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The present study examined the relationship between DNA methylation differences
and variations in brain structures involved in the development of attention-deficit
hyperactivity disorder (ADHD). First, we used monozygotic (MZ) twins discordant (2
pairs of 4 individuals, 2 boys, mean age 12.5 years) for ADHD to identify candidate
DNA methylation sites involved in the development of ADHD. Next, we tried to
replicate these candidates in a case-control study (ADHD: N = 18, 15 boys, mean age
10.0 years; Controls: N = 62, 40 boys, mean age 13.9 years). Finally, we examined
how methylation rates at those sites relate to the degree of local structural alterations
where significant differences were observed between cases and controls. As a result,
we identified 61 candidate DNA methylation sites involved in ADHD development in
two pairs of discordant MZ twins, among which elevated methylation at a site in the
sortilin-related Vps10p domain containing receptor 2 (SorCS2) gene was replicated
in the case-control study. We also observed that the ADHD group had significantly
reduced gray matter volume (GMV) in the precentral and posterior orbital gyri compared
to the control group and that this volume reduction was positively associated with
SorCS2 methylation. Furthermore, the reduced GMV regions in children with ADHD
are involved in language processing and emotional control, while SorCS2 methylation is
also negatively associated with emotional behavioral problems in children. These results
indicate that SorCS2 methylation might mediate a reduced GMV in the precentral and
posterior orbital gyri and therefore influence the pathology of children with ADHD.

Keywords: attention-deficit hyperactivity disorder (ADHD), DNA methylation, monozygotic twins, voxel-based
morphometry (VBM), SorCS2
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INTRODUCTION

Attention-deficit hyperactivity disorder (ADHD) is one of the
most common mental disorders in childhood, characterized
by inattention, hyperactivity, and impulsivity, according to the
5th edition of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) (American Psychiatric Association, 2013)
and often reaching into adulthood. The prevalence of ADHD
in children worldwide was estimated to be 7.2% in a meta-
analysis of 175 studies (Thomas et al., 2015). Patients with
ADHD have difficulties in various cognitive domains, such
as cognitive control, attention, timing, and working memory
(Biederman et al., 1991; Rubia, 2018), as well as in other
domains involved in emotional processing, such as motivation
and timing processing, such as timing dissociation and delay-
related impairments (Biederman et al., 1993; Sonuga-Barke et al.,
2010; Rubia, 2018). According to a prospective follow-up study,
approximately 50% of children with ADHD continue to have
symptoms until adulthood, and if left untreated, they can be at
higher risk of psychiatric problems such as depression, substance
abuse, and social problems such as unemployment and criminal
offenses (Biederman et al., 2006; Molina et al., 2009).

While the heritability of ADHD has been reported to be
as high as 72–88% (Larsson et al., 2014), there has been
obvious discordance in ADHD diagnosis between monozygotic
(MZ) twin pairs, and often differences in severity within
MZ concordant cases (Larsson et al., 2014), suggesting that
epigenetic factors may be involved in the etiology. Epigenetic
modifications regulate gene expression independently of changes
in DNA sequence, primarily through DNA methylation and
histone modifications (Henikoff and Matzke, 1997), and
have been suggested to serve as a critical link between
external environmental factors and long-lasting phenotypic
changes (Malki et al., 2016). Epigenetic changes in the brain
have been found to be involved in cognitive neurological
processes, including psychiatric disorders, neurogenesis, and
brain development. Candidate gene studies on ADHD’s DNA
methylation profile based on peripheral samples such as
blood or saliva have shown different methylation patterns
of genes involved not only in dopaminergic, serotonergic,
and neurotrophic systems including SLC6A4, DRD4, COMT,
BDNF, and NGFR, but also neurotransmitter release or neurite
outgrowth including ERC2 and CREB5 and associated with the
symptoms and severity of ADHD (van Mil et al., 2014; Park et al.,
2015; Xu et al., 2015; Dadds et al., 2016; Heinrich et al., 2017;
Sengupta et al., 2017; Neumann et al., 2020).

Using disease discordant MZ twins for comparison in
epidemiological epigenetic studies would be an ideal strategy,
because the sex, age, perinatal environment, and other shared
environmental factors that significantly influence the epigenome
should be matched within MZ twins (Bell and Spector,
2011). Recent findings have revealed considerable epigenetic
differences between MZ twins (Kaminsky et al., 2009), and such
differences have been associated with phenotypic discordance
between MZ twins, including psychiatric disorders (Kuratomi
et al., 2008; Sugawara et al., 2011; Wong et al., 2014; Malki
et al., 2016). Regarding ADHD, Chen et al. (2018) recently
examined the relationship between brain structure and whole

blood DNA methylation in 14 pairs of MZ-discordant cases,
finding structural alterations in the striatum and cerebellum,
as well as significant epigenetic differences in genes, such
as γ-aminobutyric acid (GABA), dopamine and serotonin
neurotransmitter systems, in these “discordant” brain structures
(Chen et al., 2018). These findings support the role of DNA
methylation in ADHD. However, given the high heterogeneity
of ADHD, not only the study of DNA methylation associated
significantly different brain regions in MZ discordant twins, but
also examining the association between methylation array data
analysis and structural alterations in the whole brain, including
the cerebral cortex, can comprehensively elucidate the complex
pathology of ADHD.

