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Abstract: Drought is expected to increase in frequency and severity due to global 

warming, and its impacts on vegetation are typically extensively evaluated with climatic 

drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index 

(SPEI). We analyzed the covariation between the SPEIs of various time scales and the 

anomalies of the normalized difference vegetation index (NDVI), from which the 

vegetation type-related optimal time scales were retrieved. The results indicated that the 

optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 

10 and 12 months, which were considerably longer than the grassland, meadow and 

cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time 

scales were used, the SPEI could better reflect the vegetation’s responses to water 

conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased 

by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and 

quantified the different responses of vegetation growth to drought during the growing 
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season (April–October). The results revealed that the frequency of drought has increased in 

the 21st century with the drying trend occurring in most of China. These results are useful 

for ecological assessments and adapting management steps to mitigate the impact of 

drought on vegetation. They are helpful to employ water resources more efficiently and 

reduce potential damage to human health caused by water shortages. 

Keywords: drought; SPEI; optimal time scales; NDVI; ecological assessment; China 

 

1. Introduction 

Drought is a complex natural hazard that affects water resources, natural ecosystems, agriculture, 

and society more frequently than any other natural disaster [1–3]. Over 900 million people worldwide 

were affected by drought during the period of 1999 to 2010 [4]. Drought has occurred in most places 

of the world, including wet and humid regions [5,6], and it is expected to increase in frequency  

and severity due to decreasing precipitation and increasing evapotranspiration driven by global  

warming [7–10]. In China, drought has become one of the most severe natural disasters [6], and the 

affected area has increased in the past 50 years [11]. Serious drought events occur frequently in China, 

especially in Yunnan Province [12,13]. Many efforts have been made to develop methodologies to 

assess the drought. The most widely used method is to propose a climatic drought index, which is 

simple to use to reflect the fluctuation of water conditions [14–16]. 

There are several climatic drought indices that are widely used for evaluating drought conditions, 

including the Palmer Drought Severity Index (PDSI) [17], the Standardized Precipitation Index  

(SPI) [18] and the Standardized Precipitation Evapotranspiration Index (SPEI) [19]. The PDSI is based 

on the supply and demand concept of the water balance equation; however, the primary limitation of 

the PDSI is that it has a fixed temporal scale and autoregressive characteristics [20]. The SPI is a 

probabilistic precipitation approach that is based on the cumulative precipitation available and 

incorporates different time scales [21], but it only involves precipitation and does not consider other 

variables (e.g., temperature and evapotranspiration), which can potentially affect the frequency of 

drought [19]. The SPEI, however, is based on the monthly water balance derived from both 

precipitation and potential evapotranspiration (PET), and it can be compared with the self-calibrated 

PDSI [22]. 

The main advantages of SPEI over other climatic drought indicators are its ability to identify the 

evapotranspiration and temperature variability in the drought assessments [23]. The SPEI is more 

appropriate to investigate the characteristics of drought in that it is temporally flexible and spatially 

consistent, and reflects the water deficits at different time scales; thus, it has become a significant tool 

to assess moisture conditions [24]. However, due to the complexity of different vegetation’s responses 

to water balance at different time scales, the SPEI at fixed time scales (e.g., 12-month time scale, SPEI-12) 

is usually applied to investigate the drought trend [15,25], which tends to produce system biases when 

the region contains different types of vegetation. 

As the impact of drought on the growth of vegetation varies among different species and leads to 

distinct responses according to the different time scales considered [26,27], it is essential to determine 
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the vegetation type-specific optimal time scale of SPEI for each type of vegetation before assessing 

drought by SPEI. Additionally, although the climatic drought indicators are important tools to 

investigate the extent of drought, they contain no vegetation-specific information that might directly 

reflect different physiological strategies for coping with water deficits. Thus, it is necessary to build a 

linkage between the climatic drought index and the vegetation’s response index. An appropriate SPEI 

with an optimal time scale should have a good correlation between the SPEI and physiological  

drought-related indicators. The normalized difference vegetation index (NDVI) is widely used to 

monitor the vegetation activity and its anomaly is a good surrogate to reflect vegetation’s physiologic 

drought conditions [28–30]. As a result, through the comparison of correlation coefficients between the 

SPEIs of various time scales and the anomaly of NDVIs, the vegetation type-related optimal time 

scales could be revealed. That is, the SPEI with the optimal time scale should have the strongest 

correlation with the NDVI anomalies. 

