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Abstract: Presenilin-2 (PS2) is one of the three proteins that are dominantly mutated in familial
Alzheimer’s disease (FAD). It forms the catalytic core of the γ-secretase complex—a function
shared with its homolog presenilin-1 (PS1)—the enzyme ultimately responsible of amyloid-β (Aβ)
formation. Besides its enzymatic activity, PS2 is a multifunctional protein, being specifically involved,
independently of γ-secretase activity, in the modulation of several cellular processes, such as Ca2+

signalling, mitochondrial function, inter-organelle communication, and autophagy. As for the former,
evidence has accumulated that supports the involvement of PS2 at different levels, ranging from
organelle Ca2+ handling to Ca2+ entry through plasma membrane channels. Thus FAD-linked PS2
mutations impact on multiple aspects of cell and tissue physiology, including bioenergetics and
brain network excitability. In this contribution, we summarize the main findings on PS2, primarily
as a modulator of Ca2+ homeostasis, with particular emphasis on the role of its mutations in the
pathogenesis of FAD. Identification of cell pathways and molecules that are specifically targeted by PS2
mutants, as well as of common targets shared with PS1 mutants, will be fundamental to disentangle
the complexity of memory loss and brain degeneration that occurs in Alzheimer’s disease (AD).

Keywords: presenilin-2; calcium signalling; Alzheimer’s disease mouse models; SOCE; mitochondria;
autophagy; brain networks; oscillations; slow-waves; functional connectivity

1. Presenilin-2 in Physiology and Pathology

Presenilin-2 (PS2)—and its homolog presenilin-1 (PS1)—is a 50-kDa multi-pass membrane protein
with nine helical transmembrane (TM) domains, and in humans it is encoded by a gene present on
chromosome 1 (PSEN2) [1]. Both presenilins (PSs) mainly localize to the endoplasmic reticulum (ER)
and Golgi apparatus (GA) membranes but also, although less abundantly, in plasma membrane (PM)
and endosomes [2]. Their mRNAs are expressed in different human and mouse tissues, with the
highest levels in the hippocampus and cerebellum [3].

Both PSs represent the catalytic core of the γ-secretase complex, the enzyme ultimately
responsible for generation of Aβ peptides; they were both discovered in genetic analyses of
families in which Alzheimer’s disease (AD) is transmitted as an autosomal dominant trait. In fact,
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as of now, about 300 mutations in PSEN1 and 58 mutations in PSEN2 have been described
(https://www.alzforum.org/mutations), the majority of which are dominant, mostly missense, and have
been associated with the inherited forms of the disease (familial Alzheimer’s disease (FAD)) [4,5].
Mutations in the gene for one of the substrate of the γ-secretase complex, the amyloid precursor protein
(APP), are also responsible for FAD cases [6]. It has been proposed that FAD-PS mutations lead to a less
precise γ-secretase cleavage of APP, in some cases decreasing the total production of Aβ but increasing
the relative amount of the more amyloidogenic Aβ42 peptide, the seeding core of extracellular amyloid
plaques, over the more soluble Aβ40 peptide [7,8].

The γ-secretase complex is part of the family of intramembrane-cleaving proteases (I-CliPs),
which perform hydrolysis of protein domains embedded in the hydrophobic environment of the
membrane. The family includes SP2 metalloproteases, serine proteases of the rhomboid family, and the
aspartyl proteases to which γ-secretase belongs.

The γ-secretase has a central role in cellular biology, with about 150 different integral membrane
proteins recognized as substrates [9]; the most studied are the Notch family of receptors, with a
crucial role in signalling and cell differentiation, and APP [4,9]. The γ-secretase complex is composed
of four subunits: PS1 or PS2; nicastrin, an integral membrane protein concerned with substrate
recognition and selection [10]; PS enhancer-2 (PEN-2) that stabilizes the PS complex and has a role in
its endoproteolytic cleavage [11–13]; and anterior pharynx defective 1 (APH1), which interacts with
nicastrin, providing the initial scaffold to which PS1/2 and PEN-2 are added [14,15]. In humans, APH1 is
encoded by two paralogous genes (APH1A and APH1B), and each protein can interact with either
PS, resulting in the existence of four different γ-secretase complexes that might have slightly different
specificities [16]. After its enclosure within the complex, PS undergoes an endoproteolytic cleavage
that produces N- and C-terminal fragments; the two fragments remain associated and represent the
biologically active form of the complex, each carrying one of the two key aspartic acid residues on
TM6 and TM7, respectively [17,18].

PS1 and PS2 share about 66% of amino acidic sequence; one key difference is a motif in PS2 that
interacts with activating protein-1 (AP-1) complexes in a phosphorylation-dependent manner and
targets PS2 to the late endosome/lysosome compartment, leading to a different subcellular distribution
of PS2 and perhaps to subtly different functions [19,20]. For example, it has been demonstrated
that PS2-containing γ-secretase complexes are involved in the processing of premelanosome (PMEL)
protein, which is involved in melanosome maturation and melanin deposition [19]. Indeed, PS2-null
zebrafish showed defects in skin pigmentation [21]. Importantly, melanosome biogenesis seems to be
Ca2+-dependent [22] (see also below).