Here, we examined the relationship between DNA
methylation differences on array data and variations in brain
structures involved in the development of ADHD. Thus, our
main hypothesis was that the DNA methylation sites nominated
using identical MZ twins discordant for ADHD are ADHD-
specific, and significantly associated with brain structures and
symptoms observed in children with ADHD compared to
typically developing children.

MATERIALS AND METHODS

Participants
Two pairs of MZ twins discordant for ADHD were recruited
from the Department of Child and Adolescent Psychological
Medicine at the University of Fukui Hospital. The twins were
9-year-old males (pair 1) and 16-year-old females (pair 2).
Eighteen children with ADHD (16 males and 2 females, mean
age = 9.7 ± 1.6 years) were also recruited at the department for
the case-control study. The diagnosis of ADHD was assessed by
licensed child and adolescent psychiatrists according to DSM-
5 criteria (American Psychiatric Association, 2013). Participants
were also administered an assessment module of DSM-IV ADHD
from the Schedule of Affective Disorders and Schizophrenia
for School-Age Children, Epidemiologic version (K-SADS-E;
Orvaschel and Puig-Antich, 1994). To further assess the core
symptoms of ADHD (e.g., inattentive and hyperactive/impulsive
symptoms), for the pairs of MZ twins discordant for ADHD
parents were asked to complete the ADHD Rating Scale (ADHD-
RS) (DuPaul et al., 1998) for all children with ADHD in the
case-control study, the Swanson, Nolan, and Pelham Rating
Scale (SNAP-IV) (Swanson, 1992). To exclude other psychiatric
conditions (e.g., anxiety disorder), subjects were administered the
Mini-International Neuropsychiatric Interview for Children and
Adolescents (MINI-KID; Sheehan et al., 2010) by two licensed
pediatric-psychological clinicians. Two existing Cohorts of 62
children (Cohort 1: n = 28, 21 males and 7 females, mean
age = 14.9 ± 1.8 years; Cohort 2: n = 34, 19 males and 15
females, mean age = 13.1 ± 2.9 years) recruited from the local
community in our previous study were used as controls for
the case-control study (Takiguchi et al., 2015; Shimada et al.,
submitted1). All children had normal or corrected vision and

1Shimada, K., Hamamura, S., Takiguchi, S., Makita, K., Yao, A., Fujisawa,
T. X., et al. (submitted). Developmental differences in resting-state functional
connectivity among youth in small-group family-like residential care.
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normal hearing. All children, with the exception of the non-
ADHD twins, were assessed using the Wechsler Intelligence
Scale for Children-Fourth Edition (WISC-IV; Wechsler, 2003) or
the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III;
Wechsler, 1997) and excluded if they had a full-scale intelligence
quotient (FSIQ) <70. They were also excluded if they had any
history of substance abuse, recent substance use, head trauma
with loss of consciousness, significant fetal exposure to alcohol
or drugs, perinatal or neonatal complications, neurological
disorders, or medical conditions that might adversely affect
growth and development. In the case-control study, behavioral
and emotional problems were assessed using the Child Behavior
Checklist (CBCL) in all children with ADHD and controls in
Cohort 1 (Achenbach and Rescorla, 2001), and with the Strength
and Difficulties Questionnaire (SDQ) in controls in Cohort 2
(Goodman, 1997).

Saliva Collection and DNA Extraction
Saliva samples were collected using the Oragene Discover OGR-
500 kit (DNA Genotek Inc., Ottawa, ON, Canada). DNA was
extracted using prepIT R©

•L2P reagent (DNA Genotek Inc.) and
quantified using the QubitTM dsDNA HS Assay Kit (Thermo
Fisher Scientific Inc., Pittsburgh, PA, United States).

DNA Methylation Array
Genomic DNA (500 ng) was bisulfite-treated for cytosine-to-
thymine conversion using the EZ DNA Methylation-Gold kit
(Zymo Research, Irvine, CA, United States). The DNA was
then whole-genome amplified, fragmented, and hybridized to
the Human MethylationEPIC BeadChip (Illumina Inc., San
Diego, CA, United States). BeadChips were scanned using
iSCAN (Illumina Inc.), and the methylation level (β value) was
calculated for each queried CpG locus using the GenomeStudio
Methylation Module software, followed by the Psychiatric
Genomics Consortium-Epigenome-Wide Association Studies
quality control pipeline (Ratanatharathorn et al., 2017). Using
CpGassoc (Barfield et al., 2012), samples with probe detection
call rates <90% and those with an average intensity value of
either <50% of the experiment-wide sample mean or <2,000
arbitrary units were excluded. Probes with detection P > 0.001
or those based on <3 beads were set to missing as were probes
cross-hybridizing between autosomes and sex chromosomes
(Teschendorff et al., 2013). CpG sites with missing data for
>10% of samples within the dataset were excluded from the
analysis. Probes containing single nucleotide polymorphisms
(based on 1000 Genomes) within 10 base pairs of the target
CpG were maintained in each dataset but flagged and tracked
throughout the analysis pipeline. This decision was based on the
growing recognition that sequence variants can influence DNA
methylation patterns throughout the genome (Smith et al., 2014).
Normalization of probe distribution and background differences
between Type I and Type II probes was conducted using beta
mixture quantile normalization (Teschendorff et al., 2013) after
background correction. We did not remove the batch effect at this
stage either for (1) MZ twins discordant for ADHD (Proband:
N = 2, Non-proband: N = 2) and (2) ADHD cases (N = 18)–
controls (N = 62) study since (1) those samples were scanned

