-

ing to these modes were chosen to form a three-dimensional (3D) space of collective variables

g = (g1, g2, g3). To determine a two-dimensional (2D) space of variables, G = (G1, G2), the vari-

able G1 was chosen as g1, and the variable G2 was determined as a sum of the second and third

eigenvectors weighted according to their eigenvalues, similar to Ref. [22]. Since the collective

variables are linear combinations of the original variables (distances), they are measured in the

same units as the latter, specifically, in angstroms.

Fig 1. The native structure of the Trp-cage miniprotein (1L2Y.pdb) in a ribbon representation. The

Trp6 residue is shown in blue sticks.

https://doi.org/10.1371/journal.pone.0188659.g001
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Probability fluxes

The probability fluxes, determining the local rates of transitions between protein states in the g

space, were calculated according to the hydrodynamic description of protein folding [16]. In

the case of the 3D space of collective variables, the g1-component of the flux j(g) was calculated

as

jg1
ðgÞ ¼ ½

Xg00
1
� g0

1
>0

g0 ;g00ðg�g�Þ

nðg00; g0Þ �
Xg00

1
� g0

1
<0

g0;g00ðg�g�Þ

nðg00; g0Þ�=ðM�t fDg2Dg3Þ ð1Þ

where M is the total number of simulated trajectories, �t f is the MFPT, n(g0 0, g0) is the number

of transitions from state g0 to g0 0, and g� g� is a symbolic designation of the condition that the

transitions included in the sum have the straight line connecting points g0 to g0 0, which crosses

the plane g1 = const within the elementary cell Δg2 × Δg3 centered at the point g. The g2 and g3

components of j(g) are determined in a similar way, except that one selects the transitions

crossing the planes g2 = const and g3 = const within the cells Δg1 × Δg3 and Δg1 × Δg2, respec-

tively. In the case of the 2D space, the planes and elementary cells are replaced with the lines

and elementary segments along these lines, respectively. The calculations were performed on a

grid with discretization Δg1 = Δg2 = Δg3 = 1Å. In what follows, distances and times will be mea-

sured in angstroms and microseconds, respectively.

Visualization of the streamlines

To visualize the streamlines in the 3D space of variables, g = (g1, g2, g3), we used passive tracers.

Starting from various points of the g space, there was solved the equation

dg
dt
¼ jðgÞ ð2Þ

where j(g) is determined by Eq (1), and τ is a parameter (“time”). To calculate intermediate

values of j(g), an algorithm of linear interpolation between the neighboring points [40] was

used.

In the case of the 2D space of variables, G = (G1, G2), the streamlines can be calculated as

the lines corresponding to constant values of the stream function [2]

CðG1;G2Þ ¼

Z G0
2
¼G2

G0
2
¼0

JG1
ðG1;G

0

2
ÞdG0

2 ð3Þ

where J(G) is the probability flux in the 2D space. Then, two streamlines that satisfy the equa-

tions C(G1, G2) = C1 and C(G1, G2) = C2, where the constant C1 and C2 obey the condition C2

> C1, create a stream tube which contains the (C2 − C1)/P fraction of the total flow

P ¼
R

JG1
ðG1;G02ÞdG0

2
.

General picture of Trp-cage folding

As has been indicated in the Introduction, the process of first-passage folding, which we con-

sider in the present paper, can be viewed as a stationary flow of a folding fluid from an

unfolded state of the protein to its native state. Fig 2a and 2b show the general picture of the

flow field—the vector flow field and the folding trajectories in the form of passive tracers,

respectively. The common understanding of the process of folding of Trp-cage is that it can

fold trough one of two (or through both) characteristic folding pathways [28–32]: in one path-

way (I), the collapse of the hydrophobic core precedes the formation of the α-helix, and in the
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other pathway (II), the α-helix forms first. Fig 3a and 3b show the streamlines of the folding

flow superimposed, respectively, on the FES and the distribution of flow vorticity. To make the

vortex picture of the flow field clearer, Fig 3c also presents the folding trajectories in the form

of passive tracers. The free energy was calculated as

FðGÞ ¼ � kBT lnpðGÞ ð4Þ

where p(G) is the probability for the system to be found at the point G = (G1, G2) and kB is the

Fig 2. Three-dimensional flow field of the Trp-cage folding. Panel (a) shows the vector flow field, and

panel (b) depicts the folding trajectories in the form of passive tracers (for illustration purpose, twenty

randomly selected trajectories were chosen). Folding trajectories are initiated in the region of unfolded states

(g1� 12.0, g2� 14.0, g3� 7.0) and terminated in the native state (g1� 65.5, g2� 14.8, g3� 38.1).

https://doi.org/10.1371/journal.pone.0188659.g002
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Fig 3. Two-dimensional flow field. Streamlines of the folding flows superimposed on (a) the free energy

surface and (b) the vorticity distribution, and (c) folding trajectories in the form of passive tracers. The

negative vorticity corresponds to a clockwise motion, and the positive vorticity to an anti-clockwise motion.

