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Inferring broken detailed balance in the absence
of observable currents
Ignacio A. Martínez 1,5, Gili Bisker 2,5, Jordan M. Horowitz 3,4 & Juan M.R. Parrondo1

Identifying dissipation is essential for understanding the physical mechanisms underlying

nonequilibrium processes. In living systems, for example, the dissipation is directly related to

the hydrolysis of fuel molecules such as adenosine triphosphate (ATP). Nevertheless,

detecting broken time-reversal symmetry, which is the hallmark of dissipative processes,

remains a challenge in the absence of observable directed motion, flows, or fluxes.

Furthermore, quantifying the entropy production in a complex system requires detailed

information about its dynamics and internal degrees of freedom. Here we introduce a novel

approach to detect time irreversibility and estimate the entropy production from time-series

measurements, even in the absence of observable currents. We apply our technique to two

different physical systems, namely, a partially hidden network and a molecular motor. Our

method does not require complete information about the system dynamics and thus provides

a new tool for studying nonequilibrium phenomena.
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Irreversibility is the telltale sign of nonequilibrium dissipation1,2.
Systems operating far-from-equilibrium utilize part of their free
energy budget to perform work, while the rest is dissipated into

the environment. Estimating the amount of free energy lost to
dissipation is mandatory for a complete energetics characterization
of such physical systems. For example, it is essential for under-
standing the underlying mechanism and efficiency of natural
Brownian engines, such as RNA-polymerases or kinesin molecular
motors, or for optimizing the performance of artificial devices3–5.
Often the manifestation of irreversibility is quite dramatic, signaled
by directed flow or movement, as in transport through mesoscopic
devices6, traveling waves in nonlinear chemical reactions7, directed
motion of molecular motors along biopolymers8, and the periodic
beating of a cell’s flagellum9,10 or cilia11. This observation has led
to a handful of experimentally validated methods to identify irre-
versible behavior by confirming the existence of such flows or
fluxes3,12–14. However, in the absence of directed motion, it can be
challenging to determine if an observed system is out of equili-
brium, especially in small noisy systems where fluctuations could
mask any obvious irreversibility15. One such possibility is to
observe a violation of the fluctuation–dissipation theorem16–18;
though this approach requires not just passive observations of a
correlation function, but active perturbations in order to measure
response properties, which can be challenging in practice. Thus, the
development of noninvasive methods to quantitatively measure
irreversibility and dissipation are necessary to characterize none-
quilibrium phenomena.

Our understanding of the connection between irreversibility
and dissipation has deepened in recent years with the formulation
of stochastic thermodynamics, which has been verified in
numerous experiments on meso-scale systems19–22. Within this
framework, it is possible to evaluate quantities as the entropy
along single nonequilibrium trajectories23. A cornerstone of this
approach is the establishment of a quantitative identification of
dissipation, or more specifically entropy production rate _S, as the
Kullback–Leibler divergence (KLD) between the probability PðγtÞ
to observe a trajectory γt of length t and the probability Pð~γtÞ to
observe the time-reversed trajectory ~γt

1,24–29:

_S � _SKLD � lim
t!1

kB
t
D½PðγtÞjjPð~γtÞ�; ð1Þ

where kB is Boltzmann’s constant. The KLD between two
probability distributions p and q is defined as D½pjjq� �P

x pðxÞ ln ðpðxÞ=qðxÞÞ and is an information-theoretic measure
of distinguishability30. For the rest of the paper we take kB= 1, so
the entropy production rate has units of time−1. The entropy
production _S in Eq. (1) has a clear physical meaning. It is the
usual entropy production defined in irreversible thermodynamics
by assuming that the reservoirs surrounding the system are in
equilibrium. For instance, in the case of isothermal molecular
motors hydrolyzing ATP to ADP+P at temperature T, the
entropy production in Eq. (1) is _S ¼ rΔμ=T � _W=T , where r is
the ATP consumption rate, Δμ = μATP− μADP− μP is the
difference between the ATP, and the ADP and P chemical
potentials, and _W is the power of the motor31. In many experi-
ments, all these quantities can be measured except the rate r.
Therefore, the techniques that we develop in this paper can help
to estimate the ATP consumption rate, even at stalling conditions.

The equality in Eq. (1) is reached if the trajectory γt contains all
the meso- and microscopic variables out of equilibrium. Hence
the relative entropy in Eq. (1) links the statistical time-reversal
symmetry breaking in the mesocopic dynamics directly to dis-
sipation. Based on this connection, estimators of the relative
entropy between stationary trajectories and their time reverses
allow one to determine if a system is out of equilibrium or
even bound the amount of energy dissipated to maintain a

nonequilibrium state. Such an approach, however, is challenging
to implement accurately as it requires large amounts of data,
especially when there is no observable current32.

Despite the absence of observable average currents, irreversi-
bility can still leave a mark in fluctuations. Consider, for example,
a particle hoping on a 1D lattice, as in Fig. 1, where up and down
jumps have equal probabilities, but the timing of the jumps have
different likelihoods. Although there is no net drift on average,
the process is irreversible, since any trajectory can be dis-
tinguished from its time reverse due to the asymmetry in jump
times. Thus, beyond the sequence of events, the timing of events
can reveal statistical irreversibility. Such a concept was used, for
example, to determine that the E. Coli flagellar motor operates out
of equilibrium based on the motor dwell-time statistics33.