Several γ-secretase-independent functions of PSs have emerged in the recent years, enriching the
overall importance of these proteins in cell biology. For example, PSs bind to glycogen synthase kinase
3β (GSK3β), a key protein of the Wnt signalling pathway, and to its substrate β-catenin, a transcription
regulator [23,24]. The interaction of PSs with GSK3β and β-catenin is independent of γ-secretase
activity [25] and influences β-catenin phosphorylation and turnover [26], as well as the activity of
kinesin-1 and dynein and thus axonal transport of type 1 transmembrane receptors [27]. PSs have been
implicated also in autophagy (see below) and protein trafficking [28].

Last, but not least, the regulation of cellular Ca2+ homeostasis has emerged as a key PS function,
independent of γ-secretase activity, with relevant implications in multiple Ca2+-regulated cell processes.
In the present review, we summarize the central role played by PS2 in cellular Ca2+ homeostasis,
highlighting divergent and convergent aspects of PS2 vs. PS1 pathophysiology.

2. PS2 and Ca2+ Homeostasis

2.1. Alterations of Ca2+ Homeostasis in FAD-PS2 Cell Models

According to the so-called “Ca2+ overload” hypothesis for AD, FAD-PS mutations increase the ER
Ca2+ content and cause excessive cytosolic Ca2+ release upon cell stimulations that, in turn, alters APP
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processing and sensitizes neurons to Ca2+-dependent cell death mechanisms [29]. Indeed, an excessive
release of Ca2+ from the ER has been reported in different cell models expressing various FAD-PS
mutations, as well as in neurons from transgenic (Tg) mice carrying FAD-PS1 mutations [30–35].
FAD-linked mutations in PS2 have also been reported to potentiate ER Ca2+ release from both ryanodine
receptors (RyRs) [36] and inositol trisphosphate (IP3) receptors (IP3Rs) in Xenopus oocytes [30] and
neurons from Tg mice expressing the PS2-N141I mutation [37]. Moreover, it has been proposed that
wild type (WT) PSs form constitutively active ER Ca2+ leak channels whereas FAD-PS mutations
disrupt the channel functionality; as a result of the reduced leak, the ER Ca2+ level increases and more
Ca2+ is released upon stimulation [38].

In contrast, we showed that FAD patient-derived fibroblasts carrying the PS2-M239I mutation,
as well as HeLa and HEK293 cells stably or transiently expressing the same PS2 mutant, show a
decreased ER Ca2+ release when stimulated by IP3-generating agonists [39] (Figure 1); this result was
confirmed in FAD patient-derived fibroblasts carrying another PS2 mutation (T122R) [40]. Of note,
in this study, we analysed two monozygotic twins, one with overt signs of disease at the time of
biopsy, whereas the other one was still asymptomatic; nevertheless, both cell samples shared a similar
Ca2+ handling defect, strongly suggesting that Ca2+ dysregulation represents an early event in the
pathogenesis of AD [40].
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Figure 1. Familial Alzheimer’s disease (FAD)-presenilin-2 (PS2) alters multiple Ca2+ signalling
pathways. The cartoon represents different intracellular membrane localizations of FAD-PS2, its
interactions with several components of the molecular Ca2+ toolkit, and multiple Ca2+ signalling
pathways that are altered by its action. See text for details. ER, endoplasmic reticulum; mGA,
medial-Golgi apparatus; tGA, trans-Golgi apparatus; MIT, mitochondrion.

To clarify the divergent results, we directly monitored Ca2+ dynamics within intracellular stores.
We employed aequorin-based Ca2+ probes targeted to ER and GA in cells expressing different PS1
and PS2 mutants. In several cell lines [SH-SY5Y, HeLa, HEK293 and Mouse Embryonic Fibroblast
(MEF) cells], expressing the ER (or GA)-targeted aequorin together with a number of PS1 (P117L,
M146L, L286V, and A246E) or PS2 (M239I, T122R, and N141I) mutants, we analysed Ca2+ concentrations
and dynamics in the two organelles. By this more specific approach, we confirmed lower ER and
GA Ca2+ levels in the presence of all the analysed FAD-PS2 mutants, and unchanged or slightly
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decreased ER/GA Ca2+ concentrations when PS1 mutants were expressed [41]. Similar results were
obtained in FAD patient-derived fibroblasts and rat primary neurons, expressing either PS1 or PS2
mutants and loaded with the Ca2+ sensor fura-2, confirming the capability of PS to modify Ca2+

