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Chaperonins are macromolecular complexes found throughout all kingdoms of life

that assist unfolded proteins reach a biologically active state. Historically, chaperonins

have been classified into two groups based on sequence, subunit structure, and the

requirement for a co-chaperonin. Here, we present a brief review of chaperonins that

can form double- and single-ring conformational intermediates in their protein-folding

catalytic pathway. To date, the bacteriophage encoded chaperonins φ-EL and OBP,

human mitochondrial chaperonin and most recently, the bacterial groEL/ES systems,

have been reported to form single-ring intermediates as part of their normal protein-

folding activity. These double-ring chaperonins separate into single-ring intermediates

that have the ability to independently fold a protein. We discuss the structural and

functional features along with the biological relevance of single-ring intermediates in

cellular protein folding. Of special interest are the φ-EL and OBP chaperonins which

demonstrate features of both group I and II chaperonins in addition to their ability to

function via single-ring intermediates.
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INTRODUCTION

All the information required for macromolecules to acquire their correct three-dimensional
structure and to undergo large conformational changes is found in the primary structure. Some
proteins can refold on their own while others require assistance in regaining structural integrity
and biological activity in the event of misfolding. Chaperonins are large complexes that are
responsible for refolding these misfolded proteins. They constitute a highly conserved family of
functionally and structurally related protein complexes that assist in the proper folding of non-
native proteins involved in a wide variety of cellular processes (Brocchieri and Karlin, 2000;
Henderson et al., 2010). In the absence of protein-folding assistance, cells accumulate misfolded
protein and protein aggregates that eventually lead to cell death (Dekker et al., 2008; Sukhanova
et al., 2012). Chaperonins are multi-subunit assemblies that form an internal protein-folding
chamber that segregates misfolded substrate proteins from cytoplasmic constituents that can
interfere with correct protein-folding. The general structure of chaperonins includes three separate
domains that execute specific functions (Schoehn et al., 2000; Iizuka et al., 2004; Spiess et al., 2004).
The apical domain is a highly flexible domain that interacts with the substrate protein and with
a co-chaperonin that closes the opening to the protein-folding chamber after the substrate has
entered (Saibil et al., 1993; Booth et al., 2008; Zhang et al., 2010). The intermediate domain acts
as a hinge between the apical and the equatorial domain which is responsible for contacts between
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the two rings. The equatorial domain contains the nucleotide
binding pocket and is responsible for conformational changes
that drive the protein-folding cycle (Braig et al., 1994; Ditzel et al.,
1998; Zhang et al., 2010).

Historically, chaperonins have been categorized into two
groups according to their sequence similarity, the number
of subunits and their arrangement, and their need for a
co-chaperonin (Cheng et al., 1990; Reissmann et al., 2007;
Techtmann and Robb, 2010; Lopez et al., 2015; An et al.,
2017). Over the years, chaperonins with single-ring intermediates
have been identified in eukaryotes and more recently in viruses
(Horwich et al., 1993; Shaburova et al., 2006; Cornelissen et al.,
2012; Hildenbrand and Bernal, 2012; Molugu et al., 2016;
Semenyuk et al., 2016; An et al., 2017; Marine et al., 2017). Their
protein-folding mechanisms, however, were poorly understood
because they were largely based on knowledge obtained from
studies of the bacterial groEL/ES chaperonin or its respective
single-ring mutants (Sun et al., 2003; Liu et al., 2009; Kovács
et al., 2010; Illingworth et al., 2011, 2015; Enriquez et al., 2017).
Recent cryo-EM structural analyses on the φ-EL phage-encoded
chaperonin revealed that it undergoes ring dissociation to form
single-ring intermediates upon ATP hydrolysis (Hertveldt et al.,
2005; Kurochkina et al., 2012; Semenyuk et al., 2015; Molugu
et al., 2016). The novel single-ring intermediates of the φ-EL
and OBP chaperonin are like those reported for the human
mitochondrial chaperonin (Viitanen et al., 1992; Levy-Rimler
et al., 2001). These single ring intermediates, along with other
structural and functional features, differentiate φ-EL and OBP
from commonly described group I and group II chaperonins.