In this work, we establish a technique that allows one to identify
and quantify irreversibility in fluctuations in the timing of events, by
applying Eq. (1) to stochastic jump processes with arbitrary waiting
time distributions, that is, semi-Markov processes, also known as
continuous time random walks (CTRW) in the context of anom-
alous diffusion. Such models emerge in a plethora of contexts34–36

ranging from economy and finance37 to biology, as in the case of
kinesin dynamics38 or in the anomalous diffusion of the Kv2.1
potassium channel39. In fact, as we show below and in the Methods
section, semi-Markov processes result in experimentally relevant
scenarios where one has access only to a limited set of observables
of Markov kinetic networks with certain topologies. We begin by
reviewing the semi-Markov framework, where we present our main
result of the entropy production rate estimator. Next, we apply our
approach to general hidden networks, where an observer has access
only to a subset of the states, comparing our estimator with pre-
vious proposals for partial entropy production that are zero in the
absence of currents. Finally, we address a particularly important
case of molecular motors, where their translational motion is easily
observed, but the biochemical reactions that power their motion are
hidden. Remarkably, our technique allows us to even reveal the
existence of parasitic mechano-chemical cycles at stalling—where
the observed current vanishes or the motor is stationary—simply
from the distribution of step times. In addition, our quantitative
lower bound on the entropy production rate can be used to shed
light on the efficiency of molecular motors operation and on the
entropic cost of maintaining their far-from-equilibrium dynam-
ics40–44.

Results
Irreversibility in semi-Markov processes. A semi-Markov pro-
cess is a stochastic renewal process α(t) that takes values in a
discrete set of states, α= 1, 2, …. The renewal property implies

Position

i + 2

i + 1

i – 1

i – 2

Time
�down = 2 s �up = 1 s

pdown = 1/2

pup = 1/2

i

Fig. 1 Brownian particle jumping on an one-dimensional lattice. Jumps up
and down are equally likely, but with asymmetric jump rates. As a result,
the irreversibility of the dynamics is contained solely in the timing
fluctuations
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that the waiting time intervals tα in a given state α are positive,
independent, and identically distributed random variables. If the
system arrives to state α at t= 0, the probability to jump to a
different state β at time [t, t+ dt] is ψβα(t)dt, with ψβα(t) being the
probability density of transition times45. These densities are not
normalized, with pβα �

R1
0 ψβαðtÞdt being the probability for the

next jump to be α→ β given that the walker arrived at α. We
assume that the particle eventually leaves any site α, i.e., ψαα(t)=
0 and

P
β pβα ¼ 1, so the matrix pβα is a stochastic matrix. Its

normalized (right) eigenvector Rα with eigenvalue 1, then repre-
sents the fraction of visits to each state α.

The waiting time distribution at site α, ψαðtÞ ¼
P

β ψβαðtÞ,
is normalized with average waiting time τα. We can also
define the waiting time distribution conditioned on a given jump
α→ β as ψ(t|α→ β)≡ ψβα(t)/pβα, which is already normalized.

Consider now a generic semi-Markovian trajectory γt of length
t with n jumps, which is fully described by the sequence of jumps

and jump times, γt ¼ fα1�!
t1

α2�!
t2 ¼ �!

tn�1
αn�!

tn
αnþ1g withP

n tn ¼ t, occurring with probability
PðγtÞ ¼ ψα2;α1

ðt1Þψα3;α2
ðt2Þ¼ψαnþ1;αn

ðtnÞ. In order to character-
ize the dissipation of this single trajectory, we must define its time

reverse ~γt ¼ fαn�!
tn

αn�1�!
tn�1 ¼ �!t2 α1�!

t1
α0g whose probabil-

ity is given by Pð~γtÞ ¼ ψα0;α1
ðt1Þ¼ψαn�1;αn

ðtnÞ, see Methods and
Fig. 5.

Directly applying Eq. (1) to this scenario shows that the
KLD between the probability distributions of the forward
and backward trajectories can be split into two contributions
(see Methods):

_SKLD ¼ _Saff þ _SWTD: ð2Þ
The first term, _Saff , or affinity entropy production, results

entirely from the divergence between the state trajectories,
regardless of the jump times, σ≡ {α1, α2,…,αn+1} and
~σ � fαn; ¼ ; α1; α0g, that is, it accounts for the affinity between
states:

_Saff ¼
1
T
X
αβ

pβαRα ln
pβα
pαβ
¼ 1
T
X
α<β

Jssβαln
pβα
pαβ

; ð3Þ

where Jssβα ¼ pβαRα � pαβRβ is the net probability flow per step, or
current, from α to β, and the factor T ¼

P
α ταRα is the mean

duration of each step, which can be used to transform the units
from per-step to per-time46. We see that the affinity entropy
production vanishes in the absence of currents, as it occurs in
arbitrary Markov systems32,47.

The contribution due to the waiting times is expressed in terms
of the KLD between the waiting time distributions

_SWTD ¼
1
T
X
αβμ

pμβpβαRαD ψðtjβ! μÞjjψðtjβ! αÞ½ �; ð4Þ

which is the main result of this paper and allows one to detect
irreversibility in stationary trajectories with zero current.

Notice that Rα being the occupancy of state α, pβαRα is the
probability to observe the sequence α→ β in a stationary forward
trajectory, while pμβpβαRα is the probability to observe the
sequence α→ β→ μ.

Equation (2) is the chain rule of the relative entropy applied to
the semi-Markov process and the core of our proposed estimator.
In the special case of Poisson jumps, D[ψ(t|β→ μ)||ψ(t|β→ α)]
= 0 since all waiting time distributions for jumps starting at a
given site β are equal (see Methods), and we recover the standard
expression for the relative entropy of Markov processes _S ¼ _Saff .
It is worth mentioning that previous attempts to establish the
entropy production of semi-Markov processes failed to identify

the term SWTD because they assumed that the waiting time
distributions were independent of the final state, as occurs in
Markov processes48–50. However, such a strong assumption does
not hold in many situations of interest, as in the ones
discussed below.

