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Abstract: Antibiotic efficacy determination in clinical trials often relies on non-inferiority designs
because they afford smaller study sample sizes. These efficacy studies tend to exclude patients
within specific populations or include too few patients to discern potential differences in their clinical
outcomes. As a result, dosing guidance in patients with abnormal liver and kidney function, age
across the lifespan, and other specific populations relies on drug exposure-matching. The underlying
assumption for exposure-matching is that the disease course and the response to the antibiotic are
similar in patients with and without the specific condition. While this may not be the case, clinical
efficacy studies are underpowered to ensure this is true. The current paper provides an integrative
review of the current approach to dose selection in specific populations. We review existing clinical
trial endpoints that could be measured on a more continuous rather than a discrete scale to better
inform exposure–response relationships. The inclusion of newer systemic biomarkers of efficacy can
help overcome the current limitations. We use a modeling and simulation exercise to illustrate how
an efficacy biomarker can inform dose selection better. Studies that inform response-matching rather
than exposure-matching only are needed to improve dose selection in specific populations.

Keywords: special populations; pharmacokinetics; antimicrobials; exposure–response; modeling;
simulation

1. Introduction

Antimicrobial drug development faces numerous challenges that extend beyond
fundamental limitations in discovery platforms [1]. Potential lead compounds advance
through multiple hurdles to reach the final stage of development, which is to establish
their efficacy often based on a fixed or weight-based dose that may be adjusted for kidney
function. The current approach relies on two well-orchestrated phase 3 clinical trials
to make this efficacy determination. Phase 3 clinical trials performed in patients with
infectious diseases, especially antibacterial agents, include hundreds of patients and employ
non-inferiority designs. For instance, a recently published phase 3 study randomized
145 patients to the intervention arm (cefiderocol) and 147 patients to the comparator
(meropenem) [2]. At face value, these numbers are an order of magnitude lower than those
of agents approved for other indications, such as cardiovascular disease [3]. However,
the execution of this study required the participation of 76 centers in 17 countries, and
took several years to complete [2]. This case exemplifies the high cost and complexity of
advancing novel antibiotics to the marketplace. Alternate models for regulatory approval
include creating a case for lower quantities of clinical efficacy data to support this unmet
medical need [4,5]. These range from the acceptance of preclinical data to combinations of
a single phase 3 study that is coupled or uncoupled to multiple smaller, pathogen-focused
clinical studies [6].

Many questions remain to be answered to ease the tension between staying with
the current paradigm or migrating to a new antibiotic drug development approach. A
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key question that raises debate is, “How confident are we that the information gained
from 500 (as an example) patients in a clinical trial environment justifies use in millions of
patients?” We currently make the assumption that the efficacy established in two phase 3
clinical trials is sufficient justification [7]. Reliance on less stringent clinical trial data would
therefore be perceived as an approach that could lower this confidence. Regulators are
acutely aware of this problem and have launched programs to bridge this translational
gap [8]. Model-informed drug development is one such approach that works to build
exposure–response relationships that integrate data from preclinical and clinical sources [8].
Antimicrobial drug development in particular has benefited from this approach, by trans-
lating pharmacokinetic–pharmacodynamic relationships established in vitro and/or in
animal models to clinical studies. As with any model, validation is necessary but chal-
lenging to perform across the entire end-use clinical population. As noted above, the
small total clinical trial sample size leads to an even smaller proportion of individuals
within specific populations. Specific populations recognized by regulatory agencies when
defining antimicrobial labels include age (pediatric, geriatric), pregnancy and lactation,
gender, renal impairment, and hepatic impairment [9]. At present, the acceptance of the
drug dosing strategy in these specific populations relies on the assumption that exposure-
matching will lead to comparable outcomes. For example, achieving a comparable systemic
area under the curve (AUC) in elderly patients to those that are young should lead to
comparable outcomes. Likewise, ensuring comparable AUC/MIC values accounts for
the pathogen and not potential differences in host response. However, we have multiple
case examples where achieving similar systemic exposure values in specific populations
may not necessarily lead to comparable clinical outcomes [10]. Patients with impaired
kidney function have been shown to have worse clinical outcomes than patients without
impairment that cannot currently be explained by exposure alone [11–13]. Likewise, the
clinical outcomes in patients with certain comorbid conditions such as diabetes may be
worse than patients without diabetes despite having comparable exposures [14]. The
current review outlines the current framework, limitations, and opportunities to improve
dosing in specific populations. We explicitly compare the potential of response-matching
using conventional and alternate biomarkers of efficacy that can support dose optimization
beyond exposure-matching. The use of the term biomarker in this review is a characteristic
that is objectively measured as an indicator of pharmacologic response to a therapeutic
intervention.

2. Exposure-Matching as a Surrogate for Efficacy

The practice of extrapolating efficacy findings from the primary evaluated adult
population to specific populations such as pediatric patients has a long track record of
use [10]. The drive for use of this approach has been to some extent the Best Pharmaceuticals
for Children Act (BPCA), a law enacted in 2002 [15]. This law grants a 6-month extension
to patent exclusivity when product labels carry an indication with dosing information for
children. Multiple barriers including the availability of pediatric formulations, limited
sample size, lack of efficacy data, and others have hindered the goals of the BPCA. On the
other hand, the use of exposure-matching has helped to improve pediatric use labeling,
though much work is needed to fully address this lag in labeling [16,17]. When the disease
course and the response to the antibiotic are expected to be similar in adult and pediatric
populations, then pharmacokinetic (PK) and safety data from adults can be used as a
benchmark for dosing in children. So, in this case, we must (and often do) assume that
similar exposures lead to similar clinical outcomes in adults and children. However, a
uniform definition of “similar” has not been established and surveys of antimicrobial
product submissions have shown variability in criteria for exposure-matching [18]. In most
cases, the AUC from time zero to infinity (AUC0-inf) or AUC from time zero to the last
measurable concentration (AUC0-t) have been used as the relevant exposure metric. Some
key examples for justifying similarity have included: (A) median or mean pediatric AUC
within 20% of the reported adult value; (B) median or mean pediatric AUC within 50%
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of the reported adult value; (C) ≥75% of the pediatric AUC range within the adult AUC
range; (D) geometric mean ratio of the pediatric to adult AUC between 0.8 and 1.2 [18].