within the same chip and the row positional balance was identical
[Pair 1: row 5 (Proband) vs. row 6 (Non-proband), pair 2: row
7 (Non-proband) vs. row 8 (Proband)], and (2) batches were
completely confounded with case-control group status [Case chip
ID (6 batches): 205111140162, 205111140170, 205111140171,
205134980172, 205134980191, and 205134980192; Control chip
ID (8 batches): 203748260078, 203748260085, 203755070101,
203755080004, 203757350003, 203757350018, 203757350022,
and 203757350023]. In such a case, it is not possible to remove
technical signals when batches are confounded with variables
of interest, even by employing tools such as ComBat (Johnson
et al., 2007). As suggested by Nygaard et al. (2016) and Price
and Robinson (2018), we decided to use chips and rows as
additional covariates in our linear model instead of adjusting
for batch effects in the initial processing to avoid P-value
inflation. After quality control, 807,253 probes and 794,661
probes remained for (1) MZ twins discordant for ADHD and
(2) the ADHD case-control study, respectively. We confirmed
whether pair 1 and pair 2 were MZ twins using 59 “rs” probes
on the EPIC chip using the R package ewastool (Heiss and Just,
2018), and found an identical genetic background (agreement:
0.9999891 and 0.9999893, respectively). As saliva contains a
heterogeneous mixture of cell types of differing proportions
in each sample, we used the EpiDISH method (Teschendorff
et al., 2017) to estimate the proportion of epithelial cells
derived from salivary DNA and entered it as a covariate in our
statistical models.

Brain-Image Acquisition and
Pre-processing
Image acquisition in the 52 participants in the case-control
study (18 with ADHD, 34 controls in Cohort 2) was performed
using a GE Signa PET/MR 3-Tesla scanner with an 8-channel
head coil (GE Healthcare, Milwaukee, WI, United States). A T1-
weighted anatomical dataset was obtained using a fast spoiled-
gradient recalled imaging sequence (voxel size 1 × 1 × 1 mm,
TE = 3.24 ms, TR = 8.46 ms, flip angle = 11◦). Image acquisition
for the other 28 controls in Cohort 1 in the case-control
study was performed using a GE Discovery MR 750 3-Tesla
scanner with a 32-channel head coil (GE Healthcare, Milwaukee,
WI, United States). A T1-weighted anatomical dataset was
obtained from each subject by a fast-spoiled gradient recalled
imaging sequence (voxel size 1 × 1 × 1 mm, TE = 1.99 ms,
TR = 6.38 ms, flip angle = 11◦). VBM was performed as
a global analytic approach using the Statistical Parametric
Mapping version 12 software2 (Wellcome Department of
Imaging Neuroscience, University College London, London,
United Kingdom) implemented in MATLAB 2020b (Math
Works Inc., Natick, MA, United States). T1-weighted images
were segmented coarsely into gray matter (GM), white matter,
cerebrospinal fluid, and skull/scalp compartments using tissue
probability maps. The Diffeomorphic Anatomical Registration
through Exponentiated Lie Algebra algorithm was applied to the
segmented brain tissues to generate a study-specific template and
to achieve an accurate inter-subject registration with improved

2http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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realignment of smaller inner structures (Ashburner, 2007).
The segmented GM images were spatially normalized, and
written out with an isotropic voxel resolution of 1.5 mm. Any
volume change induced by normalization was adjusted via a
modulation algorithm. Spatially normalized GM images were
smoothed by a Gaussian kernel of 6.2 mm full width at half
maximum.

Statistical Analyses
First, to clarify epigenetic associations between proband
and non-proband ADHD discordant MZ twins from
methylation array data, multiple regression analysis was
performed using CpGassoc (Barfield et al., 2012). In this
analysis, DNA methylation at each CpG probe was entered
as a dependent variable, and each group (proband or
non-proband) entered as an independent variable. The
proportion of epithelial cells was entered as a covariate, but
we did not use age and sex as covariates because they were
identical between groups.

Second, to confirm the reproducibility of the probes from the
MZ twin discordant pair analysis in the case-control analysis,
we examined the subset probes threshold set at P < 5.0E-05.
DNA methylation at each CpG probe was entered as a dependent
variable, and each group (case or control) as an independent
variable. Age, sex, FSIQ, the proportion of epithelial cells, chip,
and row for batch effect adjustments as explained previously,
were entered as covariates, and results were threshold at false
discovery rate (FDR) <0.05 by Benjamini-Hochberg.