Decimation of Markov chains and second-order semi-Markov
processes. Semi-Markov processes appear when sites are decimated
from Markov chains of certain topologies. Figure 2 shows repre-
sentative examples. In Fig. 2a, b, we show two models of a mole-
cular motor that runs along a track with sites {…, i− 1, i, i+ 1, …}
and has six internal states. If the spatial jumps (red lines) and the
transitions between internal states (black lines) are Poissonian
jumps, then the motor is described by a Markov process. On
the other hand, when the internal states are not accessible to the
experimenter, the waiting time distributions corresponding to the
spatial jumps i→ i ± 1 are no longer exponential and the motion of
the motor must be described by a semi-Markov process. Figure 2a
shows an example where the decimation of internal states directly
yields a semi-Markov process ruling the spatial motion of the
motor. The second example, sketched in Fig. 2b, is more involved
since the upward and the downward jumps end in different sets of
internal states. As a consequence, the waiting time distribution of,
say, the jump i→ i+ 1, depends on the site that the motor visited
before site i. Then, the resulting dynamics must be described by a
second-order semi-Markov process, that is, one has to consider the
states α(t)= [iprev(t), i(t)], where i(t) is the current position of the
motor and iprev(t) is the previous position, right before the jump.

The same applies to generic kinetic networks, as the one
depicted in Fig. 2c. Suppose that the original network is
Markovian with states i= 1, …, 5. However, if the experimenter
only has access to states 1 and 2, with the rest clumped
together into a hidden state H, then the resulting dynamics is
also a second-order semi-Markov process with the reduced set
i= 1, 2, H.

For second-order semi-Markov processes the affinity entropy
production reads

_Saff ¼
1
T
X
i;j;k

pðijkÞln pð½ij� ! ½jk�Þ
pð½kj� ! ½ji�Þ ; ð5Þ

where p(ijk)≡ R[ij]p([ij]→ [jk]) is the probability to observe the
sequence i→j→k. This entropy is still proportional to the current
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Fig. 2 Decimation of Markov processes. a, b Molecular motor model: An
observer with access only to the position (vertical axis) cannot resolve the
internal states (circles). a Decimation to position results in a first-order
Markov process, since spatial jumps connect the same internal state.
b Decimation results in a second-order semi-Markov process, where the
waiting time distribution for spatial transitions depends on whether the
motor previously jumped down or up. c Hidden kinetic network: An
observer unable to resolve states 3, 4, and 5, treats them as a single hidden
state H. The resulting decimated network is a second-order semi-Markov
process on the three states 1, 2, and H, where the non-Poissonian waiting
time distributions for transitions out of state H depend on the past
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for one-dimensional processes and therefore vanishes in the
absence of flows in the observed dynamics, see Methods. The
entropy production contribution due to the irreversibility of the
waiting time distributions is

_SWTD ¼
1
T
X
i;j;k

pðijkÞD ψðtj½ij� ! ½jk�Þjjψðtj½kj� ! ½ji�Þ½ �: ð6Þ

Let us emphasize that the calculation of _SWTD requires
collecting statistics on sequences of two consecutive jumps, i.e.,
i→ j→ k. We now proceed to apply these results to generic cases
of simple kinetic networks and molecular motors.

Hidden networks. We first apply our formalism to estimate the
dissipation in kinetic networks with hidden states, which have
received increasing attention in recent years owing to their many
practical and experimental implications24,32,47,51–53.

Consider a network where ωij is the transition rate from state j
to i, with πi the steady-state distribution. The total entropy
production rate at steady-state is54

_S ¼
X
i<j

ωjiπi � ωijπj

� �
ln

ωjiπi
ωijπj

; ð7Þ

where the positivity of _S stems from the positivity of each
individual term in the sum40,52,55. In order to calculate the total
entropy production _S according to Eq. (7), full knowledge of the
steady-state probability distribution {πi} and the transition rates
between all the microstates {ωij} is required. We would like to
assign a partial entropy production rate when one only has access
to a limited set of states and transitions. To be concrete, we focus
on the scenario depicted in Fig. 2c, where only states 1 and 2 can
be observed. Previously, two approaches for assigning partial
entropy production rate in such a case have been defined in the
literature, both of which provide a lower bound on the total
entropy production rate56: the passive partial entropy production
rate due to Shiraishi and Sagawa52, and the informed partial
entropy production rate due to Polettini and Esposito53,57. The
passive partial entropy production rate _SPP for the single observed
link is simply given by the corresponding term in Eq. (7)

_SPP ¼ ðω12π2 � ω21π1Þ ln
ω12π2

ω21π1
; ð8Þ

where the observer is assumed to have access to the steady-state
populations of the two states, π1 and π2, as well as the transition
rates between them.

The informed partial entropy production _SIP for the single link
requires additional information: the observer is assumed to have
control over the transition rates of the observed link, without
affecting any of the hidden transitions, such that they can stall the
corresponding current and record the ratio of populations in the
two observed states, πstall1 =πstall

2 . The stalling distribution πstalli
produces an effective thermodynamic description of the observed
subsystem53 and an effective affinity with which the informed
partial entropy production rate is calculated:

_SIP ¼ ðω12π2 � ω21π1Þ ln
ω12π

stall
2

ω21π
stall
1

: ð9Þ

Although the informed partial entropy production was proven
to produce a better estimation of the total dissipation compared
with the passive partial entropy production, i.e., _SPP � _SIP � _S56,
both vanish at stalling conditions. Hence, even if the system is in
a nonequilibrium steady-state, when the current over the
observed link is zero, these estimators cannot give a nontrivial
lower bound on the total entropy production. To be fair, we point
out that each estimator uses different information.

For the KLD estimator, we assume that the observer can record
whether the system is in states 1 or 2, or in the hidden part of the
network, H, which is a coarse-grained state representing the
unobserved subsystem. In this case, the resulting contracted
network has three states, {1, 2, H}. Jumps between states 1 and 2
follow Poissonian statistics, as in a general continuous-time
Markov process, with the same rates as in the original network.
On the other hand, jumps from H to 1 or 2 are not Poissonian
and depend on the state just prior to entering the hidden part. To
apply our results for semi-Markov processes, we thus have to
consider the states α(t)= [iprev(t) i(t)], where i(t)= 1, 2, H is the
current state and iprev(t)= 1, 2, H is the state right before the last
jump. To make the equations more compact, we will use the
short-hand notation ij≡ [i j] for the remainder of this section.