Similar to the above case for translation across the life span, comparable problems exist
with optimal dose selection in patients with organ dysfunction. Patients with abnormal
kidney and liver function are often excluded from clinical trials [19]. Dedicated PK studies
in these specific populations also do not even have to occur in series. That is, a dedicated PK
study in subjects (not infected) with abnormal kidney function is sometimes performed after
or during the phase 3 clinical trials; therefore, these data may or may not inform dosing
for the registrational studies. Alternatively, population PK models may be developed
using pooled data from across the clinical program and used to inform labeling in renal
impairment without direct evaluation in the phase 3 clinical trial [20]. Again, the underlying
assumption is that the disease course and the response to the antibiotic are expected to
be similar in patients with and without organ dysfunction. To most practicing clinicians,
this assumption is likely unacceptable. Unfortunately, the exclusion of these populations
due to safety concerns and ethical and trial efficiency reasons leads to a lack of data to
test this assumption. Another conundrum includes the choice of the reference group
for exposure. Often, models are built with the selection of normal kidney function (e.g.,
glomerular filtration rate >90 mL/min) as the reference group. However, the underlying
distribution of the phase 3 clinical trial population (especially in infectious diseases) may
be centered around the mild to moderate impairment group [21]. This approach may
lead to unnecessary dose reductions with exposure-matching and a lack of considerations
for increasing doses in patients with augmented kidney function. An exception to this
rule includes the dosing recommendations for cefiderocol, which include an additional
dose per day in patients with creatinine clearance ≥120 mL/min [22]. The recognition of
this potential dose modification by regulators opens the door for further consideration of
this principle. However, as in the pediatric case scenario presented above, similarity in
exposure can be established based on a match to point estimate, confidence interval of mean
effect, or a range of exposures observed in clinical trials [10,21]. Ultimately, guaranteeing
exposure similarity cannot consistently guarantee exposure–response similarity across
specific populations without explicit evaluation of this assumption. Modeling the exposure–
response relationships for relevant clinical trial endpoints and biomarkers of efficacy is
necessary to improve upon the current paradigm.

3. Clinical Trial Endpoints for Exposure–Response Analyses

Market entry for new antibiotics in the past two decades has followed a familiar
pathway of gaining approval for acute bacterial skin and skin structure infections (ABSSSI),
complicated urinary tract infections (cUTI), and community-acquired pneumonia (CAP) as
an initial indication. Approval for more difficult to treat nosocomial pneumonia indica-
tions, including hospital-acquired bacterial pneumonia (HABP) and ventilator-associated
bacterial pneumonia (VABP), has been subsequently sought thereafter. These therapeutic in-
dications have well defined regulatory guidance that informs disease definition, enrollment
criteria, efficacy endpoints, and statistical and labeling considerations [23–26]. In contrast,
approval for indications such as bloodstream infections, endocarditis, meningitis, and
osteomyelitis are rarely sought due to cost, complexity, and regulatory uncertainty. Table 1
includes a summary of current regulatory guidance on primary and secondary endpoints
as measures of efficacy. As shown, most endpoints are discrete rather than continuous,
such as all-cause mortality at a specified time point or microbiological eradication at the
site of infection. The data captured for these discrete endpoints allow for time-to-event
(survival) analyses to quantify efficacy [27]. Ordered categorical data captured through
scoring systems such as the clinical pulmonary infection score could also in theory be
modeled as the response variable. These scoring systems include continuous variables such
as temperature, white blood cell counts, and oxygenation coupled with a semi-quantitative
measure of tracheal secretions and bacterial culture profiles [28]. Exposure–response mod-
els can be developed for all endpoints, including discrete and ordered categorical data;
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however, these models have a limited ability to inform adaptive dosing interventions in
clinical practice based on a quantifiable, real-time measure of response. For example, let us
assume an exposure–response model is constructed for ABSSSI to predict the probability of
achieving a ≥20% reduction in lesion size by 72 h. A clinician observes a 10% reduction in
lesion size at 20 h and a 13% reduction in lesion size at 48 h. Should the dose be increased or
maintained to ensure an adequate clinical response by 72 h? This question cannot be easily
answered when the endpoint is discrete. Conversely, models linking continuous individual
exposure to continuous response endpoints (i.e., biomarkers) facilitate the assessment of
the impact of patient- and disease-related factors on both exposure and response. Covari-
ates that shift this exposure–response relationship can then help us discern whether dose
modification may or may not be needed in specific populations, and individual patient
monitoring can include dose adaptation based on both measures of exposure (e.g., drug
concentrations) and response (e.g., biomarker levels) in the setting of a narrow therapeutic
index.

Numerous well-designed registration studies have been performed with antibiotics
to treat ABSSSI since the publication of industry guidance [23,29–35]. As noted in Table 1,
the quantitative metric of percent reduction in lesion size within 48–72 h is used as the
primary endpoint. Refinement of this outcome measure is specifically addressed in current
guidance by moving beyond the multiplication of length and width for surface area [23].
Imaging technologies exist to translate photos of the lesion and convert them to surface
area measurements that in theory could be performed on a daily or twice daily basis
to capture time-course data [36]. Building an exposure–response relationship on this
regulatory accepted clinical endpoint would in theory allow for improved granularity of
differences in outcomes in specific populations. Likewise, modeling exposure to changes in
quantitative urine culture data could also inform exposure–response relationships among
specific populations with cUTI [37]. These approaches could also be coupled with systemic
biomarkers of inflammation and infection to better characterize pharmacologic effects.

Table 1. Efficacy endpoints and potential biomarkers of efficacy by key indication sought for recently approved antibiotics.

Therapeutic Indication Primary Endpoint Secondary Endpoint
Potential Continuous and

Ordinal Endpoint
Measurements

Acute Bacterial Skin and Skin
Structure Infections (ABSSSI)

Percent reduction (≥20%
typically) in lesion size at

48 to 72 h

Resolution of ABSSSI at 7 to 14 days
after therapy completion

Lesion size surface area by
serial image analysis

Symptom scores (e.g., pain)

Community-Acquired
Bacterial Pneumonia

Improvement in at least
two symptoms (with no

worsening) at day 4
All-cause mortality at
28 days if including

severe cases

Improvement in at least two
symptoms (with no worsening) at

day 4 and vital signs
Clinical outcome at end of therapy
or at a fixed predefined time point

Change in systemic
biomarkers such as
C-reactive protein,

procalcitonin, calprotectin,
presepsin, etc.