homeostasis, but questioning the “Ca2+ overload” hypothesis for AD [41,42]. Indeed, it was also shown
that FAD-PS are associated with IP3R hyperactivity [43,44], providing an alternative explanation to
the “Ca2+ overload” hypothesis based on increased ER Ca2+ release findings previously reported
in FAD-PS-expressing cells. In particular, Foskett and co-workers showed that FAD-PS1/2 mutants,
by physically interacting with the IP3R, modulate the channel gating, causing an exaggerated ER
Ca2+ release regardless of its Ca2+ content [43,44]. Furthermore, by employing ER- and GA-targeted
Ca2+ indicators, the same group subsequently confirmed that cells expressing FAD-PS1 mutants do
not present ER Ca2+ overload, arguing against the previously proposed role of PS as ER Ca2+ leak
channels [45].

Similarly, by using newly developed genetically encoded Ca2+ indicators, the Förster resonance
energy transfer (FRET)-based probe targeted to ER (D4ER [46]), medial-GA [47], and trans-GA [48],
we showed that (i) in SH-SY5Y and Baby Hamster Kidney (BHK) cells, expressing the FAD-PS2-T122R
mutant, and in PS2-N141I patient-derived fibroblasts, there is a clear reduction in ER Ca2+ concentration;
(ii) in cells expressing the FAD-PS1-A246E mutant, instead, no change was observed [46,49]; (iii) the
expression of FAD-PS2 mutants induced a selective decrease in the medial-GA Ca2+ content, but not in
that of the trans-GA; (iv) in contrast, the expression of the FAD-PS1 mutant was ineffective on both GA
sub-compartments [49] (Figure 1).

Concerning the molecular mechanism through which FAD-PS2 alters intracellular Ca2+ store
dynamics, researchers have shown that the Ca2+ phenotype is caused by the holoprotein and that
it is independent of γ-secretase activity [38,39,42,44,49–51]. Moreover, it has been shown that the
protein directly interacts with the IP3R, sensitizing it to lower IP3 concentrations [43], the RyR [36],
the RyR-regulating protein sorcin [52], and the SERCA2b [34], inhibiting its activity [51]. This latter
result is consistent with the differential effect of FAD-PS2 mutants on GA sub-compartments (see above),
given that the trans-GA, where FAD-PS2 mutants are ineffective, relies only on the secretory pathway
Ca2+ ATPase 1 (SPCA1) for Ca2+ uptake [48]. Finally, in the presence of FAD-PS1/2 mutations, increased
expression levels and activity of RyRs have been reported [53–55], suggesting a RyR-dependent Ca2+

hyperexcitability in AD that is antagonized by the channel inhibitor dantrolene (see [56] for an extensive
discussion of this issue; see also [57] for the involvement of IP3Rs).

Intracellular Ca2+ stores, mainly the ER, are functionally and physically coupled to mitochondria
with which they jointly operate modulating several cell functionalities, such as lipid synthesis
and Ca2+ homeostasis. Specific ER membrane domains tightly juxtaposed to mitochondria,
called mitochondria-associated membranes (MAM; [58]), represent signalling platforms and play a
key role in these processes [59]. Interestingly, MAM appear to be altered in AD samples [42,54,59–64];
in addition PS1/2, as well as the other components of the γ-secretase complex and APP, are enriched in
these domains [63,65,66]. Only FAD-PS2 mutants, however, are able to increase the interaction between
the two organelles, facilitating ER–mitochondria Ca2+ transfer [42,54,63] by binding to mitofusin-2 [63]
and thus removing its negative modulation on organelle tethering [67] (Figure 1).

The other Ca2+ signalling pathway affected by FAD-PS2 is the store-operated Ca2+

entry (SOCE) [68,69]. In particular, it has been shown that several FAD-PS2 mutants reduce SOCE
activity in different cell types [40,41,49,70]. Interestingly, this effect is shared with FAD-PS1 mutants,
which similarly reduce this Ca2+ influx [41,49,70,71] (Figure 1). Accordingly, SOCE is potentiated in
cells where PS levels are reduced [70,72]. In PS double knock out (KO) MEFs and in B-lymphocytes
derived from patients expressing FAD-PS mutants [73], researchers have found that the levels of the
key SOCE components Stromal interaction molecule (STIM) STIM1 and STIM2 [68,69] are reduced.
Of note, alterations in SOCE and STIM1 protein level have also been reported in sporadic AD (SAD)
patients [74]. It has been proposed that SOCE is regulated by a γ-secretase-dependent mechanism,
with STIM1 being a substrate of PS1-containing γ-secretase complexes [71]. Nevertheless, we found
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lower SOCE and STIM1 protein levels in both FAD-PS1- and FAD-PS2-expressing cells treated with the
γ-secretase inhibitor DAPT [49] (Figure 1).