Third, regional differences in gray matter volume (GMV)
between groups were analyzed in SPM 12 using two-sample t-test
models. Potential confounding effects of age, sex, FSIQ, scanner,
and total GMV were modeled, and their attributed variances
excluded from further analysis. Total GMV was calculated from
the GM images obtained from pre-processing segmentation
using the “Tissue Volumes” utility from the batching system
in SPM12. A GM majority optimal threshold mask, created
based on a study-specific sample, was applied to the analyses to
eliminate voxels of non-GM for GMV-analyses (Ridgway et al.,
2009). The resulting set of voxel values used for comparison
generated a statistical parametric map of the t-statistic SPM{t}
that was transformed to a unit normal distribution (SPM{Z}).
The statistical threshold was set at P < 0.001 at the voxel level
and P < 0.05, with a family wise error (FWE) correction for
multiple comparisons. The anatomical localization of significant
clusters was investigated using automated anatomical labeling
and Brodmann area atlases implemented in the MRIcron
software package (Rorden et al., 2007).

Finally, to further examine whether the ADHD-related GMV
alterations were associated with DNA methylation, a correlation
analysis for the residuals of each β value (methylation, GMV)
controlled by control variables was performed. To this end,
the adjusted eigenvariates, representing linearly transformed
estimates of GMV, were extracted from the identified cluster. The
significance level was set at P < 0.05. All statistical analyses were
performed with R 3.6.3 (R Core Team, 2020), SPM 12, IBM SPSS
Statistics for Windows version 26.0. (Armonk, NY: IBM Corp.).

Meta-Analytic Decoding of Regional
Function Using NeuroSynth
The functional properties of structural regions with alterations
between groups were decoded using a large-scale database-
informed meta-analytic approach as implemented in NeuroSynth
(Yarkoni et al., 2011). A meta-analytic map associated with the
identified region coordinates was derived. Further, the terms
(excluding terms for brain regions) ranked by the z-score were
visualized using an online word cloud generator3.

RESULTS

Clinical Status in Monozygotic Twin
Discordant Pairs
The clinical status of the MZ twin discordant pairs is shown
in Table 1. First, regarding IQ, both pairs of children with
ADHD were in the 25–75 percentile range, and no significant
defects in cognitive ability were observed. Next, regarding ADHD
symptoms, the inattentiveness score was >90th percentile in both
ADHD children, and <75th percentile in both control children,
suggesting that the inattention symptoms were significantly
stronger in children with ADHD. The hyperactive/impulsive
score was <50th percentile in both ADHD and control children,
suggesting that there were no significant hyperactivity symptoms.

Methylation Array Data Analysis of
Monozygotic Twin Discordant Pairs
No CpG probes were detected above the genome-wide
significance level under the number of EPIC array probes
(P < 9.0E-08) (Tsai and Bell, 2015; Saffari et al., 2018) as a
natural consequence of the extremely small sample size. We then
threshold at P < 5.0E-05 (−log(P) = 4.3) by visual inspection
of the Q-Q plot because the top probes over the threshold
had residuals that steeply deviated from the expected line
(Supplementary Figure 1). Sixty-one probes were above the
threshold (Table 2 and Supplementary Figure 2), which were

3https://www.wordclouds.com

TABLE 1 | Clinical status between monozygotic twin discordant pairs.

Pair 1 Pair 2

ADHD Control ADHD Control

Full Scale IQ
(percentile)

109 (73) – 97 (42) –

ADHD Rating
Scale-IV

Inattentive score
(percentile)

16 (94–95) 6 (50–75) 12 (92–93) 3 (50)

Hyperactive/impulsive
score (percentile)

3 (25) 0 (1) 1 (25–50) 0 (1)

IQ, intelligence quotient; ADHD, attention-deficit hyperactivity disorder.
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TABLE 2 | Top 61 differentially methylated CpG sites identified in ADHD-discordant monozygotic twin pairs, ranked by statistical significance and mean 1β (calculated as
DNA methylation level of control twin minus ADHD twin).