CHARACTERISTICS OF GROUP I AND II
CHAPERONINS

Group I chaperonins like the Escherichia coli chaperonin groEL
and its co-chaperonin GroES (together denoted as groEL/ES),
are typically found in eubacteria with the exception of the
eukaryotic mitochondrial heat shock protein 60 (hsp60) and its
co-chaperonin heat shock protein 10 (hsp60/10) (Fenton and
Horwich, 1997). They are characterized as homo-tetradecamers
composed of two stacked seven-membered rings (see Table 1)
(Horwich et al., 2009; Enriquez et al., 2017). In addition,
group I chaperonins possess a staggered (1:2) inter-ring subunit
organization where one subunit in one ring directly contacts two
subunits in the opposite ring (Braig et al., 1994; Ditzel et al., 1998;
Hildenbrand and Bernal, 2012). The defining feature of group I
chaperonins is that they require the assistance of an additional co-
chaperonin protein that acts as a lid to isolate the central protein-
folding chamber (Hayer-Hartl et al., 2016). In the absence of co-
chaperonin, group I chaperonins can prevent non-native protein
aggregation but are unable to fold them (Ellis, 2003; Horwich
et al., 2009).

Group II members include chaperonins from archaeal (Mm-
cpn) and eukaryotic cells (TriC). These chaperonins can be homo
or hetero-oligomers consisting of 7–9 subunits per ring (see
Table 1). These group II complexes have an in-register (1:1) inter-
ring subunit arrangement where each subunit contacts only one

subunit in the opposite ring (Braig et al., 1994; Ditzel et al., 1998;
Hildenbrand and Bernal, 2012). Group II chaperonins do not
require a co-chaperonin for proper protein-folding due to an
extra structural protrusion atop the apical domain that rearranges
itself upon ATP hydrolysis to form a built-in lid that seals the
central cavity (Ditzel et al., 1998; Kusmierczyk and Martin, 2003;
Joachimiak et al., 2014).

THE φ-EL SINGLE-RING ATPASE CYCLE

Typically, bacteriophages will utilize the host chaperonin
to process nascent viral polypeptides. However, the φ-EL
chaperonin encoded by the Pseudomonas aeruginosa is unique in
that it is the first of only two chaperonin groEL orthologs that
have been identified in the phage genome (phage OBP being the
other, see below). Chaperonin φ-EL possesses structural features
of both group I and II (Molugu et al., 2016). Theφ-EL chaperonin
is like group I chaperonins in that it forms a homo-oligomeric
tetradecameric complex and does not have substrate specificity.
On the other hand, the similarities between φ-EL and group
II chaperonins include the lack of a co-chaperonin and an in-
register (1:1) subunit arrangement at the inter-ring interface
(Table 1).

Recent electron microscope reconstructions have
demonstrated that nucleotides control the conformational
state of the chaperonin and that the substrate is the trigger
that allows progression of the chaperonin along the catalytic
protein-folding cycle (Molugu et al., 2016). In the absence of
substrate and presence of ATP, the φ-EL chaperonin forms an
open double-ring conformation that is primed for substrate
binding (Figure 1). This conformation is stable until the
substrate binds and triggers ATP hydrolysis. This in-vitro
behavior makes sense because the chaperonin without substrate
would deplete ATP reserves in futile hydrolysis reactions. ATP
hydrolysis by both rings simultaneously triggers ring separation
resulting in a more than two-fold enlargement in volume of
the internal cavity (Figure 1). The enlarged protein-folding
chamber enables the encapsulation of the 116 kDa denatured
β-galactosidase protein, a substrate too large to be folded by
groEL/ES (Ayling and Baneyx, 1996; Molugu et al., 2016).
Interestingly, hydrolysis of ATP simultaneously triggers an
extreme downward tilt of the equatorial domains that result
in ring dissociation into two single-ring complexes (Molugu
et al., 2016). This contributes in large part to the expansion of
the internal chamber. At the apical end, ATP hydrolysis also
induces closure of the internal chamber in what appears to be
an iris-like rearrangement of the apical domains, circumventing
the need for a co-chaperonin to act as a lid to create an isolated
internal chamber. The two rings then re-associate to form a
closed double-ring complex that then relies on the binding of
ATP to release folded substrate and initiate another iteration
of protein-folding (Molugu et al., 2016). The φ-EL chaperonin
probably operates via a one-stroke protein-folding mechanism
due to the simultaneous activity of both rings, as depicted
in Figure 1. Furthermore, inter-ring negative cooperativity
is likely eliminated since both rings appear to fold proteins
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TABLE 1 | Features of group I and II chaperonins compared to φ-EL.