Similar to Eq. (2), the semi-Markov entropy production rate
for hidden networks, _SKLD, consists of two contributions: the
affinity estimator _Saff and the WTD estimator _SWTD. In this case,
the affinity estimator, Eq. (5), is given by

_Saff ¼
Jss21
T ln

pð 12! 2HÞpð 2H ! H1Þpð H1! 12Þ
pð 1H ! H2Þpð H2! 21Þpð 21! 1HÞ

; ð10Þ

where Jss21 is the stationary current per step from 1 to 2, defined as
J ss21 ¼ R½12� � R½21�. As expected, this term vanishes when detailed
balance holds and the current is zero (see Methods). Applying Eq.
(6) to the semi-Markov process results in the following expression
for the contribution of the hidden estimator

_SWTD ¼
pð1H2Þ
T D ψðtj1H ! H2Þjjψðtj 2H ! H1Þ½ �
þ pð2H1Þ

T D ψðtj 2H ! H1Þjjψðtj 1H ! H2Þ½ �;
ð11Þ

where p(ijk)= R[ij]p(ij→ jk). In Methods, we further show that
for a network of a single cycle of states the informed partial
entropy production _SIP equals the affinity estimator _Saff
defined in Eq. (5). Summarizing, we have the hierarchy
_SPP � _SIP ¼ _Saff � _SKLD � _S.
Let us apply the hidden semi-Markov entropy production

framework to a specific example of a network with four states,
two of which are hidden (Fig. 3a). We have chosen a random 4 ×
4 matrix, with non-negative off diagonal entries and zero sum
columns, as a generator of a continuous-time Markov jump
process over the four states. The rates over the observed link were
varied according to ω12(F)= ω12eβFL and ω21(F)= ω21e−βFL over
a range of values of a force F that included the stalling force Fstall,
where β= 1/T is the inverse temperature and L is a characteristic
length scale. For each value of F, we contracted the dynamics to
the three states, 1, 2, and H (Fig. 3b, c), and estimated the waiting
time distributions ψ(t|2H→ H1) and ψ(t|1H→ H2) using a kernel
density estimate with a positive support58,59 (see Methods),
depicted in Fig. 3d. From those distributions, we derived the
hidden semi-Markov entropy production rate _SKLD (Fig. 3e). We
further calculated both the passive- and informed-partial entropy
production rates to compare all the estimators to the total entropy
production rate (Fig. 3e). Our results clearly demonstrate the
advantage of using the waiting time distributions for bounding
the total entropy production rate compared with the two other
previous approaches. Our framework can reveal the irreversibility
and the underlying dissipation, even when the observed current
vanishes, without the need of manipulating the system.

The KLD entropy production rate was also estimated from
simulated experimental data, obtained by sampling random
trajectories of 107 jumps using the Gillespie algorithm60. The
simulated trajectories (Fig. 3b) were coarse-grained into the set of
states of the hidden semi-Markov model (Fig. 3c), and the hidden
semi-Markov entropy production rate for the simulated experi-
mental data, _SExpKLD, was estimated as above (Fig. 3e, blue crosses).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11051-w

4 NATURE COMMUNICATIONS |         (2019) 10:3542 | https://doi.org/10.1038/s41467-019-11051-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


In order to assess the rate of convergence with increasing number
of simulated steps, we calculated the _SExpKLD for different fractions of
the 107 steps trajectories, showing <20% error above 105 steps at
stalling, and <5% error away from stalling for trajectories with as
little as 104 steps (Fig. 3f, g). Let us stress that the hidden semi-
Markov entropy production rate averaged over three simulated
experimental trajectories produced a lower bound on the total
entropy production rate, which was strictly positive and
statistically significant different from zero (p < 0.05, Fig. 3g, inset)
for all trajectory lengths tested.

Molecular motors. A slight modification of the case analyzed in
the previous section allows us to study molecular motors with
hidden internal states. We are interested in the schemes pre-
viously sketched in Fig. 2a, b, where a motor can physically move
in space or switch between internal states. The observed motor
position is labeled by {..., i− 1, i, i + 1, ...}. All jumps are Pois-
sonian and obey local detailed balance, with an external source of
chemical work, Δμ, and an additional mechanical force F that can
act only on the spatial transitions.

Analogous to the previous example, the observed dynamics is a
second-order semi-Markov process. To make the following
equations more intuitive, we use the graphical notation for
two consecutive upward jumps (i− 1→ i→ i+ 1), for a
downward jump followed by and upward one, for an upward
followed by a downward jump, and for two consecutive
downward jumps. Notice that the probabilities are normalized as

.
Similar to Eq. (2), we have the decomposition of the KLD

estimator into a contribution from state affinities given by

ð12Þ

where the current per step is Jss= Rup− Rdown with Rup= R[i,i+1]

(Rdown= R[i,i−1]) corresponding to the occupancy rate of states
moving upward (downward). The contribution due to the relative

entropy between waiting time distributions is

ð13Þ

As in the previous examples, the latter term can produce a
lower bound on the total entropy production rate even in the
absence of observable currents, in which case _Saff ¼ 0. Without
chemical work (Δμ= 0), however, the waiting time distributions
of the and processes become identical and the contribution of
_SWTD vanishes as well.
Let us apply the molecular motor semi-Markov entropy

production framework to a specific example. We consider the
following two-state molecular motor model of a power stroke
engine that works by hydrolizing ATP against an external force F,
see Fig. 4a.