Hospital-Acquired Bacterial
Pneumonia (HABP) and

Ventilator-Associated
Bacterial Pneumonia (VABP)

All-cause mortality at any
time between 14 and

28 days

(1) Resolution of signs and
symptoms of HABP/VABP at

approximately 7 to 14 days after the
completion of antibacterial drug

therapy, (2) days spent in the
hospital, and (3) days spent on

mechanical ventilation (for VABP
and ventilated-HABP patients)

Clinical pulmonary infection
scores, procalcitonin values

Nosocomial Pneumonia All-cause mortality at
14 days

Clinical and microbiological
outcomes at Test of Cure or early

and later time points

SOFA scores
Clinical pulmonary

infection score
Complicated Urinary Tract

Infections (cUTI)
Microbial Eradication

Clinical Cure
Microbial eradication rate

Clinical response at the Test of Cure
Reduction in urine bacterial

colony forming units
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4. Systemic Efficacy Biomarkers of Inflammation and Infection

Clinical endpoints serve as useful end-of-treatment response metrics but as noted
above are discrete values that limit the construction of useful exposure–response models to
aid extrapolation. Alternatives, such as the direct quantification of bacterial load within
tissues that are infected, are also not always feasible or reliable when ascertaining the
clinical pharmacologic efficacy of antibiotics. We recognize that host response mechanisms
play a pivotal role in the outcome of infectious diseases that impact morbidity, mortality,
length of stay, and therapy duration. Patients with neutropenia, for example, have far
worse outcomes than patients who have normal neutrophil counts, and one would expect
the need for higher antibiotic exposures in the former compared to the latter population to
achieve comparable effects [38]. Changes in immune response biomarkers therefore have
the potential to serve as useful surrogate biomarkers of efficacy across specific populations.
Four key biomarkers of efficacy have been studied across multiple infectious disease
conditions to serve in this role, and include: (1) procalcitonin; (2) C-reactive protein (CRP);
(3) Interleukin-6; and (4) presepsin [39–42].

While several new biomarkers have been identified, none have matured sufficiently
for clinical use, with the exception of procalcitonin [43]. Procalcitonin production is induced
in thyroid cells during bacterial infections and tissue injury [43]. Viral infections induce the
production of interferon-gamma, which suppresses the production of procalcitonin [43].
This distinction can help guide antibiotic treatment especially for respiratory tract infec-
tions that can have multiple etiologies. Recently, the rate of reduction in procalcitonin
concentrations has been used to guide antibiotic treatment duration, and so can serve as a
useful surrogate of efficacy [44]. The concentration–time profile of biomarkers such as pro-
calcitonin has been characterized in health volunteers challenged with lipopolysaccharides
(LPS), as well as in patients with abnormal kidney function [45,46]. These prior studies indi-
cate that procalcitonin concentrations rise within 3–4 h after an LPS challenge and achieve
a peak concentration within 6 to 24 h [45,47]. The expected half-life of procalcitonin is 24 h,
and so changes in the dynamics of this profile can be correlated to treatment effects. For
example, faster clearance of procalcitonin would imply a better response to therapy than
slow clearance in a non-responder. The complexity of modeling endogenous substrates,
however, requires a good understanding of the kinetics of production and degradation. A
recent analysis based on daily measurements of procalcitonin in patients with sepsis has
allowed for the construction of such a model that includes initial conditions at the start
of therapy, a lag time for response to therapy, first-order production and degradation rate
constants for procalcitonin, and random effect terms to account for treatment variation
and immune response [48]. These non-linear mixed effects models extend the simple
single-point interpretations of biomarkers such as procalcitonin by integrating repeated
measures and forecasting the response to therapy. The extension of these approaches to
other biomarkers could further aid translation across specific populations and different
infectious disease indications.

5. Case Study Illustrating Exposure–Response-Matching Using Biomarkers

Clinical trial simulations of vancomycin treatment and procalcitonin response were
performed to illustrate the potential value of exposure–response modeling as a means
to improve the precision of antibiotic therapy in specific populations. Simulations were
performed in NONMEM (Version 7.4) and processed using R (Version 3.6.3).

Each of the 100 simulated trials consisted of a unique sample of 125 adult patients to
approximate the sample size of a major randomized clinical trial of treatment for Staphylo-
coccus aureus bacteremia and endocarditis [49]. Subject covariate vectors (sex, age, weight,
body mass index (BMI), serum creatinine, and creatinine clearance (CrCl)) were randomly
sampled from the National Health and Nutrition Examination Survey (NHANES) pre-
pandemic 2017–2020 datasets [50]. A summary of the covariates in the NHANES datasets
is provided in the Supplementary Materials (Table S1).
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Vancomycin dosing was 15 mg/kg of total body weight (rounded to the nearest
250 mg) with the dosing interval determined by renal function following a modified Matzke
nomogram (Table S2) for a total of 28 days. Individual vancomycin PK parameters and
concentration–time profiles were predicted using a previously published two-compartment
model with covariate effects of weight on central distribution volume and CrCl on systemic
clearance and inter-individual variability on all clearance and volume parameters [51]. The
clinical trial simulations did not include adaptive feedback consistent with clinical TDM.

Procalcitonin (PCT) response was predicted using an indirect response model with
drug effect parameterized as inhibiting the zero-order production of procalcitonin (kin) [52]:

dPCT
dt

= kin·
(

1 − Imax·Ct

IC50 + Ct

)
− kout·PCT

Drug effect was parameterized using a classical Imax inhibitory function with the
Imax set to the theoretical upper limit of 1 (100% inhibition of procalcitonin production)
and the vancomycin concentration (Ct) producing 50% of the maximal response (IC50) set
to 10 mg/L, which approximates a clinically relevant vancomycin trough concentration.
The first-order elimination rate constant of procalcitonin (kout) was set to 0.0289 h−1 (t1/2
24 h) [48]. The population baseline procalcitonin level was set to 3.6 ng/mL to be repre-
sentative of a S. aureus bacteremia population [53]. At baseline, the procalcitonin level is
at steady-state ( dPCT

dt = 0) and vancomycin concentration is zero, such that kin is equal to
kout·PCTbaseline. Inter-individual variability of 33 and 50 percent coefficient of variation
(%CV) was included on PCTbaseline and IC50, respectively.