In this study, we aimed to estimate the vegetation type-related optimal time scales of SPEI by 

analyzing the covariation between the SPEIs of various time scales and NDVI anomalies. After that, 

based on these estimated optimal time scales of SPEI (SPEIopt), the spatio-temporal characteristics of 

drought were investigated and then compared with those derived from the SPEI-12. Finally, regression 

models were built to compare the responses of vegetation to the drought based on both the SPEI-12 

and the SPEIopt during the growing season (April to October). 

2. Data and Methods 

2.1. Climatic Data and Multi-Scalar SPEI Drought Indicator 

The climatic data employed in this study include the monthly average temperature (MAT) and the 

monthly precipitation (P) of 505 meteorological stations across the entirety of China from 1960 to 

2013. These precipitation and temperature data are collected from the National Climate Center of the 

Chinese Meteorological Administration (CMA). The homogeneity and reliability of the monthly 

meteorological data are checked and firmly controlled by the CMA before its release [15]. This study 

applies 5-year running means before and after the missing data to ensure that the time series are 

continuous. The stations with missing meteorological data for more than 12 consecutive months are 

rejected and not used in this study. 

The SPEI is a site-specific drought indicator with multi-time scales. The calculation of SPEI is based 

on the monthly average temperature and precipitation. There are three major steps to calculate the SPEI 

with different time scales [19,31]. The first is to calculate the potential evapotranspiration (PET) based 

on the scheme of Thornthwaite [32]. The second is to calculate the water balance at various time scales 

(P-PET). The last is to normalize the water balance into a log-logistic probability distribution to obtain 

the SPEI series. The SPEI time series obtained for different time scales represent the cumulative water 

balance over the previous n months [33,34], and this study considers the time scales from 1 to  

12 months to cover the impact of the inter-annual variability of SPEI on vegetation. As the SPEI is a 

standardized value, it could be compared with other SPEI values over time and space, and also allows 

one to determine the patterns of spatial and temporal variability, trend and extent of drought [23,35]. The 

drought categories (i.e., groups) based on SPEI values are listed in Table 1 [15,24,34]. The time scales of 
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SPEI are separated into three groups: short time scales (1–4 months), medium time scales (5–9 months) 

and long time scales (10–12 months) [36]. The study period is from 1982 to 2011 to match the time 

range of NDVI dataset. The representative vegetation type for each meteorological station is 

determined from a 1:1,000,000 vegetation map of the People’s Republic of China [37], and the  

505 meteorological stations cover most regions in China with six major land cover types, including 

needle-leaved forest, broadleaf forest, shrubland, grassland, meadow and cultivated vegetation  

(Figure 1).  

Table 1. The drought categories based on SPEIs. 

SPEI Drought Category Probability 

≥2.00 Extreme wet 0.02 
[1.50, 2.00) Severe wet 0.06 
[1.00, 1.50) Moderate wet 0.10 

(−1.00, 1.00) Normal 0.65 
(−1.50, −1.00] Moderate drought 0.10 
(−2.00, −1.50] Severe drought 0.05 

≤−2.00 Extreme drought 0.02 

 

Figure 1. The distribution of the meteorological stations and the major vegetation types of China. 

2.2. Remote Sensing Data 

The normalized difference vegetation index (NDVI) derived from remote sensing data is defined as 

the ratio of the difference between near-infrared reflectance and red visible reflectance to their  

sum [38]. It is widely used to detect the spatio-temporal characteristics of drought [26,39–44]. The 

Global Inventory Monitoring and Modeling Systems (GIMMS3g) NDVI dataset used in this study is 

produced from the National Oceanographic and Atmospheric Administration (NOAA) with the 