Of note, the overexpression of WT-PS2 often mimics the effect of its FAD mutants on Ca2+

homeostasis, although higher levels of WT-PS2 are required to obtain the alterations in Ca2+ homeostasis
elicited by FAD-PS2 mutants [40]. This latter finding could be relevant for SAD forms of the disease,
where an upregulation of the endogenous PS2 has been reported in brain AD samples due to the loss
of repressor element 1-silencing transcription factor (REST) [75]. It can be speculated that an abnormal
accumulation of PS2 holoprotein could cause Ca2+ signalling dysregulation, also typically observed in
SAD cases.

2.2. Calcium Handling in AD Mouse Models Expressing PS2-N141I

The findings reported above led us to investigate Ca2+ handling and brain network functionality
in Tg mouse lines based on FAD-PS2 mutants by means of in vitro and in vivo approaches. We took
advantage of two homozygous mouse lines expressing the PS2-N141I mutant, as described in detail
in Box 1: the double Tg line B6.152H, also known as B6.PS2APP, and the single Tg line PS2.30H [76].
Here, we simply refer to these two lines as 2TG and TG, respectively.

We were firstly interested to verify whether the same Ca2+ changes found in FAD-PS2-expressing
cell lines were also detectable in primary neuronal cultures and in acute hippocampal slices from
2-week-old animals. At this age, total brain Aβ levels in 2TG mice are still very low, but are already
detectable and higher when compared to WT and TG mice [54]. Both TG and 2TG neurons, in culture
or in situ, show a reduction in the ER Ca2+ content, when estimated indirectly, through Ca2+ release
induced by IP3-generating agonists, or directly, with the Cameleon probe D4ER [46,54].

In acute hippocampal slices, upon stimulation with IP3-generating agonists, Ca2+ release was
dramatically reduced not only in neurons but also in astrocytes of TG and 2TG mice, suggesting defective
store Ca2+ content, as well as Ca2+ entry, in these latter cell types [54]. Importantly, these changes
occur precociously and independently of APP overexpression and brain Aβ load, being found equally
in TG and 2TG mice; thus, they reflect the intrinsic capability of modulating Ca2+ handling of
FAD-PS2 mutants.

Studying neurons in vitro and in situ allowed us to also highlight relevant network properties
brought about by the PS2 mutant. In both conditions, neuronal cells, when exposed to picrotoxin,
a γ-aminobutyric acid (GABA)-A receptor antagonist, showed synchronous Ca2+ spiking activity that
was higher in TG and 2TG mice with respect to WT [54]. This type of Ca2+ spiking is independent of
Ca2+ stores and likely due to an imbalance between excitatory and inhibitory inputs that represent an
early sign of network dysfunction [77,78].

3. Functional Effects of Ca2+ Dysregulation by FAD-PS2

3.1. Autophagy

Macroautophagy (hereafter autophagy) is a process in which double-membrane vesicles (called
autophagosomes) engulf different cellular components (including misfolded proteins, portions of
cytosol, and damaged organelles) and target them to lysosomes, where they are degraded into simpler
molecular constituents.

In 2004, two seminal papers firstly suggested that PSs might be involved in autophagy
modulation [79,80]. Specifically, Esselens and co-workers reported telencephalin accumulation
within autophagosomes in PS1-KO hippocampal neurons as a result of a defective fusion of
these vesicles with lysosomes. Similarly, Wilson and colleagues observed that PS1 deficiency,
in fibroblasts and primary cortical neurons, resulted in the formation of enlarged lysosomes,
with accumulation of α- and β-synuclein. Importantly, this phenomenon was likely associated
with SOCE augmentation, suggesting that altered Ca2+ signalling may underpin the effect of PSs on
the autophagy pathway [79]. Additional investigations, mostly focused on PS1, consistently reported
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that PSs modulate autophagosome-lysosome fusion. Nevertheless, consensus has not been reached
on the underlying mechanism. Indeed, either a defective lysosomal acidification [81], a reduced
lysosomal Ca2+ content [82], or altered expression of key genes belonging to the coordinated lysosomal
expression and regulation (CLEAR) network [83,84] have been suggested as possible mechanisms
(reviewed in [85]).

As far as FAD-PS mutants are concerned, some of the discrepancies might be linked to
mutation-specific effects. Nevertheless, most studies converge on the lack of involvement of the
γ-secretase activity, whereas Ca2+ signalling dysregulation has been frequently reported as a common
feature among different FAD-PS mutants [85]. Recently, we observed that the reduced ER Ca2+ content,
consistently observed in different FAD-PS2 cell models, affects the fusion of autophagosomes with
lysosomes, thus inducing autophagosome accumulation [86] (Figure 2). Specifically, the phenomenon
appears linked to the generation of lower cytosolic Ca2+ rises upon IP3-induced release of ER Ca2+,
given that it can be mimicked by increasing the cytosolic Ca2+-buffering capacity (loading cells with
the permeable forms of Ca2+ chelating agents). Mechanistically, we found that alterations of cytosolic
Ca2+ dynamics affect the recruitment to autophagosomes of Ras-associated binding protein RAB7,
a small GTPase whose association with both autophagosomes and lysosomes tunes their fusion in the
final steps of the autophagy pathway [87]. Importantly, at variance with previous studies focused on
FAD-PS1 [81,82,88], neither the pH of lysosomes nor their Ca2+ content were found to be affected by
FAD-PS2 mutants [86]. Taken together these observations suggest that slightly different mechanisms
might underlie the effects of FAD-PS1 and FAD-PS2 on the autophagy flux, with an altered Ca2+