Group I Group II φ-EL

Source Bacteria, Homo sapiens Archaea and eukaryotes Bacteriophage

Location Cytoplasmic and endosymbiotic organelles Cytoplasmic Cytoplasmic

Substrate Promiscuous Substrate-specific Promiscuous

Subunits per ring 7 7–9 7

Oligomeric organization Homo-oligomeric Hetero-oligomeric Homo-oligomeric

Co-chaperonin Required Not Required Not Required

Inter-ring Interactions Out of register (1:2) In-register (1:1) In-register (1:1)

Ring separation No No Yes

Items in bold demonstrate similarities between φ-EL chaperonin and Group I and II chaperonins.

FIGURE 1 | φ-EL protein-folding catalytic cycle. A misfolded substrate enters each of the two ATP bound chaperonin internal chambers. ATP hydrolysis induces

apical domain rearrangement resulting in the closure of the internal chamber as well as ring separation. ADP removal allows the rings to reassemble to form the APO

conformation. Renewed binding of ATP opens the protein-folding chamber allowing the folded substrate to exit and the cycle to begin again. Structures of

intermediates were generated with chimera using the deposited maps EMD-6492, EMD-6493, and EMD-6494.

simultaneously and therefore also must bind ATP to both rings
(Molugu et al., 2016).

Most of what is known about single-ring chaperonins is largely
based on studies of the φ-EL chaperonin and gro-EL single-
ring mutant (SR1) (Weissman et al., 1995; Chen et al., 2006;
Molugu et al., 2016). Cryo-EM structural analysis of the SR1-
D398A groEL/ES revealed an 80% expansion of the volume
of the central cavity compared to the expanded double-ring
conformation (Chen et al., 2006). This expanded protein-folding
cavity is also observed in φ-EL where it probably evolved to
accommodate large viral proteins that cannot be encapsulated
by the host double-ring chaperonin (Wolf, 2006; Molugu et al.,
2016). Again, this was proven to be the case because the φ-EL
chaperonin was able to effectively fold β-galactosidase, a protein
that is not accommodated by groEL (Molugu et al., 2016).

THE OBP PHAGE CHAPERONIN

In addition to the φ-EL chaperonin, there is emerging evidence
that many chaperonins may share the single-ring intermediate
in their protein-folding catalytic cycle. Recently, another viral
encoded chaperonin in the genome of Pseudomonas phage OBP
has been purified as a single-ring complex (Semenyuk et al.,
2016). The OBP gene product 246 (gp246) has been shown to
form heptameric single-rings by electron microscopy. Although

it was purified exclusively as a single-ring, this single-ring is likely
an intermediate conformation in the protein-folding cycle of the
OBP chaperonin. Like φ-EL, it does not require a co-chaperonin
for its biological activity in in-vitro experiments (Semenyuk et al.,
2016). All single-ring forming chaperonins studied to date form
the single-ring as a conformational intermediate in the protein-
folding cycle and do not function as a single-ring complex
exclusively. It is anticipated that OBP gp246 will behave similarly
and future X-ray structures or cryo-EM reconstructions will shed
more light on the details about the OBP gp246 protein-folding
cycle.