The state of the motor is described by its physical position and
its internal state, which can be either active, that is, capable of
hydrolyzing ATP, or passive. We label the active and passive
states as i′ and i, respectively, with i= 0, ±1, ±2, …. Owing to the
translational symmetry in the system, all the spatial positions are
essentially equivalent. The position of the motor is accessible to
an external observer, whereas the two internal states i and i′ are
indistinguishable. An example of a trajectory is illustrated in
Fig. 4b.

The chemical affinity Δμ, arising from ATP hydrolysis,
determines the degree of nonequilibrium in our system and
biases the transitions i′↔i+ 1, whereas the external force F
affects all the spatial transitions, regardless of the internal state.
The transition rates between the two internal states are defined as
ωi′i= ωii′= ks. Transition rates between passive states obey local
detailed balance: ωi,i+1/ωi+1,i = eβFL, where L is the length of a
single spatial jump. From the active state, the system can use the
ATP to move upward with rates verifying local detailed balance
ωi′,i+1/ωi+1,i′= eβ(FL−Δμ).
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The resulting waiting time distributions are shown in Fig. 4c, d,
and the estimated entropy production rates as a function of
external force are depicted in Fig. 4e, with chemical potential
ranging from Δμ= 0 β−1 to 10 β−1. The total entropy production
rate _S is calculated using Eq. (7). As expected, the dissipation
increases with the nonequilibrium driving force, and vanishes
when Δμ= FL= 0. Notice that the affinity estimator _Saff does not
provide a lower bound to the total entropy production rate _S at
stalling, as it is not statistically different from zero (Fig. 4f), and
thus cannot distinguish between nonequilibrium and equilibrium
processes. In contrast, the semi-Markov estimator _SKLD, which
accounts for the asymmetry of the waiting time distributions
provides a nontrivial positive bound, even in the absence of
observable current.

Discussion
We have analytically derived an estimator of the total entropy
production rate using the framework of semi-Markov pro-
cesses. The novelty of our approach is the utilization of the
waiting time distributions, which can be non-Poissonian,
allowing us to unravel irreversibility in hidden degrees of
freedom arising in any time-series measurement of an arbitrary
experimental setup. Our estimator can thus provide a lower
bound on the total entropy production rate even in the absence
of observable currents. Hence, it can be applied to reveal an
underlying nonequilibrium process, even if no net current, flow,
or drift, are present. We stress that our method fully quantifies
irreversibility. Owing to the direct link between the entropy
production rate and the relative entropy between a trajectory
and its time reversal, as manifested in Eq. (1), our estimator
provides the best possible bound on the dissipation rate uti-
lizing time irreversibility. One can consider utilizing other
properties of the waiting time distribution to bound the
entropy production, through the thermodynamics uncertainty
relations4,61,62, for example.

We have illustrated our method with two possible applications:
a situation where only a subsystem is accessible to an external
observer and a molecular motor whose internal degrees of free-
dom cannot be resolved. Using these examples, we have
demonstrated the advantage of our semi-Markov estimator
compared with other entropy production bounds, namely, the
passive- and informed-partial entropy production rates, both of
which vanish at stalling conditions.

In summary, we have developed an analytic tool that can
expose irreversibility otherwise undetectable, and distinguish
between equilibrium and nonequilibrium processes. This frame-
work is completely generic and thus opens opportunities in
numerous experimental scenarios by providing a new perspective
for data analysis.

Methods
Semi-Markov processes, waiting time distributions and steady states. A semi-
Markov stochastic process is a renewal process α(t) with a discrete set of states α=
1, 2, …, N. The dynamics is determined by the probability densities of transition
times ψβα(t), which are defined as ψβα(t)dt being equal to the probability that the
system jumps from state α to state β in the time interval [t, t+ dt] if it arrived at
site α at time t= 0. By definition ψαα(t)= 0. When the system is a particle jumping
between the sites of a lattice, the semi-Markov process is also called a CTRW. For
clarity, we will assume this CTRW picture, that is, the system in our discussion will
be a particle jumping between sites α.

The probability densities ψβα(t) are not normalized:

pβα ¼
Z 1

0
ψβαðtÞdt ð14Þ

is the probability that, given that the particle arrived at site α, the next jump is α→
β. We will assume that the particle eventually leaves any site α, i.e.,

P
β pβα ¼ 1.

Then

ψαðtÞ ¼
X
β

ψβαðtÞ ð15Þ

is normalized and it is the probability density of the residence time at site α. It is
also called the waiting time distribution. Its average

τα ¼
Z 1

0
dt tψαðtÞ ð16Þ
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Fig. 4 Molecular motor. a Illustration: Active states (red boxed squares) can use a source of chemical energy while passive states (circles) cannot. The
chemical energy is used to power the motor against and external force F. b Illustration of a trajectory for four positions, where the hidden internal active
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is the mean residence time or mean waiting time. We can also define the waiting
time distribution conditioned on a given jump α→ β,

ψðtjα! βÞ ¼
ψβαðtÞ
pβα

; ð17Þ

which is normalized. The function ψβα(t) is in fact the joint probability distribution
of the time t and the jump α→ β.

The transition probabilities pβα determine a Markov chain given by the visited
states α1, α2, α3, ..., regardless of the times when the jumps occur. The transition
matrix of this Markov chain is {pβα} and the stationary probability distribution Rα
verifies

Rβ ¼
X
α

pβαRα; ð18Þ

i.e., the distribution Rα is the right eigenvector of the stochastic matrix {pβα} with
eigenvalue 1. Moreover, if the Markov chain is ergodic, then the distribution Rα is
precisely the fraction of visits the system makes to site α in the stationary regime.
Thus, we call Rα the distribution of visits.