Advanced Very High Resolution Radiometer (AVHRR) instruments [45]. During the pre-processing, 
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data with large solar zenith angle are excluded and maximum value composite algorithm is used to 

obtain NDVI for each two week period [46]. The calibration is employed to alleviate known 

limitations of the AVHRR measurements induced by intersensor calibration, orbital drift and 

atmospheric contamination [38,47]. The GIMMS3g NDVI dataset has a spatial resolution of 8 km and 

a temporal resolution of 15 days [48], and it has been widely used for global vegetation monitoring due 

to its longest time range [49,50]. The quality and consistency of this dataset are assured by correcting 

for sensor degradation, sensor inter-calibration differences, solar zenith and viewing angles, volcanic 

aerosols, atmospheric water vapor and cloud cover [33]. To correspond with the temporal resolution of 

site-specific SPEI time series, the NDVI series are transformed into a monthly composited dataset 

based on the maximum value composite (MVC) method. The remote sensing data (NDVI) is extracted 

by the point that was corresponding to the coordinates of the meteorological stations. The extracted 

value of a specific meteorological station in the remote sensing data is the central value of the pixel 

that the point is located. As we directly analyze the relationship between the station-based SPEI and the 

corresponding NDVI, it could avoid some potential uncertainties caused by spatial interpolation of 

climate observations. 

As the variation of NDVI is widely used to monitor drought-related environmental stress, we 

develop an NDVI anomaly index, NDVIanomaly, to reflect the variation of vegetation activity. For a 

specific meteorological station: NDVIୟ୬୭୫ୟ୪୷(ݕ,݉) = (݉,ݕ)௩௔௟௨௘ܫܸܦܰ − ௔௩௚(݉)ට1ܰܫܸܦܰ ∑ (݉,ݕ)௩௔௟௨௘ܫܸܦܰ) − ௔௩௚(݉))ଶே௡ୀଵܫܸܦܰ  
(1)

where y and m separated represent the year and the month, ܰܫܸܦ௩௔௟௨௘(ݕ,݉) represents the value of 
NDVI for a specific year and month, ܰܫܸܦ௔௩௚(݉) represents the average value of the NDVI for a 

special month, N is the total year from 1982 to 2011 (N = 30). The calculation of NDVIanomaly is based 

on the ratio of the differences between the NDVI value and the corresponding NDVI averaged value 

(the multi-year mean of the specific month) to the standard deviation. As a result, the mean of 

NDVIanomaly is 0 and the standard deviation of NDVIanomaly is 1. As the NDVIanomaly value is the 

standardized value, it could be compared in both time and space. 

2.3. Drought Assessment Index 

There are two widely used drought assessment indices; one is the ratio of meteorological stations 

involved droughts (Pi), and the other is the drying trends based on each meteorological station (aj).  

These indices can better reflect patterns of spatial and temporal variability, trend and frequency of 

drought on a large scale [51]. 

The ratio of meteorological stations involved droughts (Pi) is employed to assess the frequency of 

drought and the extent of drought impact on vegetation growth over temporal evaluation: 

௜ܲ = ܯ݉ × 100% (2)

where m is the number of meteorological stations that involved droughts based on SPEI  

(SPEI ≤ −1) [34,52], M is the number of all the meteorological stations (M = 505), and i is the specific 

year during 1982 to 2011. 
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The meteorological station-based drying trend (aj) is used to reflect the drying trends across China 

over spatial distribution: y(j) = ௝ܽ × x(j) + ௝ܾ (3)

where j is the meteorological station, x is the time series of SPEI of each meteorological station, and aj 

and bj are the regression coefficients. 

2.4. Statistical Methods 

As the calculated value of SPEI depended on the time scales of water balance, it was necessary to 

consider the rationality of the selected time scale on the drought responses of various vegetation types.  

To determine the vegetation type-specific time scale, that is, the optimal time scales of various 

vegetation types, we should combine the climatic drought indicator (e.g., SPEI) determined by climatic 

factors with the physiological drought indicator of vegetation (e.g., NDVI anomaly) determined by 

water stress. 

Based on the multi-scalar SPEI (1–12 months) and the monthly NDVIanomaly (April–October) during 

the growing season at different meteorological stations, the Pearson correlations were conducted for  

7 monthly NDVI anomaly series (i.e., April–October) vs. 12 SPEI series (i.e., SPEIs with the time 

scale of 1-, 2-, …, and 12-month). That is, there were 84 correlation coefficients for each 

meteorological station. The correlation coefficients that passed the significance test (p < 0.05) and their 

corresponding time scales were kept for further study. The meteorological stations were grouped by 

the vegetation types. For each vegetation type, the highest frequency of the time scale of SPEI with the 

maximum correlation coefficients for each meteorological station was picked up as the optimal time 

scale (SPEIopt) for this vegetation type. 