Rank Probe ID Gene Chromosome Position Mean 1β P-value

1 cg19181132 LRIG3 12 59314527 0.0059 2.95E-07

2 cg00416255 15 58013677 −0.0021 7.39E-07

3 cg25395120 KANSL1 17 44111045 −0.0112 8.95E-07

4 cg04850211 OBSCN 1 228464232 0.0002 9.05E-07

5 cg02322229 SYNE2;MIR548AZ 14 64669716 −0.0097 1.74E-06

6 cg05803913 MID1IP1 X 38664442 0.0438 2.64E-06

7 cg24088250 17 75252179 0.0316 2.76E-06

8 cg03220187 RFWD3 16 74700945 0.0018 3.13E-06

9 cg26160626 7 155264300 −0.0055 4.68E-06

10 cg24972947 ZNRF1 16 75096111 −0.0248 5.83E-06

11 cg04430024 MICAL1 6 109778491 0.0769 6.04E-06

12 cg19670431 SORCS2 4 7436874 0.0454 6.77E-06

13 cg08676438 ONECUT3 19 1763695 0.0198 6.87E-06

14 cg23148094 PNLIPRP1 10 118350608 −0.0118 7.31E-06

15 cg26360087 DCAKD 17 43128925 0.0020 8.71E-06

16 cg06052716 7 1280607 0.0592 1.05E-05

17 cg10449882 TMTC1 12 29936815 −0.0043 1.08E-05

18 cg03700121 CCDC86 11 60610004 0.0192 1.13E-05

19 cg22641072 CARD14 17 78143724 0.0933 1.18E-05

20 cg09154309 2 170963987 −0.0068 1.21E-05

21 cg06111526 ATF6B 6 32086782 0.0062 1.33E-05

22 cg06385383 CAND1.11 11 10404199 0.0357 1.39E-05

23 cg05833251 NGDN 14 23938784 0.0048 1.54E-05

24 cg02860602 12 103356060 0.0017 1.63E-05

25 cg16524139 TCF3 19 1651573 0.0062 2.22E-05

26 cg03195600 SOCS1 16 11350371 0.0594 2.24E-05

27 cg13304638 TBCD 17 80834089 0.0013 2.26E-05

28 cg18007455 LARGE 22 34257627 0.0112 2.36E-05

29 cg03832293 USP10 16 84780698 −0.0124 2.48E-05

30 cg26436583 PSTPIP2 18 43649176 0.0148 2.70E-05

31 cg12326749 SLC25A27 6 46645430 −0.0066 2.94E-05

32 cg12109797 8 86414553 0.0099 3.07E-05

33 cg15451698 1 111257101 0.0179 3.25E-05

34 cg23098235 HOXB3 17 46634466 0.0265 3.27E-05

35 cg18430990 TMEM240 1 1475941 0.0068 3.28E-05

36 cg08833670 ROBO3 11 124746754 0.0197 3.40E-05

37 cg26486111 16 79646944 0.0009 3.40E-05

38 cg16475887 MAPKBP1 15 42102305 −0.0106 3.41E-05

39 cg08254353 TMEM98 17 31254670 0.0036 3.75E-05

40 cg17547033 FMNL2 2 153362087 −0.0272 3.76E-05

41 cg12507363 DTNA 18 32307046 −0.0346 3.78E-05

42 cg00411843 X 139584448 −0.0004 3.79E-05

43 cg25019889 C1orf146 1 92696685 −0.0113 3.82E-05

44 cg01980222 TREM2 6 41130917 0.0066 3.85E-05

45 cg02753619 FBXW9 19 12807497 0.0012 3.87E-05

46 cg07425090 SYNCRIP 6 86353447 0.0055 4.07E-05

47 cg09973105 RNF175 4 154681532 0.0252 4.27E-05

48 cg00966255 16 10479562 −0.0096 4.29E-05

49 cg13390059 1 88261783 −0.0277 4.40E-05

50 cg12437809 FMO2 1 171153544 −0.0038 4.56E-05

51 cg00025405 5 2135863 −0.0305 4.58E-05

(Continued)
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TABLE 2 | (Continued)

Rank Probe ID Gene Chromosome Position Mean 1β P-value

52 cg18265326 16 65635738 0.0499 4.59E-05

53 cg20305576 FLT1 13 28968481 −0.0123 4.62E-05

54 cg08973053 8 120400084 −0.0073 4.65E-05

55 cg14028653 CDH4 20 60448776 −0.0081 4.67E-05

56 cg05600626 CCDC116 22 21991401 −0.0142 4.78E-05

57 cg25259707 SNAPIN 1 153630934 0.1102 4.82E-05

58 cg11476326 7 139245575 −0.0041 4.88E-05

59 cg19269246 2 42325942 0.0327 4.92E-05

60 cg19851976 CRTC1 19 18812192 0.0262 4.92E-05

61 cg12810354 GABRA4 4 46996987 −0.0028 4.93E-05

ADHD, attention-deficit hyperactivity disorder.

TABLE 3 | Demographic and clinical characteristics of ADHD and control groups.

ADHD (n = 18) Controls (n = 62) Statistics P-value

Age (years), Mean (SD) 10.00 (1.61) 13.93 (2.69) t(78) = 5.88 <0.001

Gender, n (male/female) 15/3 40/22 χ2(1) = 2.30 0.129

Handedness, n (right/left) 16/2 58/4 χ2(1) = 0.44 0.509

Full Scale IQ, Mean (SD) 98.11 (11.66) 106.98 (10.64) t(78) = 3.05 0.003

CBCL Totala, Mean (SD) 69.06 (7.02) 47.93 (8.34) t(44) = −8.90 <0.001

SDQ Totalb, Mean (SD) – 6.62 (4.28)