Two sets of clinical trial simulations were performed. In the first simulation, no covari-
ate effects were included on procalcitonin response parameters. This is the base assumption
that the exposure–response relationship is constant across all patient sub-populations. This
reflects the current paradigm for precision medicine in specific populations where exposure-
matching is equivalent to response-matching. In the second set of simulations, covariate
effects BMI and CrCl were included on the IC50 for procalcitonin response. This represents
the condition in which intrinsic patient factors may influence response independent of
exposure where exposure-matching may not equate to response-matching. The covariate
effects were described using power functions with a positive value for BMI (higher BMI,
higher IC50, worse response) and negative value for CrCl (higher CrCL, lower IC50, better
response). In each of the 100 simulated trials, individual patient vancomycin exposure met-
rics and procalcitonin response metrics were calculated and mean values were calculated
by day at the trial level. Confidence intervals (90%) were determined by taking the 5th
and 95th percentiles of the 100 trial means. Specific populations of interest were obesity
(BMI > 30 kg/m2) relative to non-obesity (BMI ≤ 30 kg/m2) and renal impairment (CrCL <
90 mL/min) relative to normal renal function (CrCL ≥ 90 mL/min).

Results are depicted for trial-level response versus time in Figure 1 and individual-
level response versus individual Day 14 exposure in Figure 2. Weight-based dosing with
the dosing interval determined based on renal function did not lead to exposure-matching
across specific populations in the absence of adaptive feedback (TDM). The geometric
mean Day 14 vancomycin AUC was 1.7-fold higher in simulated obese patients compared
to non-obese patients, as well as 1.6-fold higher in simulated patients with normal renal
function compared to those with some degree of renal impairment. This reflects dosing
based on total body weight with clearance influenced only by creatinine clearance in the PK
model. The specific populations with higher exposure have greater response on average
under the assumptions that exposure–response is constant in all populations (Figure 1,
left panels). Indeed, individual response with Day 14 AUC overlaps completely for each
specific population under this assumption (Figure 2, left panels).
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However, it is possible that the exposure–response relationship is not conserved across
all sub-populations. When covariate effects for intrinsic patient factors of BMI and CrCL
are introduced on procalcitonin response, different trends are visualized. Obese and non-
obese patients demonstrate similar trial-level response with time (Figure 1, top right panel)
despite 1.7-fold higher exposure in obese patients due to the decreased responsiveness of
individual obese patients to vancomycin exposure (Figure 2, top right panel). Conversely,
the patients with normal renal function have even greater separation of trial-level response
versus time (Figure 1, bottom right panel) due to the combination of 1.6-fold higher ex-
posure and greater individual responsiveness of procalcitonin to vancomycin treatment
(Figure 2, bottom right panel) among those with normal renal function. Notably, the 90%
prediction interval (PI) covering the 5th to 95th percentiles of individual patient response
overlaps significantly for all specific populations, which highlights the importance of adap-
tive dosing (TDM) to optimize individual outcomes in the setting of narrow therapeutic
index antibiotics. These simulations help to illustrate the potential to better identify doses
that ensure optimal efficacy outcomes in specific populations where exposure-matching
may miss the mark.
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region corresponding to the 90% confidence interval (CI) of the mean response. Figures are organized by expectation of
response to be similar or different across obese and non-obese (A,B), and renal impairment and normal renal function (C,D)
over time.
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Patients. Solid lines depict the mean daily average procalcitonin (PCT) level versus individual Day 14 vancomycin area
under the curve (AUC) binned in 100 mg*h/L increments across all 125,000 simulated patients with the shaded region
corresponding to the 90% prediction interval (PI) of individual response. Figures are organized by expectation of response
to be similar or different across obese and non-obese (A,B), and renal impairment and normal renal function (C,D) over
exposure.

While this case study is offered as a potential approach for advancing our approach
to dose optimization, it has not been tested and validated. Individual drugs may have
the potential to exert anti-inflammatory effects that are independent of their antimicrobial
effects. In the above case scenario, we used an indirect response model that did not
account for the possibility that the drug (vancomycin in this case) may independently act
on the production or elimination of procalcitonin. Deciphering the independent effect
of the drug on the kinetics of biomarker production and the elimination process would
require additional studies in healthy volunteers challenged with LPS. It is also not known
whether biomarker kinetic information gained from one drug can be used to model another
drug, and so may require validation for each drug on an independent basis. While this
adds scientific complexity, it is an important direction that should be pursued to advance
next-generation models of precision dosing in specific populations.

6. Summary and Future Directions

The current review highlights the state of optimal empiric antibacterial dose selection
that is driven for the most part by exposure-matching in specific populations. The inclusion
of antibacterial potency measures such as the minimum inhibitory concentration in order to
index these PK measures extends their translatability but does not incorporate differences
in host response. Current antibacterial clinical trial designs are also underpowered to gain
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insights on potential differences in response in subpopulations. Increasing the sample
size is not always feasible due to time extension and costs that are a disincentive for drug
development. In essence, this discipline needs to advance from “is there a treatment effect?”
to “does the drug effect increase with higher doses?” to “what are the characteristics of
the exposure-response relationship in subpopulations?” At present, exposure–response
analyses are often performed using simple regression methods instead of time-course
models. Continuous response measurements and ordered categorical data as a part of
clinical endpoints afford the potential for better exposure–response modeling. Daily
measurement of an efficacy biomarker, for example, that is coupled with non-linear mixed
effects modeling allows for better delineation of the exposure–response relationships.
These models also create an opportunity to simulate and guide clinical trial participant
enrichment strategies to validate hypotheses. However, it is important to acknowledge that
this will add complexity and other modeling challenges, such as: (1) Should participants
with missing exposure measurements be included or excluded from the analysis?; (2) Will
the imputation of efficacy endpoints bias the results when participants drop out of the
study?; (3) Have all relevant confounding covariates been accounted for in the analysis? [54].
As expected, it is not possible to fully validate these assumptions, but sensitivity analyses
can be performed to gain confidence in these estimates.