From the distribution of visits one can easily obtain the stationary distribution
of the process α(t),

πα ¼
ταRα

T ; ð19Þ

since the particle visits the state α a fraction of steps Rα and spends an average time
τα in each step. The normalization constant T �

P
α Rατα is the average time

per step.
The stationary current in the Markov chain from state α to β is

Jssβα ¼ pβαRα � pαβRβ: ð20Þ

This is in fact the current per step in the original semi-Markov system since, in
an ensemble of very long trajectories, it is the net number of particles that jump
from α to β divided by the number of steps. Since the duration of a long stationary
trajectory with K steps (K≫ 1) is KT , the current per unit of time is Jssβα=T . Notice
that the average time per step T acts as a conversion factor that allows one to
express currents, entropy production, etc. either as per step or as per unit of time.

The Markovian case. If the process α(t) is Markovian, then the jumps are Pois-
sonian and transition time densities are exponential. Let ωβα be the rate of jumps
from α to β. The mean waiting time at site α is the inverse of the the total outgoing
rate:

τα ¼
1P
β ωβα

; ð21Þ

and the waiting time distributions are

ψβαðtÞ ¼ ωβαe
�t=τα ψαðtÞ ¼ ψðtjα! βÞ ¼ e�t=τα

τα
: ð22Þ

with jump probabilities pβα= ταωβα. Notice that the waiting time distribution
ψ(t|α→ β) does not depends on β. The distribution of visits Rα verifies

Rβ ¼
X
α

ταωβαRα; ð23Þ

and the stationary distribution πα obeys

πβ
τβ
¼

X
α

ωβαπα; ð24Þ

which is the equation for the stationary distribution that one obtains from the
master equation

_PβðtÞ ¼
X
α

ωβαPαðtÞ � ωαβPβðtÞ
h i

¼
X
α

ωβαPαðtÞ �
PβðtÞ
τβ

: ð25Þ

Decimation of Markov chains. Semi-Markov processes arise in a natural way
when states are removed or decimated from Markov processes with certain
topologies. Consider a Markov process where two sites, 1 and 2, are connected
through a closed network of states i= 3, 4, … that we want to decimate, as
sketched in Fig. 2c. If the observer cannot discern between states i= 3, 4, …, the
resulting three-state process with i(t)= 1, 2, H is a second-order semi-Markov
chain. We want to calculate the effective transition time distribution ψdecim

21 ðtÞ from
state 1 to state 2 in terms of the distributions ψij(t) of the initial Markov chain. For
this purpose, we have to sum over all possible paths from 1 to 2 through the
decimated network.

Consider first the paths with exactly n+ 1 jumps, like γn+1= {1→ i1→ i2…
in→ 2}, where ik= 3, 4, …. The probability that such a path occurs with an exact

duration t is

Pðγnþ1; tÞ ¼
Z

P
tk¼t

dt1 dt2 ¼ dtnþ1 ψi1 ;1
ðt1Þψi2 ;i1

ðt2Þ¼ψ2;in
ðtnþ1Þ: ð26Þ

This is a convolution. If one performs the Laplace transform on all time-
dependent functions, generically denoted by a tilde,

~ψðsÞ �
Z 1

0
dt e�stψðtÞ ð27Þ

then Eq. (26) simplifies to

~Pðγnþ1; sÞ ¼ ~ψi1 ;1
ðsÞ~ψi2 ;i1

ðsÞ¼ ~ψ2;in
ðsÞ: ð28Þ

The transition time distribution ψdecim
21 ðtÞ in the decimated network is the sum

of P(γn+1, t) over all possible paths with an arbitrary number of steps. For Laplace
transformed distributions, this is written as

~ψdecim
21 ðsÞ ¼

X1
n¼0

X
fi1 ;¼ ;ing

~ψi1 ;1
ðsÞ~ψi2 ;i1

ðsÞ¼ ~ψ2;in
ðsÞ: ð29Þ

where the sum runs over all possible paths, that is, the indexes ik= 3, 4, … take on
all possible values corresponding to decimated sites. Then the sum can be
expressed in terms of the matrix Ψ(t) whose entries are the transition time densities
[Ψ(t)]ji= ψji(t), i, j= 3, 4,…. If ~ΨðsÞ is the corresponding Laplace transform of that
matrix, one has

~ψdecim
21 ðsÞ ¼

X1
n¼0

X
i;j

~ψi;1ðsÞ ~ΨðsÞn
� �

ji
~ψ2;jðsÞ

¼
X
i;j

~ψi;1ðsÞ I� ~ΨðsÞ
� ��1

ji
~ψ2;jðsÞ

ð30Þ

which is a sum only over all the decimated sites i, j= 3, 4, … that are connected to
sites 1 and 2, respectively.

The decimation procedure can be used to derive transition time distributions in
a kinetic network when the observer cannot discern among a set of states, say 3, 4,
5,…, that are generically labeled as H for hidden, as in Fig. 2c. For the specific case
of the figure, the effective transition time distribution from site 1 to site H, for
instance, can be written as

ψeff
H1ðtÞ ¼ ψ31ðtÞ þ ψ51ðtÞ; ð31Þ

whereas the distributions for jumps starting at H depend on the previous state. For
instance, if H is reached from 1, the random walk within H starts at site 3 with
probability p31/(p31+ p51) and site 5 with probability p51/(p31+ p51). The transition
time distribution corresponding to the jump [1H]→ [H2] is

ψeff
½H2� ½1H�ðsÞ ¼

p31
p31 þ p51

I� ~ΨðsÞ
� ��1

43
~ψ24ðsÞ þ

p51
p31 þ p51

I� ~ΨðsÞ
� ��1

45
~ψ24ðsÞ

ð32Þ

where the matrix ~ΨðsÞ is a 3 × 3 matrix corresponding to the Laplace transform of
the transition time distributions among sites 3, 4, and 5.