The optimal time scales of various vegetation types (SPEIopt) were compared with the fixed  

12 month time scale (SPEI-12) to show the degree of the responses of vegetation to the drought. To 

analyze the spatio-temporal patterns of drought at annual scale, the NDVI value which could represent 

the optimum growth conditions of vegetation activity in a year should be employed to show the 

vegetation activity. The maximum NDVI value a year mainly concentrated in growing season, and 

could better reflect the exuberant vegetation activity [53]. The drought assessment indices based on the 

SPEI time series were used to assess the characteristics of the drought. The regression models for 

different vegetation types were compared based on the relationship between the anomaly of NDVI and 

the SPEI with both the fixed (SPEI-12) and the vegetation type-dependent optimal time scale (SPEIopt). 

3. Results 

3.1. Drought Derived from the SPEI-12 

The SPEI with a specific time scale was helpful to monitor the drought in that it considered the 

cumulative water balance. However, many studies [25,54] used a fixed 12 month time scale of SPEI 

(SPEI-12) as it is simply calculated to evaluate the drought. Figure 2a showed the frequency of drought 

from 1982 to 2011 based on the ratio of the number of meteorological stations when the SPEI was less 

than −1 (i.e., SPEI ≤ −1) to the whole number of the meteorological stations.  
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Figure 2. (a) The frequency of drought from 1982 to 2011 based on the SPEI-12; (b) The 

drying trend based on the SPEI-12 time series for each meteorological station over China. 

The value of −1 was a critical value of drought (Table 1). When the SPEI of a specific 

meteorological station was less than −1, it was regarded as the drought. The temporal evaluation of 

drought based on the Pi showed the frequency of drought has increased especially from the beginning 

of the 21st century (Figure 2a). Figure 2 showed the drying trend based on the SPEI time series  

(SPEI-12) over China for each meteorological station. For a specific meteorological station, if the 

SPEI time series had a decreased trend, it meant that it had a drying trend, but the value of SPEI was 

not necessarily less than −1 (for example, from severe wet to moderate wet). The spatial evaluation of 

drought based on the aj showed that the drying trend and extent have covered most of China  

(Figure 2b). Approximately 434 out of 505 meteorological stations, distributed in most regions in 

China, exhibited a drying trend. The meteorological stations that passed the significance test (p < 0.05) 

were concentrated in Northern China. However, Southern China also exhibited the drying trend, 

although most of the stations did not pass the significance test. The regions that had wetting trends 

were mainly located at regions in the east part of central China and Southeast China. 
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3.2. Drought Derived from the Optimal Time Scales of SPEI 

The SPEI with the optimal time scales (i.e., SPEIopt) considered the characteristics of different 

vegetation types and their sensitivity to accumulated water balance. The statistics of the optimal time 

scales of SPEI and the related season for various vegetation types are shown in Table 2. The optimal 

time scales of the needle-leaved forest, the broadleaf forest and the shrubland were separately 11, 10,  

12 months, and they all were related to the long time scales (10–12 months). For the grassland, the 

meadow and the cultivated vegetation, the optimal time scales were 3, 4, and 2 months, respectively, 

and they responded to the short time scales (2–4 months). 

Table 2. The optimal time scales of SPEIs for different vegetation types. 

Vegetation Types 
Number of 

Stations 
Optimal Time 

Scales (months) 
Season 

Needle-leaved forest 39 11 Summer 
Broadleaf forest 26 10 Summer 

Shrubland 46 12 Summer 
Grassland 39 3 Summer 
Meadow 32 4 Autumn 

Cultivated vegetation 323 2 Summer 

As differences exist in the SPEI time scales for various vegetation types, the correlation coefficients 

between the SPEIs and the NDVIanomaly also exhibited discrepancies. The correlation coefficients based 

on the corresponding optimal SPEI time scales (SPEIopt) for the vegetation types increased compared 

with the fixed SPEI time scale (SPEI-12) (Table 3).  

Table 3. The improvements of correlation coefficients for SPEIopt. 