Numerous case examples exist in the literature that have used exposure–response
models of efficacy to extrapolate doses in specific populations [55–58]. In recent work, a
longitudinal exposure–response model was used to extend the dosing of a biologic from
adults to pediatric patients with psoriasis [59]. This joint modeling framework allowed
for the extrapolation of clinical efficacy data in adults to pediatric patients by using an
ordered categorical endpoint (Physician’s Global Assessment) and a quantitative rating
score (Psoriasis Area and Severity Index) [59]. These modeling approaches can be applied
to antibacterial drug development given that similar exposure and response measure-
ments are taken. Continued translational work in this domain is of critical importance
to advance model-informed drug development and lower the cost of antimicrobial mar-
ket entry. Recent work testing bootstrap-based and Bayesian-based methods to estimate
the probability of concluding the non-inferiority of the exposure–response relationship
of some narrow therapeutic index drugs also offers a useful template for establishing
these matching criteria [60]. Building expert consensus on exposure–response modeling
and establishing matching criteria across specific populations are needed and worthy of
regulatory, academic, and industry attention.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10111368/s1, Table S1: Vancomycin Dosing Regimen in Simulated Clinical Trials,
Table S2: Summary of Covariate Values in the Source NHANES Datasets, Code S1. Clinical Trial
Simulation 1 (No Specific Population Effect)—Template Control Stream, Code S2. Clinical Trial
Simulation 1 (No Specific Population Effect)—Template Control Stream

Author Contributions: Conceptualization: M.P.P., R.L.C.; Data Curation: R.L.C.; Formal Analysis:
R.L.C.; Writing—Original Draft Preparation: M.P.P.; Writing—Review and Editing: R.L.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/antibiotics10111368/s1
https://www.mdpi.com/article/10.3390/antibiotics10111368/s1


Antibiotics 2021, 10, 1368 10 of 12

References
1. Hoffman, P.S. Antibacterial Discovery: 21st Century Challenges. Antibiotics 2020, 9, 213. [CrossRef]
2. Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.;

Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial
pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225.
[CrossRef]

3. Phillips, A.N.; Pocock, S.J. Sample size requirements for prospective studies, with examples for coronary heart disease. J. Clin.
Epidemiol. 1989, 42, 639–648. [CrossRef]

4. Boucher, H.W.; Ambrose, P.G.; Chambers, H.F.; Ebright, R.H.; Jezek, A.; Murray, B.E.; Newland, J.G.; Ostrowsky, B.; Rex, J.H.; on
behalf of the Infectious Diseases Society of America. White Paper: Developing Antimicrobial Drugs for Resistant Pathogens,
Narrow-Spectrum Indications, and Unmet Needs. J. Infect. Dis. 2017, 216, 228–236. [CrossRef] [PubMed]

5. Rex, J.H.; Eisenstein, B.I.; Alder, J.; Goldberger, M.; Meyer, R.; Dane, A.; Friedland, I.; Knirsch, C.; Sanhai, W.R.; Tomayko, J.; et al.
A comprehensive regulatory framework to address the unmet need for new antibacterial treatments. Lancet Infect. Dis. 2013, 13,
269–275. [CrossRef]

6. Echols, R.; Ariyasu, M.; Nagata, T.D. Pathogen-focused Clinical Development to Address Unmet Medical Need: Cefiderocol
Targeting Carbapenem Resistance. Clin. Infect. Dis. 2019, 69, S559–S564. [CrossRef]

7. Umscheid, C.A.; Margolis, D.J.; Grossman, C.E. Key concepts of clinical trials: A narrative review. Postgrad. Med. 2011, 123,
194–204. [CrossRef]

8. Wang, Y.; Zhu, H.; Madabushi, R.; Liu, Q.; Huang, S.M.; Zineh, I. Model-Informed Drug Development: Current US Regulatory
Practice and Future Considerations. Clin. Pharmacol. Ther. 2019, 105, 899–911. [CrossRef]

9. Grimsrud, K.N.; Sherwin, C.M.; Constance, J.E.; Tak, C.; Zuppa, A.F.; Spigarelli, M.G.; Mihalopoulos, N.L. Special population
considerations and regulatory affairs for clinical research. Clin. Res. Regul. Aff. 2015, 32, 47–56. [CrossRef]

10. Mulugeta, Y.; Barrett, J.S.; Nelson, R.; Eshete, A.T.; Mushtaq, A.; Yao, L.; Glasgow, N.; Mulberg, A.E.; Gonzalez, D.; Green, D.;
et al. Exposure Matching for Extrapolation of Efficacy in Pediatric Drug Development. J. Clin. Pharmacol. 2016, 56, 1326–1334.
[CrossRef]

11. Bidell, M.R.; Lodise, T.P. Suboptimal Clinical Response Rates with Newer Antibiotics among Patients with Moderate Renal
Impairment: Review of the Literature and Potential Pharmacokinetic and Pharmacodynamic Considerations for Observed
Findings. Pharmacotherapy 2018, 38, 1205–1215. [CrossRef]

12. Crass, R.L.; Rodvold, K.A.; Mueller, B.A.; Pai, M.P. Renal Dosing of Antibiotics: Are We Jumping the Gun? Clin. Infect. Dis. 2019,
68, 1596–1602. [CrossRef] [PubMed]

13. Crass, R.L.; Pai, M.P. Estimating Renal Function in Drug Development: Time to Take the Fork in the Road. J. Clin. Pharmacol.
2019, 59, 159–167. [CrossRef]

14. Shah, B.R.; Hux, J.E. Quantifying the risk of infectious diseases for people with diabetes. Diabetes Care 2003, 26, 510–513. [CrossRef]
15. Breslow, L.H. The Best Pharmaceuticals for Children Act of 2002: The rise of the voluntary incentive structure and congressional

refusal to require pediatric testing. Harv. J. Legis. 2003, 40, 133–193.
16. Roberts, R.; Rodriguez, W.; Murphy, D.; Crescenzi, T. Pediatric drug labeling: Improving the safety and efficacy of pediatric

therapies. JAMA 2003, 290, 905–911. [CrossRef] [PubMed]
17. Wharton, G.T.; Murphy, M.D.; Avant, D.; Goldsmith, J.V.; Chai, G.; Rodriguez, W.J.; Eisenstein, E.L. Impact of pediatric exclusivity

on drug labeling and demonstrations of efficacy. Pediatrics 2014, 134, e512–e518. [CrossRef] [PubMed]
18. Zimmerman, K.; Putera, M.; Hornik, C.P.; Brian Smith, P.; Benjamin, D.K., Jr.; Mulugeta, Y.; Burckart, G.J.; Cohen-Wolkowiez,

M.; Gonzalez, D. Exposure Matching of Pediatric Anti-infective Drugs: Review of Drugs Submitted to the Food and Drug
Administration for Pediatric Approval. Clin. Ther. 2016, 38, 1995–2005. [CrossRef]

19. Winter, S.S.; Page-Reeves, J.M.; Page, K.A.; Haozous, E.; Solares, A.; Nicole Cordova, C.; Larson, R.S. Inclusion of special
populations in clinical research: Important considerations and guidelines. J. Clin. Transl. Res. 2018, 4, 56–69.