Irreversibility in semi-Markov processes. Here we calculate the relative entropy
between a stationary trajectory γ and its time reversal ~γ in a generic semi-Markov
process. A trajectory γ is fully described by the sequence of jumps (see Fig. 5):

γ ¼ fðα1 ! α2; t1Þ; ðα2 ! α3; t2Þ; ¼ ; ðαn�1 ! αn; tn�1Þ; ðαn ! αnþ1; tnÞg ð33Þ

and occurs with a probability (conditioned on the initial jump α0→ α1 at t= 0)

PðγÞ ¼ ψα2 ;α1
ðt1Þψα3 ;α2

ðt2Þ¼ψαnþ1 ;αn
ðtnÞ: ð34Þ

The reverse trajectory is

~γ ¼ fð~αn ! ~αn�1; tnÞ; ¼ ; ð~α2 ! ~α1; t2Þ; ð~α1 ! ~α0; t1Þg; ð35Þ
where we assume, for the sake of generality, that states can change under time
reversal, ~α being the time reversal of state α. The probability to observe ~γ,
conditioned on the initial jump ~αnþ1 ! ~αn at t= 0, is

Pð~γÞ ¼ ψ~α0 ;~α1
ðt1Þψ~α1 ;~α2

ðt2Þ¼ψ~αn�1 ;~αn
ðtnÞ: ð36Þ

�n+1

�3

�2�0

�1 �n

t3

t1

t2

tn

Fig. 5 A trajectory γ of a semi-Markov process
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It is again convenient to consider the forward and backward trajectories without
the waiting times, i.e.,

σ ¼ fα1; α2; α3; ¼ ; αn; αnþ1g ð37Þ

~σ ¼ f~αn; ~αn�1; ¼ ; ~α2; ~α1; ~α0g; ð38Þ

and the probability to observe those trajectories are

PðσÞ ¼ pα2 ;α1pα3 ;α2 ¼ pαnþ1 ;αn ð39Þ

Pð~σÞ ¼ p~α0 ;~α1p~α1 ;~α2 ¼ p~αn�1 ;~αn ð40Þ
The initial jumps of γ and ~γ do not contribute to the entropy production in the

stationary regime. Then the relative entropy per jump reads

δSKLD ¼ lim
n!1

1
n

X
γ

PðγÞ lnPðγÞ
Pð~γÞ ¼ lim

n!1

1
n

X
σ

Z 1

0
dt1 ¼

Z 1

0
dtn ψα2 ;α1

ðt1Þ¼

ψαnþ1 ;αn
ðtnÞ ln

ψα2 ;α1
ðt1Þ

ψ~α0 ;~α1
ðt1Þ
þ ¼ þ ln

ψαnþ1 ;αn
ðtnÞ

ψ~αn�1 ;~αn
ðtnÞ

" #
:

ð41Þ
Each time integral can be written asZ 1

0
dt ψμβðtÞ ln

ψμβðtÞ
ψ~α~βðtÞ

¼ pμβ ln
pμβ
p~α~β
þ pμβD ψðtjβ! μÞjjψðtj~β! ~αÞ

h i
; ð42Þ

where α, β, μ is a substring of the forward trajectory σ (α= αk, β= αk+1, μ= αk+2).
Inserting this expression in Eq. (41),

δSKLD ¼ lim
n!1

1
n D½PðσÞjjPð~σÞ� þ

P
αβμ

pμβpβαRαD ψðtjβ! μÞjjψðtj~β! ~αÞ
h i

¼
P
αβ

pβαRα ln
pβα
p~α~β
þ

P
αβμ

pμβpβαRαD ψðtjβ! μÞjjψðtj~β! ~αÞ
h i

:
ð43Þ

Notice that pβαRα is the probability to observe the sequence α, β in the
stationary forward trajectory and pμβpβαRα is the probability to observe the
sequence α, β, μ. Finally, we can obtain the expression used in the main text for the
entropy production per unit of time dividing by the conversion factor T (average
time per step), that is _S ¼ δS=T . The result is

_SKLD ¼ _Saff þ _SWTD; ð44Þ

where the entropy production corresponding to the affinity of states reads

_Saff ¼
1
T
X
αβ

pβαRα ln
pβα
p~α~β

; ð45Þ

and the one corresponding to the waiting time distributions is

_SWTD ¼
1
T
X
αβμ

pμβpβαRαD ψðtjβ! μÞjjψðtj~β! ~αÞ
h i

: ð46Þ

If α ¼ ~α, then the affinity entropy production can be written as

_Saff ¼
1
T

X
α<β

Jssβα ln
pβα
pαβ

; ð47Þ

which vanishes in the absence of currents.

Second-order semi-Markov processes. A 2nd-order semi-Markov process i(t)
also describes the trajectory of a system that jumps among a discrete set of states
i= 1, 2, …. However, i(t) is not semi-Markov because the transition time dis-
tributions depend on the previous state iprev(t) visited right before the last jump.
Hence, the vector α(t)≡ [iprev(t) i(t)] is indeed a semi-Markov process.

To quantify the irreversibility of a second-order Markov chain, we introduce the
time-reversal state of α= [ij], which is ~α ¼ ½ji�. However, this is not enough to
reconstruct the backward trajectory, since there is a shift compared with the simple
semi-Markov case, as illustrated in Fig. 6. In the forward trajectory, the system
spends a time tk in state αk= [ik−1ik], with k= 1, …, n, whereas in the backward
trajectory it spends the same time tk in state ~αkþ1 ¼ ½ikþ1ik�. Consequently, the
probabilities of the forward and backward trajectories are, respectively,

PðγÞ ¼ ψα2 ;α1
ðt1Þψα3 ;α2

ðt2Þ¼ψαnþ1 ;αn
ðtnÞ ð48Þ

Pð~γÞ ¼ ψ~α1 ;~α2
ðt1Þψ~α2 ;~α3

ðt2Þ¼ψ~αn ;~αnþ1
ðtnÞ: ð49Þ

Repeating the arguments of the previous section, one obtains

δSKLD ¼
X
αβ

pβαRα ln
pβα
p~α~β
þ
X
αβ

pβαRαD ψðtjα! βÞjjψðtj~β! ~αÞ
h i

: ð50Þ

The contribution to the entropy production (per step) due to the state affinities
now reads