Vegetation Types 
Increased Proportion of the 
Correlation Coefficients (%) 

Needle-leaved forest 5.9 
Broadleaf forest 10.6 

Shrubland 0 
Grassland 20 
Meadow 16.3 

Cultivated vegetation 28.4 

All the vegetation types except the shrubland exhibited increased correlation coefficients. As the 

optimal time scale of shrubland was 12 months, there was no difference in the correlation coefficients 

for shrubland. For the forests, the increased proportion of the correlation coefficients were separately 

approximately 5.9% and 10.6% compared with the SPEI-12. The forests had similar optimal time scales 

(the needle-leaved forest: 11 months; the broadleaf forest: 10 months) compared with the SPEI-12, and 

the differences of SPEI values were small among the long time scales (10–12 months). For the 

grassland, the meadow and the cultivated vegetation, the optimal time scales were 3 months, 4 months 

and 2 months, respectively. The optimal time scales for these three vegetation types were much shorter 

than the SPEI-12, and the increased proportion of the correlation coefficients were 20%, 16.3% and 
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28.4%. In sum, the SPEI with optimal time scale (SPEIopt) had better responses to drought than the 

fixed 12-month SPEI (SPEI-12), especially for the grassland, meadow and cultivated vegetation. 

The vegetation type-dependent SPEIopt could provide us with more specific and comprehensive 

understanding of the spatio-temporal characteristics of drought (Figure 3). From the perspective of 

temporal evolution, the frequency of drought has increased especially from the 21st century during the 

period 1982–2011 (Figure 3a).  

 

Figure 3. (a) The frequency of drought from 1982 to 2011 based on the SPEIopt; (b) The 

drying trend based on the time series of SPEIopt. 

The R2 based on the SPEIopt was approximately 7% higher in R2 than that derived from the  

SPEI-12. From the perspective of spatial distribution of drought in China, the drying trend was obvious 

during the period from 1982 to 2011 (Figure 3b). The 395 out of 505 meteorological stations exhibited 

the drying trend. The meteorological stations that passed the significance test (p < 0.05) were mostly 

concentrated in Northern China compared with the SPEI-12. Southern China also had a drying trend, 

which was not as widely spread as that based on the SPEI-12. 
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3.3. Comparison of Large-Scale Drought Events 

Two large-scale drought events obtained from the temporal evolution of the SPEI time series.  

The first drought event happened during the period from 1999 to 2001, and the other occurred from 

2009 to 2011 (Figures 2a and 3a). The spatial distribution of these two large-scale drought events was 

shown in Figure 4. The severity of large-scale drought events from 1999 to 2001 based on the SPEI-12 

(Figure 4a) was more serious than that employed the SPEIopt for various vegetation types (Figure 4b).  

 

Figure 4. (a) The spatial distribution of large-scale drought events from 1999 to 2001 

based on the SPEI-12; (b) The spatial distribution of large-scale drought events from 1999 

to 2001 based on the SPEIopt; (c) The spatial distribution of large-scale drought events from 

2009 to 2011 based on the SPEI-12; (d) The spatial distribution of large-scale drought 

events from 2009 to 2011 based on the SPEIopt. 

The spatial pattern of drought with the SPEI-12 was mainly concentrated in Northeast China and 

also east of central China. The severity of the drought was more serious in Northeast China and lesser 

east of central China based on the SPEIopt. The drought that occurred from 2009 to 2011 based on the 

SPEI-12 (Figure 4c) had less clear pattern than the SPEIopt (Figure 4d). The drought based on the 

SPEIopt was more concentrated in Southern China and Northern China, especially in Northeast China. 

Central China, however, did not have obvious drought signals based on the SPEIopt. 
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An extreme drought event occurred in Yunnan Province from October of 2009 to March of 2010 

due to decreased precipitation and increased temperature [55]. The SPEIs with both the SPEI-12 and 

the optimal time scale (SPEIopt) detected the extreme drought conditions (Figure 5a,b). Most 

meteorological stations based on the SPEIopt detected the drought (SPEI ≤ −1), while the drought 

detected by the SPEI-12 did not show obvious drought conditions. The correlation between the 

NDVIanomaly and the SPEI-12 was not significant (Figure 5c) which indicated that the SPEI-12 could 

not reflect the impact of drought on the variations of NDVI, while the NDVIanomaly and the SPEIopt 

showed a significant positive correlation (r = 0.425, p < 0.05) (Figure 5d), The drought based on the 

SPEIopt also showed a clearly spatial difference from the west to the east, and the droughts in the 

middle and east were much more serious than that in the west. The spatial pattern and the severity  

of the drought based on the SPEIopt were in line with previous studies concerning the drought in 

Yunnan [55,56]. 