Figures at the streamlines denote the fractions of the total folding flow restricted by the current streamlines.

The lowest stream tube (up to 0.1 traction of the total flow) represents pathway II, and the other stream tubes

correspond to pathway I. The color scale bars at panels (a) and (b) show, respectively, the levels of the free

energy and vorticity.

https://doi.org/10.1371/journal.pone.0188659.g003
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Boltzmann constant, and the vorticity was calculated as

oðGÞ ¼ @JG2
=@G1 � @JG1

=@G2 ð5Þ

The streamlines, which divide the total folding flow from the unfolded to the native state into

stream tubes, show that approximately 90% of the flow follow pathway I, in agreement with

the previous MD simulation studies at T = 300K [28, 31]. The flow in this pathway is well

directed to the native state and filled with small vortices which do not effect the general direc-

tions of the flow. In contrast, the flow in pathway II, which accounts just for 10% of the total

flow, is much more complex. In particular, it contains a set of relatively large opposite-directed

vortices in the region adjacent to the native state. As the previous study has shown [32], the

clockwise vortices surrounding the group of anti-clockwise vortices that is centered at G1� 63

and G2� 22 form a large clockwise vortex. It is created due to a repeated partial unfolding of

native-like conformations to the conformations that have a partly unformed α-helix and bro-

ken alignment of the α- and PPII-helices, which is followed by the return of the protein to a

native-like state. The smaller, opposite-directed vortices within this, larger vortex, correspond

to less significant changes in the protein structure; here, the rearrangements are mostly

restricted to a partial forming/unforming the α-helix. The present complexity of the folding

flows in pathway II does not lead to a considerable deviation from two-state kinetics; the distri-

bution of the first-passage times remains essentially single-exponential (Fig 4). We note that

the appearance of vortices in the flow field is not surprising [21, 41] because the condition of

stationary flow (in the present case, from the source to the sink) Δ � J = 0 does not rule out the

presence of a curl-component in J [42]. Such whirling flows are characterized by “irreversible

circulation” or “cyclic balance”, which determine the degree of deviation from detailed balance

[43–45].

Fig 4. Cumulative distribution of the first-passage times. The labels correspond to the simulation results,

and the dashed line is the best-fit exponential approximation with the waiting time� 0.036μs.

https://doi.org/10.1371/journal.pone.0188659.g004
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Results and discussion

In contrast to classical hydrodynamic turbulence, which considers an incompressible fluid

[1–4], the folding fluid is highly “compressible” because the probability for the system to visit

different points of conformation space, which plays a role of the density of the folding fluid,

varies by several order of magnitude (see Eq (4) and Fig 3a). Therefore, to characterize the

folding flow field, the probability fluxes are more suitable than the velocities [19]. This is

related not only to turbulence phenomena but also to a general description of the folding

flows. In particular, according to the Helmholtz decomposition theorem, a natural separation

of the folding flow field into a curl-free and divergence-free vector fields is allowed, which

results in a two-component potential of the driving force of protein folding [22].

We start with the study of the space distribution of folding fluxes depending on the scale of

spatial coarse-graining. As has been previously shown for SH3 domain [19] and beta3s mini-

protein [20], although the folding flow field is far from uniform (Fig 2), the distribution of

folding flows possesses a well pronounced property of self-similarity. To see if the fluxes for