20. Krekels, E.H.J.; van Hasselt, J.G.C.; van den Anker, J.N.; Allegaert, K.; Tibboel, D.; Knibbe, C.A.J. Evidence-based drug treatment
for special patient populations through model-based approaches. Eur. J. Pharm. Sci. 2017, 109, S22–S26. [CrossRef]

21. Ravenstijn, P.; Chetty, M.; Manchandani, P. Design and conduct considerations for studies in patients with impaired renal function.
Clin. Transl. Sci. 2021, 14, 1689–1704. [CrossRef]

22. Katsube, T.; Wajima, T.; Ishibashi, T.; Arjona Ferreira, J.C.; Echols, R. Pharmacokinetic/Pharmacodynamic Modeling and
Simulation of Cefiderocol, a Parenteral Siderophore Cephalosporin, for Dose Adjustment Based on Renal Function. Antimicrob.
Agents Chemother. 2017, 61, e01381-16. [CrossRef]

23. CDER. Guidance for Industry Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for Treatment; U.S. Department of
Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER): Beltsville, MD,
USA, 2013.

24. CDER. Complicated Urinary Tract Infections: Developing Drugs for Treatment Guidance for Industry; U.S. Department of Health and
Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER): Beltsville, MD, USA, 2018.

25. CDER. Community-Acquired Bacterial Pneumonia: Developing Drugs for Treatment Guidance for Industry; U.S. Department of Health
and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER): Beltsville, MD, USA,
2020.

http://doi.org/10.3390/antibiotics9050213
http://doi.org/10.1016/S1473-3099(20)30731-3
http://doi.org/10.1016/0895-4356(89)90007-3
http://doi.org/10.1093/infdis/jix211
http://www.ncbi.nlm.nih.gov/pubmed/28475768
http://doi.org/10.1016/S1473-3099(12)70293-1
http://doi.org/10.1093/cid/ciz829
http://doi.org/10.3810/pgm.2011.09.2475
http://doi.org/10.1002/cpt.1363
http://doi.org/10.3109/10601333.2015.1001900
http://doi.org/10.1002/jcph.744
http://doi.org/10.1002/phar.2184
http://doi.org/10.1093/cid/ciy790
http://www.ncbi.nlm.nih.gov/pubmed/30219824
http://doi.org/10.1002/jcph.1314
http://doi.org/10.2337/diacare.26.2.510
http://doi.org/10.1001/jama.290.7.905
http://www.ncbi.nlm.nih.gov/pubmed/12928467
http://doi.org/10.1542/peds.2013-2987
http://www.ncbi.nlm.nih.gov/pubmed/25022732
http://doi.org/10.1016/j.clinthera.2016.06.003
http://doi.org/10.1016/j.ejps.2017.05.022
http://doi.org/10.1111/cts.13061
http://doi.org/10.1128/AAC.01381-16


Antibiotics 2021, 10, 1368 11 of 12

26. CDER. Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia: Developing Drugs for Treatment Guidance
for Industry; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and
Research (CDER): Beltsville, MD, USA, 2020.

27. Munoz-Price, L.S.; Frencken, J.F.; Tarima, S.; Bonten, M. Handling Time-dependent Variables: Antibiotics and Antibiotic
Resistance. Clin. Infect. Dis. 2016, 62, 1558–1563. [CrossRef]

28. Schurink, C.A.M.; Nieuwenhoven, C.A.V.; Jacobs, J.A.; Rozenberg-Arska, M.; Joore, H.C.A.; Buskens, E.; Hoepelman, A.I.M.;
Bonten, M.J.M. Clinical pulmonary infection score for ventilator-associated pneumonia: Accuracy and inter-observer variability.
Intensive Care Med. 2004, 30, 217–224. [CrossRef]

29. Overcash, J.S.; Kim, C.; Keech, R.; Gumenchuk, I.; Ninov, B.; Gonzalez-Rojas, Y.; Waters, M.; Simeonov, S.; Engelhardt, M.; Saulay,
M.; et al. Ceftobiprole Compared with Vancomycin Plus Aztreonam in the Treatment of Acute Bacterial Skin and Skin Structure
Infections: Results of a Phase 3, Randomized, Double-blind Trial (TARGET). Clin. Infect. Dis. 2020, 73, e1507–e1517. [CrossRef]

30. O’Riordan, W.; Green, S.; Overcash, J.S.; Puljiz, I.; Metallidis, S.; Gardovskis, J.; Garrity-Ryan, L.; Das, A.F.; Tzanis, E.; Eckburg,
P.B.; et al. Omadacycline for Acute Bacterial Skin and Skin-Structure Infections. N. Engl. J. Med. 2019, 380, 528–538. [CrossRef]
[PubMed]

31. O’Riordan, W.; McManus, A.; Teras, J.; Poromanski, I.; Cruz-Saldariagga, M.; Quintas, M.; Lawrence, L.; Liang, S.; Cammarata,
S.; Group, P.S. A Comparison of the Efficacy and Safety of Intravenous Followed by Oral Delafloxacin With Vancomycin Plus
Aztreonam for the Treatment of Acute Bacterial Skin and Skin Structure Infections: A Phase 3, Multinational, Double-Blind,
Randomized Study. Clin. Infect. Dis. 2018, 67, 657–666. [CrossRef]

32. Huang, D.B.; O’Riordan, W.; Overcash, J.S.; Heller, B.; Amin, F.; File, T.M.; Wilcox, M.H.; Torres, A.; Dryden, M.; Holland, T.L.;
et al. A Phase 3, Randomized, Double-Blind, Multicenter Study to Evaluate the Safety and Efficacy of Intravenous Iclaprim
Vs Vancomycin for the Treatment of Acute Bacterial Skin and Skin Structure Infections Suspected or Confirmed to be Due to
Gram-Positive Pathogens: REVIVE-1. Clin. Infect. Dis. 2018, 66, 1222–1229. [CrossRef] [PubMed]