 

Figure 5. The extreme drought event in the Yunnan province based on the SPEI-12 (a) and 

on the SPEIopt (b); The base map is the variation of NDVI in October of 2009; (c) The 

scatter plot based on the SPEI-12; (d) The scatter plot based on the SPEIopt. It considers 

both the growing season (April to October) and the time when the extreme drought  

condition happened. 
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3.4. Regression Models Between Vegetation Growth and Drought with Both SPEI-12 and SPEIopt 

To compare the responses of various vegetation types to the drought during the growing season,  

the regression models between the NDVIanomaly and the time series of SPEI with both the optimal time 

scales and the SPEI-12 were employed. The regression analysis between the anomaly of NDVI and the 

SPEIopt (SPEI-12) could reflect the responses of vegetation to drought, and all the vegetation types 

passed the significance test. Based on the SPEI-12 (Figure 6), the vegetation types located in both the 

wet regions and the arid regions showed similar results, and the differences among all the vegetation 

types were not evident. The responses of vegetation to the drought based on the SPEIopt (Figure 7) 

showed better results than the SPEI-12. The coefficients of determination (R2) for all the vegetation 

types have increased (2.1% to 12.6%), except for shrubland. The vegetation types such as grassland, 

meadow and cultivated vegetation located in the arid sites had a higher percentage of increased R2 than 

the other three vegetation types. They were related to the short time scales and usually had water 

deficits during the growing season, so they were more sensitive to the water conditions. The forests 

were usually located in water surplus sites and corresponded to the long time scales close to the  

SPEI-12; thus, the R2 improvement was relatively small. 

 

Figure 6. The responses of vegetation to the drought based on the SPEI-12. 



Int. J. Environ. Res. Public Health 2015, 12 7627 

 

 

 

Figure 7. The responses of vegetation to the drought based on the SPEIopt. 

4. Discussion 

The SPEI with various time scales is a new climatic drought indicator that could contain 

information on the evapotranspiration on drought, thereby making it possible to reflect the changes in 

the water demands under the background of global warming [23]. This study aimes to determine  

the optimal time scales of SPEI (SPEIopt) for various vegetation types, and further analyze the  

spatio-temporal characteristics of the drought and compare two large-scale drought events and extreme 

drought events based on the SPEI with both the SPEI-12 and the optimal time scales (SPEIopt). The 

covariation between the SPEIs with various time scales (1–12 months) and the anomalies of the 

normalized difference vegetation index (NDVI) is employed to determine the optimal time scales for 

various vegetation types. To the best of our knowledge, this is the first study to reflect the differences 

among various vegetation types based on the different SPEI time scales in China. The responses of 

vegetation to the drought are different for each land covers and the different responses of vegetation to 

the drought are investigated based on the regression models between the anomaly of NDVI and the 

SPEI with the optimal time scales. 

Humid vegetation types, such as needle-leaved forest, broadleaf forest and shrubland, and arid 

vegetation types, such as grassland, meadow and cultivated vegetation, are all affected by drought, 

which indicate that the persistence of water deficit (i.e., the drought time scale) could play a significant 

role in determining the sensitivity of vegetation types to drought. For needle-leaved forest, broadleaf 

forest and shrubland, the optimal time scales are related to long time scales from 10 to 12 months. This 

indicates that the forests could be insensitive to short droughts, but the long and intense drought could 

affect their physiological structure [57,58]. These vegetation types may have conservative water and 

deeper root systems that can mitigate the effects of short water shortages on vegetation [59,60].  
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The optimal time scales for grassland, meadow and cultivated vegetation correspond to short time 

scales from 2 to 4 months. The arid vegetation types have rapid reactions when water deficits below 

the normal conditions occur, and they could be explained by the fact that the vegetation types are more 

sensitive to atmospheric drought [61] and have physiological anatomical and functional strategies to 

rapidly adapt to the changing water availability [33,62]. 

The correlation coefficients based on the optimal time scales for various vegetation types are higher 

than that based on the fixed time-scale (SPEI-12). For the forests, such as needle-leaved forest and 

broadleaf forest, the increased proportions of the correlation coefficients are relatively lower. This could 

be explained by the fact that they all related to the time lags from 10 to 11 months, which is close to the 

SPEI-12. The forests exhibit strong responses to the drought with long time scales (10–12 months) [33], 

and the determination of the optimal time scales could also reflect the differences in the forest types. 