_Saff ¼ 1
T
P
i;j;k

R½ij�pð½ij� ! ½jk�Þ ln
pð½ij�!½jk�Þ
pð½kj�!½ji�Þ

¼ 1
T
P
i;j;k

pðijkÞ ln pð½ij�!½jk�Þ
pð½kj�!½ji�Þ ;

ð51Þ

and the contribution due to the waiting time distributions is given by

_SWTD ¼ 1
T
P
i;j;k

R½ij�pð½ij� ! ½jk�ÞD ψðtj½ij� ! ½jk�Þjjψðtj½kj� ! ½ji�Þ½ �

¼ 1
T
P
i;j;k

pðijkÞD ψðtj½ij� ! ½jk�Þjjψðtj½kj� ! ½ji�Þ½ �;
ð52Þ

where p(ijk)= R[ij]p([ij]→ [jk]) is the probability to observe the sequence i→j→k
in the trajectory and p(ij)= R[ij] is the probability to observe the sequence i→j.

It is interesting to particularize Eq. (51) to a ring with N sites. This is the case of
our examples—the hidden network and the molecular motor. In this case, in the
stationary regime,

pðijkÞ � pðkjiÞ ¼ pðijkÞ þ pðijiÞ � pðijiÞ � pðkjiÞ
¼ pðijÞ � pðjiÞ ¼ Jss

ð53Þ

since each site has only two neighbors and therefore p(ijk)+ p(iji)= p(ij) for any
triplet of contiguous sites ijk. Here Jss is the stationary current between any pair of
contiguous sites. Hence, we can write the affinity as

_Saff ¼ 1
T
P
i<j<k

pðijkÞ � pðkjiÞ½ � ln pð½ij�!½jk�Þ
pð½kj�!½ji�Þ

¼ J ss

T ln pð½1;2�!½2;3�Þ¼ pð½N�1;N�!½N;1�Þpð½N;1�!½1;2�Þ
pð½1;N�!½N;N�1�Þ¼ pð½3;2�!½2;1�Þpð½2;1�!½1;N�Þ

ð54Þ

which is proportional to the current. The argument of the logarithm also vanishes
at zero current (see Eq. (57) below); consequently, the affinity entropy tends to zero
quadratically when as the force is tuned to the stalling condition. This is the usual
behavior in linear irreversible thermodynamics, but recall that for semi-Markov
processes the affinity entropy production misses the nonequilibrium signature that
is present in the waiting time distributions and is assessed by _SWTD.

Affinity and informed partial entropy production. Here we show that the
informed partial entropy production equals the affinity entropy production for the
case of a generic hidden kinetic network proposed in the main text where the
observed network forms a single cycle.

First, let us generalize the detailed balance condition for a second-order Markov
ring with three states, i= 1, 2, H, and zero stationary current. The stationary
distribution R[ij] verifies the master Eq. (18):

R½12� ¼ R½H1�pð½H1� ! ½12�Þ þ R½21�pð½21� ! ½12�Þ
R½2H� ¼ R½12�pð½12� ! ½2H�Þ þ R½H2�pð½H2� ! ½2H�Þ
R½H1� ¼ R½2H�pð½2H� ! ½H1�Þ þ R½1H�pð½1H� ! ½H1�Þ:

ð55Þ

If the current vanishes, R[ij]= R[ji] for all i, j, and these equations reduce to

R½12�pð½21� ! ½1H�Þ ¼ R½H1�pð½H1� ! ½12�Þ
R½2H�pð½H2� ! ½21�Þ ¼ R½12�pð½12� ! ½2H�Þ
R½H1�pð½1H� ! ½H2�Þ ¼ R½2H�pð½2H� ! ½H1�Þ:

ð56Þ

Multiplying the three equations we get the generalized detailed balance
condition:

Jss ¼ 0) pð½1H� ! ½H2�Þpð½H2� ! ½21�Þpð½21� ! ½1H�Þ
¼ pð½2H� ! ½H1�Þpð½H1� ! ½12�Þpð½12� ! ½2H�Þ:

ð57Þ

In the observable network, the transitions from states 1 and 2 are still
Poissonian and independent of the previous state:

pð½H2� ! ½21�Þ ¼ τ2ω12 pð½21� ! ½1H�Þ ¼ τ1ωH1

pð½H1� ! ½12�Þ ¼ τ1ω21 pð½12� ! ½2H�Þ ¼ τ2ωH2:
ð58Þ

...
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Fig. 6 A trajectory γ of a second-order semi-Markov process
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At stall force, the generalized detailed balance condition in Eq. (57) holds and
can be written as

pð½1H� ! ½H2�Þωstall
12 ωH1 ¼ pð½2H� ! ½H1�Þωstall

21 ωH2; ð59Þ
where we have taken into account that only the rates ω12 and ω21 are tuned in the
protocol proposed by Polettini and Esposito to obtain the informed partial entropy
production.

The current in the direction 1→ 2→H→ 1 in the stationary regime can be
written as Jss/T= ω12π2− ω21π1. Then, at stall force ωstall

12 πstall2 ¼ ωstall
21 πstall1 . With all

these considerations, the argument of the logarithm in Eq. (9) of the main text can
be written as

ω12 π
stall
2

ω21 π
stall
1

¼ ω12ω
stall
21

ω21ω
stall
12

¼ ω12 pð½1H� ! ½H2�ÞωH1

ω21 pð½2H� ! ½H1�ÞωH2

¼ pð½1H� ! ½H2�Þpð½H2� ! ½21�Þpð½21� ! ½1H�Þ
pð½2H� ! ½H1�Þpð½H1� ! ½12�Þpð½12� ! ½2H�Þ :

ð60Þ

Comparing Eq. (9) in the main text with Eq. (54), one immediately gets
_SIP ¼ _Saff .

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
Source code is available from the corresponding authors upon reasonable request.
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