SNAP-IV

Inattention, Mean (SD) 16.16 (4.87) –

Hyperactivity/impulsivity, Mean (SD) 9.76 (5.21) –

Opposition/Defiance, Mean (SD) 7.76 (5.15) –

Epithelial Cells (%), Mean (SD) 28.47 (10.57) 28.63 (13.26) t(78) = 0.40 0.961

Total GMV (ml), Mean (SD) 847.37 (48.94) 829.90 (74.70) t(78) = 1.08 0.353

Total WMV (ml), Mean (SD) 378.93 (40.26) 392.04 (46.67) t(78) = −0.15 0.283

Total Brain volume (ml), Mean (SD) 1226.30 (80.14) 1221.94 (133.16) t(78) = 0.05 0.879

ADHD, attention-deficit hyperactivity disorder; IQ, intelligence quotient; CBCL, Child Behavior Checklist; SDQ, Strength and Difficulties Questionnaire; SNAP-IV, Swanson,
Nolan, and Pelham questionnaire GMV, gray matter volume; WMV, white matter volume.
aData for the control group was obtained only for Cohort 1 (n = 28).
bData obtained only from the control group of Cohort 2 (n = 34).

confirmed to be associated with ADHD in an independent
case-control dataset.

Demographic and Questionnaire Data in
the Case-Control Study
The ADHD and control groups were matched for sex and
handedness, but there was a significant difference in age between
groups (T(78) = 5.88, P < 0.001). A two-sample t-test was
used to compare the total FSIQ and CBCL total scores between
groups. Compared to the control group, the ADHD group
showed lower FSIQ (T(78) = 3.05, P = 0.003) and higher levels
of ADHD-related emotional and behavioral problems (CBCL
total, T(44) = −8.90, P < 0.001), although data for CBCL was
only available from Cohort 1. In addition, in the control group
of Cohort 2, SDQ total scores were not significantly different
from the mean of standard Japanese children using one-sample
t-test (SDQ total, T(33) = 0.47, P = 0.641), suggesting no
notable emotional and behavioral problems. Multiple regression
analysis was also performed to examine the effect of age on the
differences in FSIQ and CBCL total score between groups, with

each variable as the dependent variable; the results showed that
the effect of group was significant (FSIQ: β = −0.38, T = −2.96,
P = 0.004; CBCL total: β = 0.93, T = 5.95, P < 0.001) while
that of age was not (FSIQ: β = −0.10, T = −0.77, P = 0.445;
CBCL total: β = 0.16, T = 0.99, P = 0.326). Regarding ADHD
symptoms, the inattention score of SNAP-IV in the ADHD
group showed clinically mild symptoms on average, and the
hyperactivity/impulsivity and opposition/defiance scores did not
reach clinically significant levels. Since the ratio of epithelial
cells in saliva samples affects the estimated methylation level (β
value), we analyzed for the difference between groups finding
no significant difference between the ADHD and control groups.
We also estimated GMV, WMV, and total brain volume in the
ADHD and control groups, respectively, but found no differences
between groups in any of these parameters (Table 3).

Case-Control Subset Methylation
Analysis
We extracted the top 61 probes from the initial analysis, among
which 60 probes meeting the quality control criteria were
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included in the case-control dataset. Among these 60 probes,
three probes (cg03700121, cg18430990, and cg19670431) in the
coiled-coil domain containing 86 (CCDC86), transmembrane
protein 240 (TMEM240), and sortilin-related Vps10p domain
containing receptor 2 (SorCS2) genes were significantly
associated with ADHD (FDRs < 0.05, Table 4). However, two
of these probes (cg03700121 and cg18430990) were inconsistent
regarding the direction of the effect, with increased methylation
in twin studies and decreased methylation in case-control
studies, while only the probe involved in SorCS2 showed
consistent results in both studies. Hence, we used cg19670431 for
subsequent epigenetic imaging analyses.

Structural Brain-Image Data in the
Case-Control Study
A whole-brain analysis with FWE correction at the cluster level
was conducted to examine regional differences in GMV between
the two groups (ADHD: n = 18, Controls: n = 62). Compared
with the control group, the ADHD group showed reduced GMV
in the left precentral gyrus (BA6; MNI coordinates, x = −44, y = 5,
z = 57; cluster size = 437 voxels, P = 0.043, FWE corrected cluster
level; Figure 1A) and the right posterior orbital gyrus (BA47;
MNI coordinates, x = 24, y = 21, z = −21; cluster size = 555 voxels,
P = 0.016, FWE corrected cluster level; Figure 1B).

Reverse inference on the functional properties related to
the local regions where structural differences between groups
were observed showed that most of the terms related to the
left precentral gyrus are related to language functions such as
semantic memory, working memory, theory of mind, and motion
imagination (Figure 1C); most of the terms related to the right
posterior orbital gyrus are related to–mainly negative–emotional
information and their regulation (Figure 1D).