signalling (though by distinct pathways) being a common feature.
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Figure 2. Functional consequences of dysregulated Ca2+ signalling induced by FAD-PS2. The cartoon
represents the major dysfunctions linked to the expression of FAD-PS2 mutants at both the cellular and
brain network levels. (A) Decreased store-operated Ca2+ entry (SOCE) potentiates amyloid precursor
protein (APP) processing and Aβ42 production. (B) FAD-PS2-N141I-based mice show altered neuronal
circuits (decreased phase-amplitude coupling between cortical slow oscillations and hippocampal
fast gamma frequencies). (C) Decreased mitochondrial Ca2+ signalling and pyruvate uptake impair
mitochondrial metabolism and cell bioenergetics. (D) Reduced endoplasmic reticulum (ER) Ca2+

release blocks the recruitment to autophagosomes of the Ras-associated binding protein RAB7 and
their subsequent fusion with lysosomes. See text for details.
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3.2. Cell Metabolism and Bioenergetics

The first piece of evidence that WT-PS2 modulates mitochondrial metabolism was found in
2006, when lower mitochondrial respiration and decreased mitochondrial membrane potential (∆ψm)
were observed in PSEN2−/−, but not in PSEN1−/− MEFs [89]. Later, similar results were obtained
by Contino and co-investigators [90], who found reduced basal and maximal mitochondrial oxygen
consumption in PSEN2−/− and PS double KO MEFs (but not in PSEN1−/− MEFs), associated with an
altered morphology of the mitochondrial cristae and a dampened expression of different subunits
of the mitochondrial respiratory chain. Interestingly, in both studies, the ATP/ADP ratio was not
significantly altered by PSEN2 ablation, likely because of a compensatory upregulation of the glycolytic
flux [90]. Recently, we obtained data suggesting that, in primary cortical neurons from PS2−/− mice
(see Box 1), reduced mitochondrial respiration is associated with a defective mitochondrial Ca2+ signal
(Rossi et al., in preparation). This finding suggests that the Ca2+-mediated modulation of mitochondrial
metabolism has a key role in the effects reported above [91].

It is well established that mitochondrial activity is critical for brain health—not only is the majority
of neuronal ATP synthesized by mitochondria, but also the rate of ATP synthesis matches synaptic
activity [92]. Therefore, the effects of FAD-PS on mitochondria metabolism might be relevant to
FAD pathogenesis.

Alterations of mitochondrial activity have been reported in different AD models, mostly in Tg
mouse models harboring FAD-PS1 and FAD-APP mutations. However, consensus has not been reached
on the underlying molecular mechanisms. Indeed, either defective assembly/expression/activity of
different subunits of the mitochondrial respiratory chain [93], altered mitochondrial Ca2+ signals [94,95],
or organelle positioning/transport [96] have been suggested to contribute to the observed alterations.
In contrast, only a few studies have focused on FAD-PS2 mutants. In primary cortical neurons from 2TG
mice (see Box 1), we observed a reduced mitochondrial respiratory capacity [97]. This defect is not due
to any intrinsic alteration of the respiratory chain, but rather depends on an impaired glycolytic flux,
in turn affecting nutrient supply to mitochondria and thus organelle metabolism. However, considering
that 2TG mice also express the FAD-APP mutant, it is not clear to what extent FAD-PS2 contributes
to this phenotype. Recently, however, in different FAD-PS2-expressing cells, we observed a lower
mitochondrial activity associated with a reduced ATP synthesis [98]. Mechanistically, these alterations
depend in part on reduced mitochondrial Ca2+ signalling (due to partial depletion of ER Ca2+ content;
see above), and in part on defective mitochondrial pyruvate uptake, caused by alterations in a
signalling pathway driven by hyperactive GSK3β [98] (Figure 2), a feature commonly reported in
AD [99]. Importantly, when compared to WT, in primary cortical neurons from TG mice (see Box 1),
basal ATP levels are not significantly affected, whereas a faster ATP decrease is observed in cells exposed
to ATP-consuming stimuli. In addition, we found that these metabolic alterations are associated
with an increased susceptibility of FAD-PS2-N141I neurons to excitotoxicity induced by glutamate at
physiological concentrations [98]. Overall, these results suggest that subtle mitochondrial alterations
may be tolerated for a long time until specific stress conditions, imposing a high energy-demand,
unveil their pathological potential. This might be relevant in neurological disorders characterized by a
late onset, such as AD.