Trp-cage are also self-similar, and to determine the self-similarity index, we calculated the

function GkðLÞ ¼< jJgk;L
j=�jgk

>, where |Jgk,L| is the absolute value of gk component of the flow

through the square of linear size L,�jgk
¼ ð
PM

1
j2
gk;i
=MÞ1=2

is the average flux in gk-direction

through the elementary square, M is the number of elementary squares the square of size L
covers, and the angular brackets denote the averaging over the gk = const cross-sections of the

g = (g1, g2, g3) space. The linear size L is measured in units of the elementary square linear size

equal to 1Å. The maximum value of L was chosen to be not larger than 5Å, because the flow

field is very narrow in the g2 direction; it varies from� 5Åat small values of g1 to� 20Åat

large g1 values (Fig 2). Fig 5a–5c presents the results. In each panel, the values of Gk(L) are

shown for regions of conformation space that gradually shift from the unfolded to the native

state along the g1 coordinate. Specifically, the triangles-up correspond to 10< g1� 30, trian-

gles-down to 30 < g1� 50, and circles to 50< g1� 70. The lines show the corresponding best-

fits of the data to the equation Gk(L) * LDk. It is seen that for all directions (k = 1, 2, 3), the

flow space distributions are self-similar, and the values of Dk vary between approximately 0.7

and 1.4, i.e., the distributions are fractal [46]. Also, as the native state is approached, the fractal

index decreases, indicating that the flow deviates from a uniform flow, for which D = 2, more

and more. These results are in line with the previous studies of folding of SH3 domain [19]

and beta3s miniprotein [17], where Dk decreased from� 1.5 to� 0.7 toward the native state.

Let us now turn to the structure functions. Specifically, we consider the conventional longi-

tudinal functions [1–4, 23, 24], in which the increment of the flux between two points is pro-

jected on the line connecting these points. The second-order structure function is defined as

CllðlÞ ¼ hdjjjðlÞ
2
i ð6Þ

and the third-order function as

ClllðlÞ ¼ hdjjjðlÞ
3
i ð7Þ

Here

djjjðlÞ ¼ ½jðgþ lÞ � jðgÞ� � l=l ð8Þ

where l is the increment in the g space, and the angular brackets denote ensemble averages.

Fig 6a and 6b shows the calculated structure functions. It is seen that there is a range of space

increments, approximately 30< l< 55, where the functions scale with l as the Kolmogorov

(K41) theory for isotropic and homogeneous turbulence [23, 24] predicts for the inertial
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Fig 5. The functions Gk(L) representing the k-components of the flow depending on the scale of

coarse-graining L. Panels (a), (b) and (c) are for k = 1, 2 and 3, respectively. Triangles-up correspond to the

region of conformation space 10 < g1� 30, triangles-down to 30 < g1� 50, and circles to 50 < g1� 70. The

lines show the best-fits of the data to the equation Gk(L) * LDk.

https://doi.org/10.1371/journal.pone.0188659.g005
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Fig 6. Structure functions of (a) the second and (b) third orders. The dished lines in panels (a) and (b)

represent the functions Cll * l 2/3 and Clll * l, respectively.

https://doi.org/10.1371/journal.pone.0188659.g006
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interval of scales, i.e., Cll(l) * l2/3 and Clll(l) * l. The lower bound of this range is considerably

larger than the characteristic distance on which the inter-residue contacts form and break (the

nonbonding interaction cutoff is 7.5Å), and the upper bound is smaller than the length of the

unfolded protein chain (� 70Å), which determines the overall size of the flow field (Fig 2).

Therefore, similar to the inertial interval of scales in hydrodynamic turbulence, the only dis-

tance on which the flow increments essentially depend within the present range is the current

space increment l.
According to the K41, the time-rate of change of the kinetic energy of fluctuations per unit

mass �hd = de/dt is finite and constant in the inertial interval of scales, and thus it plays a role

of the key parameter that determines the behavior of flow fluctuations on these scales. Then,

the dimension analysis gives δv * (�hd l)1/3 [23, 24]. The kinetic energy of flow fluctuations

per unit mass is e ¼ ð
P

mv2
i =2Þ=M, where m is the molecular mass, vi is the fluid velocity in

i point of the space volume the fluid fills, and M is the mass of the fluid. It can be rewritten as

e ¼ ð
P

mv2
i =2Þ=ðmnVÞ ¼ ð

P
v2

i =2Þ=ðnVÞ ¼ n� 3ð
P

j2
i =2Þ=V ¼ n� 3s2=2, where V is the

space volume, n is the (numerical) density of the fluid, ji = nvi is the fluid flux, and σ2 is the var-

iance of the fluxes per unit volume. This suggests that in the case of protein folding, or more

generally, in the case of compressible fluid, the time-rate of change of the variance of fluxes per