Relationship Between Sortilin-Related
Vps10p Domain Containing Receptor 2
Methylation and Brain Structural
Alterations
Sortilin-related Vps10p domain containing receptor 2
methylation was both positively correlated with GMV within a
cluster in the precentral gyrus and the posterior orbital gyrus
(Figures 2A,B). This result suggests that the more methylated
SorCS2 is, the larger the GMV of the precentral and posterior
orbital gyri. In addition, to verify the tissue specificity of the
methylation pattern, we examined the brain-saliva correlation
for the CpG probe (cg19670431) identified using a web tool

TABLE 4 | Three CpG sites replicated in a sample of ADHD cases vs. controls.

Probe ID Gene Chromosome Position Mean 1β P-value (FDR)

cg03700121 CCDC86 11 60610004 −0.1208 0.0000015

cg18430990 TMEM240 1 1475941 −0.0301 0.0003126

cg19670431 SORCS2 4 7436874 0.0230 0.0171530

FDR-adjusted P-values are corrected for multiple comparisons with 60 probes.
FDR, false discovery rate.

based on human samples (Braun et al., 2019) and also confirmed
a trend toward a positive correlation (ρ = 0.37, P = 0.09).

Relationship Between Clinical Symptom
Scores, Sortilin-Related Vps10p Domain
Containing Receptor 2 Methylation and
Brain Structural Alterations
We performed a correlation analysis investigate the
association between the neurobiological basis of both
SorCS2 methylation and local GMV alterations, and
clinical symptoms (core symptoms based on SNAP-IV
and emotional behavior problems based on CBCL tests)
associated with ADHD. As a result, a significant negative
correlation was confirmed between SorCS2 methylation
and CBCL total score (r = −0.444, P = 0.002), while no
significant correlation was found with SNAP total score
(r = −0.227, P = 0.366); these scores also showed no correlation
with both local GMV alterations. These results suggest
that SorCS2 methylation may be involved in regulating
emotional behavioral problems in children rather than
ADHD-specific core symptoms.

DISCUSSION

This study investigated the relationship between DNA
methylation differences based on array data and brain structure
involved variations in the development of ADHD. First, we
investigated two pairs of MZ twins discordant for ADHD and
identified 61 candidates for DNA methylation sites involved
in the development of ADHD. Next, using these candidates
in a case-control study we found that children with ADHD
had elevated methylation in the SorCS2 gene body region.
Finally, we observed that the ADHD group had significantly
reduced GMV in the precentral gyrus and posterior orbital
gyrus compared to the control group and that this volume
reduction was positively associated with SorCS2 methylation.
In addition, the reduced GMV regions in children with ADHD
are involved in language processing and emotional control, and
SorCS2 methylation is also negatively associated with emotional
behavioral problems in children. These results indicate that
SorCS2 methylation might mediate a reduced GMV in the
precentral and posterior orbital gyri and therefore influence the
pathology of children with ADHD.

We suggested that SorCS2 methylation is involved in ADHD
through methylation array analysis of MZ twin discordant
cases and case-control groups, while previous epigenome-wide
studies found no evidence that SorCS2 methylation is involved
in either children or adults with ADHD (van Dongen et al.,
2019; Neumann et al., 2020; Rovira et al., 2020). Although
SorCS2 is known to play a crucial role in neuronal viability
and function (Glerup et al., 2016), human epidemiological
studies have reported that single nucleotide polymorphisms in
SorCS2 are associated with the risk of developing psychiatric
disorders such as ADHD (Alemany et al., 2015), bipolar
disorder (Baum et al., 2008; Ollila et al., 2009), and schizophrenia
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FIGURE 1 | Brain regions with significantly larger gray matter volume in the control group compared to the ADHD group. The statistical threshold for the contrasts
was set at voxel-level P < 0.001 uncorrected for height and cluster-level P < 0.05 family wise error rate corrected for multiple comparisons. The color bar denotes
the t-statistic range. (A) Left precentral gyrus (PrG; BA6; MNI coordinates, x = –44, y = 5, z = 57; cluster size = 437 voxels). (B) Right posterior orbital gyrus (POrG;
BA47; MNI coordinates, x = 24, y = 21, z = –21; cluster size = 555 voxels). Reverse inference of functional properties in the left PrG (C) and right POrG (D) as
decoded by NeuroSynth. The font size represents the rank according to the strength of the relationship between regions and terms.

(Christoforou et al., 2011). Although recent human genome-
wide association studies have suggested that a gene set related
to dopamine signaling is involved not only in ADHD alone but
also in the comorbidity of ADHD with obesity and narcolepsy
(Mota et al., 2020; Takahashi et al., 2020); in animal studies,
lack of SorCS2 reportedly induces ADHD-like behavior by
altering the novelty response to psychostimulants and altering
the dopaminergic firing pattern of the ventral tegmental area
(Olsen et al., 2021). Other recent studies have revealed the
significant roles of SorCS2 in brain derived neurotrophic
factor (BDNF)-dependent plasticity and for social memory
formation by N-methyl-D-aspartic (NMDA) receptor trafficking
in hippocampal neurons (Glerup et al., 2016; Yang et al.,
2021); in parallel, working memory deficits (Martinussen et al.,
2005; Sowerby et al., 2011) and the involvement of BDNF or
NMDA receptor signaling in ADHD have also been suggested
(Bergman et al., 2011; Chang et al., 2014). Taken together, our
results suggest that the SorCS2 gene methylation found in

this study may affect the development and certain symptoms
of ADHD by affecting dopaminergic, BDNF, and/or NMDA
receptor signaling pathways.