The grassland, the meadow and the cultivated vegetation have increased correlation coefficients, 

mainly in that they respond to the short time scales (2 to 4 months), which show evident differences 

compared with the SPEI-12. The shorter time scales show the rapid responses of these three vegetation 

types to the drought, and as the time scales increased to medium and long time scales, the responses 

are weaker [26]. These results are meaningful in that they show the significance of detecting the 

optimal time scales for various vegetation types. 

The spatio-temporal characteristics of drought based on the SPEI with the optimal time scales for all 

the vegetation types show that the frequency of drought has increased during the 21st century, and a 

drying trend has occurred in most of China. This result is similar to those of previous studies 

employing various other methods to investigate the drought situation in China [15,16,63]. Two  

large-scale drought events based on the SPEI with both the SPEI-12 and the optimal time scales 

(SPEIopt) show discrepancies. The large-scale drought event from 1999 to 2001 is mainly concentrated 

in Northern China, where the major vegetation types are grassland and cultivated vegetation, with 

relatively short time scales; thus, there exist evident differences between the two SPEI time scales and 

the severity of drought is less serious based on the short time scales. The large-scale drought event 

from 2009 to 2011 is distributed in North China and South China. The situation in North China is more 

serious based on the SPEI-12, while Southern China does not show clear differences, mainly because 

forests and shrubland are located in these regions with related long time scales close to the SPEI-12. 

The extreme drought event in Yunnan Province shows a better spatial pattern based on the SPEIopt,  

and these results are in line with many studies concerning the extreme Yunnan Province drought  

event [55,56]. 

The regression models between the NDVIanomaly and the SPEI with both the SPEI-12 and the 

optimal time scale (SPEIopt) for various vegetation types are compared, and the results show that the 

relationship between the NDVIanomaly and the SPEIopt has better linear trends, as the R2 increased by 

2.1% to 12.6%. This further indicates that the vegetation type-specific SPEIopt for various vegetation 

types is better at showing the differences in the responses of water deficits. The grassland, meadow 

and cultivated vegetation display increased R2 values relative to the other three vegetation types in that 

they are related to the short time scales (2–4 months) that have clear differences with the SPEI-12. The 

water deficits with short time scales have large impacts on vegetation located in the arid/sub-arid sites 

where the water balance constrains the main physiological processes of vegetation relative to mesic  

sites [19,27,64–67]. The forests have relatively smaller increases in R2 in that they are related to the long 
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time scales close to the SPEI-12. The water conditions are no longer the limiting factor for vegetation 

growth, and temperature and radiation are much more important [21]. 

The results show that the impact of drought on vegetation varies among different vegetation types. 

The aridity and associated characteristics could also explain the spatial differences of the drought. 

There are still other factors such as wildfire disturbances, tree mortality and land cover change that 

could lead to NDVI decreases. Ruling out these infrequent incidents should prove helpful to study 

drought in further studies. Given the large spatial heterogeneity of China, additional studies are needed 

to assess the impact of local conditions, such as the topography, on the vegetation’s responses to the 

drought at different time scales. Our findings are helpful in ecological assessments and understanding the 

impacts of drought on vegetation. 

5. Conclusions 

The climatic drought index (SPEI) derived from meteorological observations was extensively used 

to evaluate potential impacts of water deficits on terrestrial ecosystems. In this study, we estimated the 

optimal time scales for different vegetation types and found that forests had much longer time scales 

(10 to 12 months) than those of grassland, meadow and cultivated vegetation (2 to 4 months), which 

implied that the prior precipitation had different impacts on different vegetation types. When the 

vegetation type-related optimal time scales were used, the SPEI could better reflect the vegetation’s 

responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies 

increased by 5.88% to 28.4%. The SPEI with the optimal time scales further indicated that the extent 

of drought across the entirety of China displayed an increasing trend during the period from 1982 to 

2011, with the frequency of drought increasing during the 21st century and the drying trend occurring 

in most of China. The regression analysis between the anomaly of NDVI and the SPEI with the 

optimal time scales for various vegetation types showed that R2 increased by 2.1% to 12.6%. These 

results are helpful in assessing the sensitivity of vegetation to the drought and adapting appropriate 

management strategies to mitigate the impact of increasing droughts on vegetation growth. 
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