3.3. Brain Network Activity

Ca2+ dysregulation and altered APP processing, the two major hits linked to PS2-N141I expression,
could affect neural circuit dynamics during the progression of amyloidosis. By studying brain oscillatory
activity of adult 2TG mice under anesthesia, we observed that these mice develop a condition
of hippocampal hyperactivity, with increased power in the gamma frequency range (45–90 Hz),
as measured by spontaneous local field potential (LFP) signals. Curiously, age-matched TG mice also
show a similar increase in the gamma power [100]. This hyperactivity is thus independent of Aβ
production given that TG mice, unlike the 2TG animals, show neither plaque deposition nor gliosis,
and Aβ42 levels are not significantly different from those found in WT mice [100]. This also suggests
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that, in 2TG mice, network hyperactivity is not due to compensatory, protective mechanisms and likely
exerts a pathogenic role in the disease [78]. Of note, in humans, mild cognitive impairment (MCI) is
marked by hyperactivity in the hippocampus, as well as in other cortical regions, that disappears with
overt AD [101]. 2TG mice also present hyper-synchronicity, which is detectable as early as 3 months of
age [100]. This aspect is likely attributable to the early phase of Aβ accumulation and represents a
common feature in AD, often in the form of silent seizures, especially in FAD cases that show a higher
incidence of epilepsy [102–104].

Studies on the brain electrical activity of both AD patients and mouse models have recently been
focused on slow oscillations, which are directly involved in memory consolidation during sleep and
unconsciousness [105]. By detecting mesoscale Ca2+ signals at the mouse brain level, Busche and
coworkers elegantly demonstrated that functional connectivity in the slow-wave range (0.1–3 Hz) is
severely reduced in the neocortex, thalamus, and hippocampus of different AD mouse models, also on
the basis of PS1 [106]. Interestingly, slow-wave manipulation restores the functionality of brain circuits,
rescues neuronal Ca2+ [107], and enhances memory consolidation in both types of mice [106,107].

Given that PS2-N141I alters neuronal and astrocytic Ca2+ homeostasis, it might also disturb
hippocampal and cortical oscillatory activity in the slow-wave range. In mice under anesthesia,
the oscillatory activity of different brain depths can be measured by simultaneously recording LFP
signals with a multi-site linear probe. We used this approach to study brain rhythmicity at the cortical
and hippocampal levels. In both TG and 2TG mice, the total power, which mostly reflects spontaneous
activity in the low frequency range (0.1–5 Hz), is reduced, particularly at the hippocampal level,
suggesting that the PS2 mutant by itself alters the brain electrical activity [108].

Another interesting feature shared by both TG and 2TG mice is the disruption of cortico-hippocampal
oscillation coupling (Figure 2, [108]). The phenomenon, also known as phase-amplitude coupling (PAC),
occurs when the phase of slower rhythms influences the amplitude of faster ones, and it has been found
to be involved in memory consolidation and information transfer [105,109].

Unique features of 2TG mice help to mark the progression of Aβ accumulation and deposition—loss
of functional connectivity in the slow-wave range marks the onset of Aβ accumulation, similarly
to what reported in PS1-based AD mice [106], whereas low/high power imbalances characterize Aβ
deposition in plaque-seeding mice [108]. Since Aβ42 oligomers are associated with Ca2+ homeostasis
dysregulation [110–113], it is tempting to speculate that, in 2TG mice, Ca2+ handling alterations, due to
PS2-N141I, sum up or synergize with defects linked to Aβ accumulation.

4. Concluding Remarks and Possible Therapeutic Targets

At the brain circuit level, the FAD-linked PS2-N141I mutant increases excitability [54,100]
and disrupts the coupling of cortical slow-waves to hippocampal fast gamma frequencies [108].
Altogether, these findings are consistent with the high frequency of seizures and behavioral changes
found in both FAD-PS2-N141I patients [1] and other mouse models expressing PS2-N141I [114,115].
From an pathogenic point of view, major alterations are expected in subpopulations of fast spiking
interneurons that control the excitability of neuronal microcircuits, as reported in AD mouse
models [103,116–118]. These highly active cells are likely more susceptible to the metabolic failure
brought about by the aforementioned defective mitochondrial function [97,98]. One should also
consider that, in these mouse models, only the PS2 mutant is expressed in both neurons and glial
cells. In particular, astrocytes are good candidates to explain circuit dysfunctions given that, through
spontaneous Ca2+ oscillations and intercellular Ca2+ waves, they can control the excitability of large
neuronal networks [119,120], as well as modulate neighboring neurons by glio-transmission [121,122].
Furthermore, Ca2+ dysregulation and metabolic impairment in a cell type can also affect the closest
cells, thus necessitating their investigation at the in situ and in vivo level.