33. Corey, G.R.; Kabler, H.; Mehra, P.; Gupta, S.; Overcash, J.S.; Porwal, A.; Giordano, P.; Lucasti, C.; Perez, A.; Good, S.; et al.
Single-dose oritavancin in the treatment of acute bacterial skin infections. N. Engl. J. Med. 2014, 370, 2180–2190. [CrossRef]
[PubMed]

34. Boucher, H.W.; Wilcox, M.; Talbot, G.H.; Puttagunta, S.; Das, A.F.; Dunne, M.W. Once-weekly dalbavancin versus daily
conventional therapy for skin infection. N. Engl. J. Med. 2014, 370, 2169–2179. [CrossRef] [PubMed]

35. Prokocimer, P.; De Anda, C.; Fang, E.; Mehra, P.; Das, A. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and
skin structure infections: The ESTABLISH-1 randomized trial. JAMA 2013, 309, 559–569. [CrossRef] [PubMed]

36. Mirzaalian Dastjerdi, H.; Topfer, D.; Rupitsch, S.J.; Maier, A. Measuring Surface Area of Skin Lesions with 2D and 3D Algorithms.
Int. J. Biomed. Imaging 2019, 2019, 4035148. [CrossRef] [PubMed]

37. Price, T.K.; Dune, T.; Hilt, E.E.; Thomas-White, K.J.; Kliethermes, S.; Brincat, C.; Brubaker, L.; Wolfe, A.J.; Mueller, E.R.;
Schreckenberger, P.C. The Clinical Urine Culture: Enhanced Techniques Improve Detection of Clinically Relevant Microorganisms.
J. Clin. Microbiol. 2016, 54, 1216–1222. [CrossRef] [PubMed]

38. Lortholary, O.; Lefort, A.; Tod, M.; Chomat, A.M.; Darras-Joly, C.; Cordonnier, C. Pharmacodynamics and pharmacokinetics of
antibacterial drugs in the management of febrile neutropenia. Lancet Infect. Dis. 2008, 8, 612–620. [CrossRef]

39. Hung, S.K.; Lan, H.M.; Han, S.T.; Wu, C.C.; Chen, K.F. Current Evidence and Limitation of Biomarkers for Detecting Sepsis and
Systemic Infection. Biomedicines 2020, 8, 494. [CrossRef] [PubMed]

40. Memar, M.Y.; Baghi, H.B. Presepsin: A promising biomarker for the detection of bacterial infections. Biomed. Pharmacother. 2019,
111, 649–656. [CrossRef] [PubMed]

41. Vijayan, A.L.; Vanimaya; Ravindran, S.; Saikant, R.; Lakshmi, S.; Kartik, R.; Manoj, G. Procalcitonin: A promising diagnostic
marker for sepsis and antibiotic therapy. J. Intensive Care 2017, 5, 51. [CrossRef] [PubMed]

42. Povoa, P.; Almeida, E.; Moreira, P.; Fernandes, A.; Mealha, R.; Aragao, A.; Sabino, H. C-reactive protein as an indicator of sepsis.
Intensive Care Med. 1998, 24, 1052–1056. [CrossRef] [PubMed]

43. Kataria, Y.; Remick, D. Sepsis Biomarkers. Methods Mol. Biol. 2021, 2321, 177–189. [CrossRef]
44. Shehabi, Y.; Sterba, M.; Garrett, P.M.; Rachakonda, K.S.; Stephens, D.; Harrigan, P.; Walker, A.; Bailey, M.J.; Johnson, B.; Millis, D.;

et al. Procalcitonin algorithm in critically ill adults with undifferentiated infection or suspected sepsis. A randomized controlled
trial. Am. J. Respir. Crit. Care Med. 2014, 190, 1102–1110. [CrossRef]

45. Dandona, P.; Nix, D.; Wilson, M.F.; Aljada, A.; Love, J.; Assicot, M.; Bohuon, C. Procalcitonin increase after endotoxin injection in
normal subjects. J. Clin. Endocrinol. Metab. 1994, 79, 1605–1608. [CrossRef] [PubMed]

46. Grace, E.; Turner, R.M. Use of procalcitonin in patients with various degrees of chronic kidney disease including renal replacement
therapy. Clin. Infect. Dis. 2014, 59, 1761–1767. [CrossRef]

47. Heilmann, E.; Gregoriano, C.; Wirz, Y.; Luyt, C.E.; Wolff, M.; Chastre, J.; Tubach, F.; Christ-Crain, M.; Bouadma, L.; Annane, D.;
et al. Association of kidney function with effectiveness of procalcitonin-guided antibiotic treatment: A patient-level meta-analysis
from randomized controlled trials. Clin. Chem. Lab. Med. 2020, 59, 441–453. [CrossRef]

48. Aulin, L.B.S.; de Lange, D.W.; Saleh, M.A.A.; van der Graaf, P.H.; Voller, S.; van Hasselt, J.G.C. Biomarker-Guided Individualiza-
tion of Antibiotic Therapy. Clin. Pharmacol. Ther. 2021, 110, 346–360. [CrossRef] [PubMed]

http://doi.org/10.1093/cid/ciw191
http://doi.org/10.1007/s00134-003-2018-2
http://doi.org/10.1093/cid/ciaa974
http://doi.org/10.1056/NEJMoa1800170
http://www.ncbi.nlm.nih.gov/pubmed/30726689
http://doi.org/10.1093/cid/ciy165
http://doi.org/10.1093/cid/cix987
http://www.ncbi.nlm.nih.gov/pubmed/29281036
http://doi.org/10.1056/NEJMoa1310422
http://www.ncbi.nlm.nih.gov/pubmed/24897083
http://doi.org/10.1056/NEJMoa1310480
http://www.ncbi.nlm.nih.gov/pubmed/24897082
http://doi.org/10.1001/jama.2013.241
http://www.ncbi.nlm.nih.gov/pubmed/23403680
http://doi.org/10.1155/2019/4035148
http://www.ncbi.nlm.nih.gov/pubmed/30774651
http://doi.org/10.1128/JCM.00044-16
http://www.ncbi.nlm.nih.gov/pubmed/26962083
http://doi.org/10.1016/S1473-3099(08)70228-7
http://doi.org/10.3390/biomedicines8110494
http://www.ncbi.nlm.nih.gov/pubmed/33198109
http://doi.org/10.1016/j.biopha.2018.12.124
http://www.ncbi.nlm.nih.gov/pubmed/30611989
http://doi.org/10.1186/s40560-017-0246-8
http://www.ncbi.nlm.nih.gov/pubmed/28794881
http://doi.org/10.1007/s001340050715
http://www.ncbi.nlm.nih.gov/pubmed/9840239
http://doi.org/10.1007/978-1-0716-1488-4_16
http://doi.org/10.1164/rccm.201408-1483OC
http://doi.org/10.1210/jcem.79.6.7989463
http://www.ncbi.nlm.nih.gov/pubmed/7989463
http://doi.org/10.1093/cid/ciu732
http://doi.org/10.1515/cclm-2020-0931
http://doi.org/10.1002/cpt.2194
http://www.ncbi.nlm.nih.gov/pubmed/33559152