Sortilin-related Vps10p domain containing receptor 2
methylation was positively associated with GMV in the
precentral and posterior orbital gyri in the ADHD group,
suggesting that unmethylated SorCS2 may lead to lower
GMV. These results replicate prior results of surface area
reduction in the left precentral and right orbital gyri found
in another cohort of children with ADHD (Jung et al., 2019),
as well as previous findings of cortical thickness reduction in
the precentral gyrus and orbital gyri in a large-scale clinical
sample of children (Hoogman et al., 2019). Big data analysis
of structural magnetic resonance imaging of about 6,800
children found that the precentral gyrus surface area was one
of the prominent local areas negatively associated with ADHD
symptoms (Owens et al., 2021). Reverse inference showed that
the precentral gyrus was associated with language function,
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FIGURE 2 | Correlation between SorCS2 methylation and gray matter volume in the left precentral gyrus (A) and the right posterior orbital gyrus (B). The red line
shows the regression line. Adjusted residuals with respective covariates were used as values for methylation and local GMV of SorCS2. Note that the adjusted
residuals for each covariate were used as estimates of SorCS2 methylation and local GMV.

and that children with ADHD have a higher risk of language
problems (Sowerby et al., 2011; Hawkins et al., 2016; Korrel
et al., 2017) which contributes to poor academic functioning
(Sciberras et al., 2014). Hence, these findings suggest that SorCS2
gene methylation may induce language-related difficulties in
children with ADHD via reduced GMV in the precentral gyrus.
Next, reductions in GMV and cortical thickness in the right
orbital gyrus of individuals with ADHD have often been reported
(Vaidya, 2012; Hoogman et al., 2019; Jung et al., 2019). Although
the function of the orbital gyri appears related to emotional
information and calculations, emotional information may play
an important role in decision-making and executive function
(Bechara et al., 2000; Rolls and Grabenhorst, 2008). Numerous
imaging studies using emotional and executive function tasks
have reported reduced functional activation in the right orbital
gyrus (Epstein et al., 2007; Rubia et al., 2009; Cubillo et al.,
2012; Godinez et al., 2015). Taken together, these findings
suggest that SorCS2 gene methylation may induce both reduced
GMV in the orbital gyrus and emotional behavioral problems,
although the direct association between the two could not be
confirmed in this study.

Several limitations of the present study should be noted and
taken into consideration for future studies. First, the sample size
in this study was relatively small, including only two pairs of
discordant MZ twins and 18 subjects in the ADHD group in
the case-control study. In particular, the CpG sites identified in
the array analysis of MZ twin discordant cases did not reach
genome-wide significance level due to the small sample size;
we only selected the top candidates based on their statistics.
Although it is necessary to replicate the results with a larger
sample size, it was particularly difficult to recruit MZ twins
discordant by a single institution. Next, because we analyzed
salivary DNA methylation, our data may not necessarily reflect
the state of the brain due to the tissue specificity of methylation
patterns (Smith et al., 2015). Regarding the tissue specificity
of DNA methylation, although we tried to validate our results
using a web tool that can investigate the correlation between
methylation of brain, blood, saliva, and buccal cells collected
from the same living human (Braun et al., 2019), another way
to overcome the issue of tissue specificity is to directly examine

the association between the methylation profile of SorCS2 and
the precentral or posterior orbital gyri in the postmortem brains
of children with ADHD. Finally, in the case-control study, the
children’s age and cognitive abilities did not match and the
batches for array analysis and the MR scanners for brain imaging
were confounding between groups because we used two existing
cohorts as control group. Although these factors were used as
control variables in the statistical analysis, it made it difficult to
distinguish whether the association between SorCS2 methylation
and local GMV reduction was involved in the pathophysiology
of ADHD or derived from demographic factors such as age
and general cognitive abilities or research artifacts by batch and
scanner effects. Although no significant difference was observed
between the two groups in age-sensitive brain volume, there was
a significant difference in emotional behavioral problems even
after controlling for age, thus, future studies need to match age
and cognitive abilities and exclude batch and scanner effects.
Despite these limitations, this study sheds light on the some of
the pathological mechanisms of ADHD in that it suggests DNA
methylation candidates associated with brain structure specific to
children with ADHD.

In conclusion, this study suggests that DNA methylation of
the SorCS2 gene may induce language-related and emotional
behavioral problems via brain structure alterations specific to
children with ADHD. Some pharmacological or psychosocial
interventions that enhance SorCS2 gene methylation may
improve ADHD symptoms by interfering with the GMV
reduction in the precentral and posterior orbital gyri. In the
future, the elucidation of the molecular mechanism of local brain
volume changes induced by SorCS2 methylation will be useful for
understanding the pathophysiology of ADHD.
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