It can be speculated that defects in metabolic and autophagic pathways, directly dependent
on Ca2+ dysregulation (see above), are responsible for the described network hyperexcitability and
excitation/inhibition imbalances, which has also been reported in other AD models [77,103,123].
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As for Ca2+ dysregulation, a common denominator between FAD-PS1 and -PS2 mutations is
SOCE. Nevertheless, up until now, only a few studies have addressed the role of this Ca2+ pathway in
neurons, mainly because of technical problems, i.e., the difficulty of distinguishing between activation
of SOCE and voltage-operated Ca2+ channels (VOCCs) [124,125]. Recently, STIM2 and ORAI2, two key
players in SOCE machinery, have emerged as key components of neuronal SOCE, being implicated
in SOCE impairment in mushroom spines of hippocampal neurons from FAD-PS1-M146V knock-in
mice [126–128]. Although the role of SOCE in neurons is still unclear, it is important to stress that,
in excitable cells, STIM and ORAI components might also play non-canonical roles—STIM1 binds
to L-type VOCCs, inhibits their gating, and induces channel internalization [129,130] while ORAI1
increases neuronal excitability [131,132]. At variance with neuronal cells, it is now largely accepted
that SOCE is crucial for the Ca2+-based excitability that characterizes glial cells both in vitro [133,134]
and in vivo [135]. Nonetheless, studies that specifically address the role of FAD-PS2 in glial SOCE
modulation are still lacking. Considering also the complexity of microglia involvement in the onset
and progression of AD [113,136], it is conceivable that these cells might also be primarily affected in
the SOCE pathway, given that PS2 is the major core component of γ-secretase complexes expressed in
this cell type [137].

We have recently shown that there is an inverse relationship between SOCE level and Aβ42
accumulation [138], consistent with data obtained in neurons [70] and other model cells [139].
These observations suggest the possibility of rescuing the SOCE defect in neural cells while antagonizing
Aβ42 production. It has been demonstrated that, in mouse lymphocytes, SOCE is increased by
knockout of ORAI2, a channel subunit and a negative modulator of SOCE that is responsible for the
Ca2+ release-activated Ca2+ current [140]. In Aβ42-secreting neuroglioma cells, ORAI2 downregulation
also increases SOCE and reduces the Aβ42/Aβ40 ratio [138] (Figure 2). Of note, astrocytes actively
participate in Aβ production and clearance [141]. We do not know yet whether ORAI2 can play a
similar role in neurons; up until now, it looks unlikely, given that recent data by Betzprozvanny’s group
favor the hypothesis that ORAI2 is a component of a specific type of neuronal SOCE that is based
on transient receptor potential canonical 6 (TRPC6) channel and regulated by diacylglycerol [127].
What is clear is that investigating Ca2+ dysregulation in AD allows the design of alternative therapeutic
approaches to this devastating disease.

Additional therapeutic approaches could be suggested on the basis of altered bioenergetic and
autophagy pathways. Impaired mitochondria, unable to supply cellular ATP demand, cause alterations in
neuronal excitability, eventually leading to Ca2+ overload and cell death [142]. Moreover, the accumulation
of damaged mitochondria (and misfolded proteins), due to defective autophagy, further contributes to
dysfunctional neurons, causing, over the long term, neurodegeneration. Indeed, mitochondrial alterations,
and in particular defects in bioenergetic pathways, have been widely reported to be key factors not only
in AD but also in other neurodegenerative diseases [142,143]. Importantly, bioenergetic alterations are
reported in different SAD and FAD samples, appearing at the early stage of the disease, before Aβ plaque
formation [144].

The bioenergetic state of neurons is a crucial determinant of their response to glutamate, with cells
containing defective mitochondria undergoing bioenergetic crises, Ca2+ mishandling, and excitotoxicity.
The Food and Drug Administration (FDA)-approved molecule memantine targets glutamate receptors
and is among the few pharmacological treatments that provide modest benefits in AD patients,
in addition to cholinesterase inhibitors [145]. Targeting Ca2+ defects, at multiple levels, was suggested as
a possible therapeutic strategy, especially in the form of drug repurposing. Among the best candidates,
there are dantrolene, a RyR modulator [146], and isradipine, a VOCC inhibitor, as reviewed by
Chakraborty and Stutzmann [147]. Attention has to be payed to the fact that dihydropyridines, especially
nimodipine, also increase Aβ42 secretion [148]. None of these drugs are in the pipeline yet, and thus
additional interventions aiming at supporting other pathways, such as mitochondrial performance,
are desirable. In line with this, we showed that GSK3β inhibition rescues the FAD-PS2-linked
bioenergetic defect [98]. Interestingly, both PS and Aβ oligomers have been reported to interact with
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the kinase, favoring its activity [99]. Considering the fact that GSK3β activity has been observed at
MAM [149], where PSs are also enriched and Aβ peptides are generated [63,65,66], a MAM-targeted
intervention might represent a useful therapeutic strategy [98].