Antibiotics 2021, 10, 1368 12 of 12

49. Fowler, V.G., Jr.; Boucher, H.W.; Corey, G.R.; Abrutyn, E.; Karchmer, A.W.; Rupp, M.E.; Levine, D.P.; Chambers, H.F.; Tally, F.P.;
Vigliani, G.A.; et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N.
Engl. J. Med. 2006, 355, 653–665. [CrossRef]

50. Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition
Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and
Prevention, [2017–2020]. Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017
-2020 (accessed on 28 September 2021).

51. Yamamoto, M.; Kuzuya, T.; Baba, H.; Yamada, K.; Nabeshima, T. Population pharmacokinetic analysis of vancomycin in patients
with gram-positive infections and the influence of infectious disease type. J. Clin. Pharm. Ther. 2009, 34, 473–483. [CrossRef]

52. Dayneka, N.L.; Garg, V.; Jusko, W.J. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokinet.
Biopharm. 1993, 21, 457–478. [CrossRef]

53. Leli, C.; Ferranti, M.; Moretti, A.; Al Dhahab, Z.S.; Cenci, E.; Mencacci, A. Procalcitonin levels in gram-positive, gram-negative,
and fungal bloodstream infections. Dis. Markers 2015, 2015, 701480. [CrossRef]

54. Overgaard, R.V.; Ingwersen, S.H.; Tornoe, C.W. Establishing Good Practices for Exposure-Response Analysis of Clinical Endpoints
in Drug Development. CPT Pharmacomet. Syst. Pharmacol. 2015, 4, 565–575. [CrossRef]

55. Marier, J.F.; Jomphe, C.; Peyret, T.; Wang, Y. Population pharmacokinetics and exposure-response analyses of teduglutide in adult
and pediatric patients with short bowel syndrome. Clin. Transl. Sci. 2021. [CrossRef] [PubMed]

56. Gewitz, A.D.; Solans, B.P.; Mac Kenzie, W.R.; Heilig, C.; Whitworth, W.C.; Johnson, J.L.; Nsubuga, P.; Dorman, S.; Weiner, M.;
Savic, R.M.; et al. Longitudinal Model-Based Biomarker Analysis of Exposure-Response Relationships in Adults with Pulmonary
Tuberculosis. Antimicrob. Agents Chemother. 2021, 65, e0179420. [CrossRef] [PubMed]

57. Sturm, S.; Lemenuel-Diot, A.; Patel, K.; Gibiansky, L.; Bhardwaj, R.; Smith, P.F.; Dang, S.; Zwanziger, E.; Nasmyth-Miller, C.;
Ravva, P. Pharmacologic effects of oseltamivir in immunocompromised adult patients as assessed by population PK/PD analysis
and drug-disease modelling for dosing regimen optimization. Br. J. Clin. Pharmacol. 2021, 87, 1359–1368. [CrossRef] [PubMed]

58. Snelder, N.; Heinig, R.; Drenth, H.J.; Joseph, A.; Kolkhof, P.; Lippert, J.; Garmann, D.; Ploeger, B.; Eissing, T. Population
Pharmacokinetic and Exposure-Response Analysis of Finerenone: Insights Based on Phase IIb Data and Simulations to Support
Dose Selection for Pivotal Trials in Type 2 Diabetes with Chronic Kidney Disease. Clin. Pharmacokinet. 2020, 59, 359–370.
[CrossRef] [PubMed]

59. Zhou, W.; Hu, C.; Zhu, Y.; Randazzo, B.; Song, M.; Sharma, A.; Xu, Z.; Zhou, H. Extrapolating Pharmacodynamic Effects
from Adults to Pediatrics: A Case Study of Ustekinumab in Pediatric Patients With Moderate to Severe Plaque Psoriasis. Clin.
Pharmacol. Ther. 2021, 109, 131–139. [CrossRef]

60. Zhang, Q.; Travis, J.; Rothwell, R.; Jay, C.E.; Jahidur, R.; Zhang, Y.; Crentsil, V.; Altepeter, T.; Lee, J.J.; Burckart, G.J.; et al. Applying
the Noninferiority Paradigm to Assess Exposure-Response Similarity and Dose Between Pediatric and Adult Patients. J. Clin.
Pharmacol. 2021, 61 (Suppl. S1), S165–S174. [CrossRef]

http://doi.org/10.1056/NEJMoa053783
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017-2020
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?Cycle=2017-2020
http://doi.org/10.1111/j.1365-2710.2008.01016.x
http://doi.org/10.1007/BF01061691
http://doi.org/10.1155/2015/701480
http://doi.org/10.1002/psp4.12015
http://doi.org/10.1111/cts.13117
http://www.ncbi.nlm.nih.gov/pubmed/34402197
http://doi.org/10.1128/AAC.01794-20
http://www.ncbi.nlm.nih.gov/pubmed/34252302
http://doi.org/10.1111/bcp.14523
http://www.ncbi.nlm.nih.gov/pubmed/32808306
http://doi.org/10.1007/s40262-019-00820-x
http://www.ncbi.nlm.nih.gov/pubmed/31583611
http://doi.org/10.1002/cpt.2033
http://doi.org/10.1002/jcph.1885

	Introduction 
	Exposure-Matching as a Surrogate for Efficacy 
	Clinical Trial Endpoints for Exposure–Response Analyses 
	Systemic Efficacy Biomarkers of Inflammation and Infection 
	Case Study Illustrating Exposure–Response-Matching Using Biomarkers 
	Summary and Future Directions 
	References