unit volume �pf ¼ ds2
pf=dt, where s2

pf ¼ h½jðgÞ � hjðgÞi�
2
=Vi, plays a role of the key parameter,

similar to �hd in hydrodynamic turbulence. Accordingly, the relation δv * (�hdl)1/3 transforms

into δj * (�pfl)1/3, indicating that the flux distribution is self-similar with respect to the space

increment. To perform its function, �pf should be constant. To see if this is true, we calculated

the time-dependent variance of the fluxes

Ds2
pfðDtÞ ¼ hs2

pfðt þ DtÞ � s2
pfðtÞit ð9Þ

where

s2
pfðtÞ ¼ hfj½gðtÞ� � hj½gðtÞ�igg

2
ig=VðtÞ ð10Þ

is the variance of the fluxes per unit volume at time τ, Δt is the time increment, j[g(τ)] is the

space distribution of fluxes at time τ, V(τ) is the volume of the g-space the system occupies at

time τ, and the angular brackets denote ensemble averages over time and conformation space,

which are indicated, respectively, by indices t and g at the brackets. The calculations presented

in Fig 7 show that for the dominant interval of times, where statistics are not too poor (specifi-

cally at Δt< 0.11μs, which covers� 95% of folding trajectories; see Fig 4), Ds2
pfðDtÞ changes

with Δt essentially linearly. We thus find that the time-rate of change of s2
pf is approximately

constant in the course of Trp-cage folding, so that the quantity �pf ¼ ds2
pf=dt can be considered

as a key parameter for the folding process, similar to the time-rate of change of the kinetic

energy per unit mass in hydrodynamic turbulence �hd. Accordingly, the structure functions

Cll(l) [Eq (6)] and Clll(l) [Eq (7)] are written as

CllðlÞ � ð�pf lÞ
2=3

ð11Þ

and

ClllðlÞ � �pf l ð12Þ

in agreement with their scaling in Fig 6. The Fourier transform of Cll(l) gives the “variance

spectrum” Sk � �
2=3

pf k� 5=3, where k is the wave number, which is similar to the famous Kolmo-

gorov spectrum Ek � �
2=3

hd k� 5=3 for the energy cascade in hydrodynamic turbulence [23, 24].
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The linear change of s2
pf with time (Fig 7) suggests that the process of protein folding can

be considered as Brownian diffusion in the space of folding fluxes j(g) against the drift flow

hj[g(t)]ig. The diffusion coefficient is determined as ðds2
pf=dtÞ=6 (e.g., [47]), or �pf/6. Accord-

ingly, the above discussed condition of the constant rate of change of the variance of folding

fluxes, which underlies the observed flux scaling, can be restated in more general terms, i.e., as

a requirement that the folding fluxes should represent Brownian diffusion with the diffusion

coefficient equal to �pf/6.

The third-order structure function Clll(l) in Fig 6b is negative. In hydrodynamic turbulence,

this corresponds to a direct (Richardson [5]) cascade of eddies, in which large-scale eddies

generated by outer forces disintegrate into smaller eddies until the latter dissipate due to vis-

cosity. In more general terms, the negative value of the Clll(l) can be associated with the transi-

tion from a well-organized (large scale) motion to a stochastic (small scale) motion, as

schematically illustrated in Fig 8. As can be seen from this figure, irrespective of whether the

initial point is taken in the region of well-directed flow and the terminal point is chosen in the

stochastic flow region, or vise versa, the “longitudinal” increment of the flow δj||(l) given by

Eq (8) will be negative, and, thus the function Clll(l) will also be negative [Eq (7)].

Both the function Gk(L) (Fig 5a–5c) and the structure functions Cll(l) and Clll(l) (Fig 6a and

6b) reveal that the folding flows are self-similar. At the same time, their self-similarities are dif-

ferent in that the Gk(L) displays a “transversal” self-similarity of the flow distributions, and the

structure functions show a “longitudinal” self-similarity. It is thus of interest to see how, and if,

the “transversal” and “longitudinal” self-similarities are consistent with each other. Since the

flow through a region of size L scales with L as J(L) * LD (Fig 5), and the total volume V
remains the same at different L, �pfðLÞ ¼ ds2

pfðLÞ=dt � JðLÞ2=T � L2D=T3, where T stands for

Fig 7. Time-dependent variance of the probability fluxes. The dashed line is the best-fit of the data for

Δt < 0.11μs to a linear equation. To have Ds2
pf in the same value scale with the structure functions, the volume