Finally, the impairment in mitochondrial bioenergetics described in AD models is likely linked
to a metabolic rewiring, possibly resulting in systemic alterations in the concentration of specific
metabolites. Thus, the detailed metabolic profiling of AD patient-derived peripheral samples (blood
and cerebrospinal fluid) might offer the possibility to discover new biomarkers that are helpful for
early AD diagnosis, as has been previously suggested [150,151].

5. Box 1: AD Mouse Models Based on PS2

Several mouse models have been developed to understand the pathogenesis of AD, however,
none of them are capable of reproducing the full spectrum of the human disease. The large majority
of the most used AD models are double-Tg mice based on human FAD-APP and -PS1 mutations,
both required to obtain fast amyloid accumulation, plaque deposition, and gliosis between 2 and
8 months of age. These Tg mice are widely considered to be adequate models of Aβ amyloidosis
and its inflammatory process; they allow us to study the initial stages of the disease, according to the
vision that places Aβ toxicity among the first hits in the AD cascade [6,152,153]. Nonetheless, the latter
appears necessary but not sufficient in terms of causing neurodegeneration, with other concomitant
and downstream factors playing a key role [7]. Neurodegeneration, linked to tau aggregation,
is in fact mainly present in 3xTg-AD mice, which host three human mutant genes encoding PS1,
APP, and tau [154].

Curiously, only the PS2-N141I mutation has been used to generate AD mouse models based
on PSEN2. In terms of the latter, we used two homozygous lines: the double Tg (2TG) B6.152H,
also known as B6.PS2APP, and the single Tg (TG) PS2.30H [76]. The latter line expresses the human
PS2-N141I under the prion protein promoter, with background C57Bl/6 > 90% [155]. The B6.152H
line was instead obtained by co-injection of human PSEN2, carrying the N141I mutation—under the
mouse prion protein promoter—and the human APP isoform 751, carrying the APP-KM670/671NL
Swedish mutation—under the Thy1.2 promoter—into zygotes of the C57Bl/6 strain (background
C57Bl/6 100%) [76].

The PS2.30H line was originally used to obtain hemizygous PS2APP mice by crossing PS2.30H
females with APP-Swedish males of the BD.AD147.71H line, with background C57Bl/6 > 90% [155].
Up to 12 months of age, TG mice show neither plaques nor Aβ accumulation in the brain [100].
The histopathological traits of PS2APP and B6.PS2APP are very similar, showing an exponential growth
of Aβ accumulation and plaques at 3 and 6 months of age, respectively [76,155]. Plaque deposition
starts in the frontal cortex, subiculum, and hippocampus; increases for up to 12–16 months of age;
and correlates with the level of human APP transcript [76,155]. Behavioral deficits have only been
characterized thoroughly in PS2APP mice, with spatial learning (Morris water maze) and memory
defects appearing at 8 months [155]. Biochemical and functional differences between the two closely
related models are also present [156,157]. In our studies, TG and 2TG mice are maintained and used
in homozygosity, a condition that allows for the reduction of the variability of APP expression [76].
The two lines express PS2 at a similar level, about twice that found in C57Bl/6 WT mice, used as
controls [54].

B6.152H mice have also been used in hemizygosity (B6.152) to study different aspects of the
AD phenotype [158], or to generate TauPS2APP triple Tg mice, upon crossing the B6.152H line
with the Tau-overexpressing pR5 line [159,160] that expresses the human tau-40 isoform under the
Thy1.2 promoter [161]. Of note, a PS2-/- mouse line has been obtained by neomycin insertion in the
C57Bl/6 × 129Sv genetic background [162,163]. This line does not show alterations of the endogenous
APP processing and it is useful in terms of studying the physiological role of PS2 and possible
loss-of-function defects associated with PS2-N141I expression [100,108]. It was also used to produce
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PSEN conditional double KO mice and study neurodegeneration and memory impairments due to PS
deficiency [164].

Other AD mouse models, based on PS2-N141I, have been generated under different promoters and
genetic backgrounds. Comparison of their histopathological, functional, and behavioral properties is
beyond the scope of this review. The latest generation of AD mouse models avoids the overexpression
of FAD mutations and is focused on risk genes, such as Triggering receptor expressed on myeloid cells
2 (TREM2) [165] and Apolipoprotein E4 (APOE4) [166]. More than 200 AD mouse models are now
available; detailed information about these AD animal models is available at the Alzforum website
(https://www.alzforum.org/). It is also necessary to mention that doubts have recently been raised
on the use of Tg mice to study human AD, given that, at variance with the trascriptomic profiles of
physiological human and rodent brain aging, which appear very similar, those of AD brains are largely
different between humans and rodents, and even between different Tg AD mouse lines [167].
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