V(τ) in Eq (10) was taken as a fraction of the maximum volume (� 12.2 × 103 Å3).

https://doi.org/10.1371/journal.pone.0188659.g007
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Fig 8. Schematic representation of the transition from a directed flow to a stochastic flow.

https://doi.org/10.1371/journal.pone.0188659.g008

Fig 9. Prefactors All and Alll determining the structure function scaling with the coarse-graining

length L. Triangles-down and triangles-up are for the structures of the second and third orders,

respectively. The dashed and dash-dot lines represent the best-fits of All and Alll to the equations All * LDll and

Alll * LDlll (Dll� 1.45 and Dlll� 3.0).

https://doi.org/10.1371/journal.pone.0188659.g009
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time. Then, according to Eqs (11) and (12), the second-order structure function should scale

with L as Cll(l, L) = All(L)Cll(l, L0), where All(L) * L2D, and the third-order structure function

as Clll(l, L) = Alll(L)Clll(l, L0), where Alll(L) * L3D (L0 = 1Å). The calculated relations (Fig 9)

show that the exponents in these equations are D� 0.73 and D� 1 for the second- and third-

order structure functions, respectively, which are within the range of variation of the fractal

index in Fig 5a–5c (D = 0.7–1.4). Also, these values of D correspond better to the region adja-

cent to the native state, where folding flow is more turbulent.

Conclusions

Turbulent behavior of protein folding flows was first observed when folding of a SH3 domain

was studied [19]. Most surprising was that the folding fluxes in the space of collective variables

scaled with the space increment similar to the fluid velocities in the Kolmogorov (K41) theory

of isotropic and homogeneous turbulence [23, 24]. In the present paper, to see whether such

similarity between folding flows and turbulent fluid flows is specific of the SH3 domain or may

be common to proteins, we consider another benchmark system—Trp-cage miniprotein. We

have studied its folding in detail recently [32] and found the results in good general agreement

with the previous works [25–31]. The Trp-cage miniprotein differs from the SH3 domain

essentially, both in the structure and mechanism of folding. In particular, kinetics of Trp-cage

folding are single-exponential, while for SH3 domain we had double-exponential kinetics, and

turbulence was observed only for slow folding trajectories [19]. Further, the approaches to sim-

ulate and characterize the folding process are different. The simulations of Trp-cage folding

are performed using an all-atom model (CHARMM program [33]), while for the SH3 domain

a coarse-grained representation of the protein was used in the form of Cα-model [19]. Also, in

the present case, the collective variables are determined with a PCA method, whereas in the

case of SH3 domain they were represented by weakly dependent groups of native contacts

[19]. Despite such a considerable difference between the SH3 domain and Trp-cage minipro-

tein cases, we have found that the structure functions of the second and third orders for the

Trp-cage folding follow the Kolmogorov scaling similar to what was observed for the SH3

domain, i.e., Cll(l) * l2/3 and Clll(l) * l, where l is the increment in the space of collective vari-

ables. In contrast to classical hydrodynamic turbulence, which considers an incompressible

fluid, and thus uses fluid velocities to characterize the flow, we employ flow fluxes because

folding fluid is very compressible. In this characterization, the variance of folding fluxes per

unit volume s2
pfðgÞ, where g is the point in the three dimensional space of collective variables,

plays a role of the kinetic energy of fluctuation per unit mass in hydrodynamic turbulence.

The calculation of s2
pf as a function of time has shown that it varies with time essentially line-

arly, so that the quantity �pf ¼ ds2
pf=dt represents the key parameter to characterize the folding

flows, similar to the time-rate of change of the kinetic energy per unit mass in hydrodynamic

turbulence. In more general terms, the process of protein folding in the space of probability

fluxes represents Brownian diffusion (against the drift flow) with the diffusion coefficient

equal to �pf/6. The analysis of the probability flux distribution scaling with the size of coarse-

graining of the conformational space has also shown that the distributions are self-similar with

a fractal dimension, and the fractal index decreases toward the native state, indicating that the

flow becomes more turbulent as the native state is approached.

The obtained results, first, show that the very complex dynamics of protein folding allows a

simple characterization in terms of scaling and diffusion of probability fluxes, and, secondly,

they suggest that the turbulence phenomena similar to hydrodynamic turbulence are not spe-

cific of folding of a particular protein but are common to protein folding.
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