THE HUMAN MITOCHONDRIAL HSP60/10
PROTEIN-FOLDING MECHANISM

Naturally occurring single-ring chaperonins like hsp60/10 were
not well studied due to the instability of the functional
complex in-vitro (Levy-Rimler et al., 2002; Vilasi et al., 2014).
This lack of knowledge led researchers to make assumptions
about single-ring chaperonins based on studies performed on
groEL/ES single-ring mutants (Viitanen et al., 1998; Chen
et al., 2006; Liu et al., 2009; Kovács et al., 2010). The
human mitochondrial hsp60/10 chaperonin is the eukaryotic
homolog of the bacterial groEL/ES complex and assists
in maintaining the proper folding of newly imported and
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stress denatured mitochondrial proteins (Cheng et al., 1990;
Horwich, 1990; Lubben et al., 1990; Dickson et al., 1994).
Although the majority of hsp60 chaperonin resides in the
mitochondrial matrix, numerous studies have now implicated
its involvement in a variety of cellular processes at extra-
mitochondrial locations (Singh et al., 1990; Soltys and Gupta,
1996, 1997, 1999; Itoh et al., 2002; Hildenbrand and Bernal, 2012;
Henderson et al., 2013; Cappello et al., 2014). A functionally
compromised hsp60/10 chaperonin complex in humans can lead
to mitochondrial dysfunction and has been implicated in various
neurodegenerative disorders (Magen et al., 2008; Parnas et al.,
2009).

Early studies using chimeric groEL/hsp60 chaperonins
revealed a single-ring hsp60 complex that retained the ability
to fold target proteins in-vitro nearly identical to its wild-
type counterpart (Nielsen and Cowan, 1998; Nielsen et al.,
1999). This observation led to the conclusion that the
mitochondrial single-ring chaperonin can maintain productive
protein-folding without the use of double-ring complexes.
Additionally, the expression of hsp60/10 proteins in an E.
coli strain devoid of groEL/ES demonstrated that the hsp60/10
can compensate for the loss of groEL/ES (Nielsen et al.,
1999).

More recent TEM and X-ray crystallographic investigations
have provided strong evidence that the human mitochondrial
chaperonin utilizes both double- and single-ring intermediates
during its ATPase cycle (Levy-Rimler et al., 2001; Nisemblat et al.,
2014, 2015; Vilasi et al., 2014; Enriquez et al., 2017). A mutant
human hsp60 complexed with mouse hsp10 was crystallized
resulting in a symmetric “American football” shaped structure
(Hartman et al., 1992; Nisemblat et al., 2015). In addition,
a 100◦ rotation of one subunit in each ring of the crystal
structure indicated the intra-ring positive cooperativity observed
in groEL is also not conserved in the mitochondrial chaperonin.
Negative stain electron-microscopy on the nucleotide free
wild-type human mitochondrial hsp60 complex revealed it
forms a symmetrical, and stable tetradecameric complex that
requires the presence of substrate to initiate ATPase activity
(Enriquez et al., 2017). Negative stain electron microscope
investigations of hsp60 have also demonstrated that it favors
a tetradecameric complex in the presence of ATP, and a
football complex in the presence of ATP and hsp10 (Levy-
Rimler et al., 2001). It is still unclear whether ring-expansion
occurs in the hsp60/10 single-ring complex and whether it
allows for the folding of large proteins or if it simply doubles
the protein-folding capacity when under stressful mitochondrial
conditions.

The in-vitro analysis of the hsp60/10 ADP complex is
difficult because biochemical studies indicate that hsp60 has
an affinity for hsp10 that is so low in the presence of ADP
that the affinity is nearly immeasurable (Nielsen and Cowan,
1998). Subsequent investigations demonstrated that the addition
of ADP has little effect on the ATPase activity of hsp60/10
(Nielsen and Cowan, 1998; Levy-Rimler et al., 2001). Despite
the evidence for hsp60/10 single-ring activity, the exact cellular
conditions that coerce the formation of the hsp60/10 single-
complex have yet to be elucidated (Viitanen et al., 1992;

Nielsen et al., 1999; Nisemblat et al., 2015). Clearly, additional
studies that include high resolution structural information
of the single-ring intermediate are required to get a better
understanding of how the hsp60/10 chaperonin folds a substrate
protein.

GROEL/ES COMPLEX AND SINGLE-RING
INTERMEDIATES

Recently, Yan et al. (2018) suggested that the groEL/ES complex
may also be forming single-ring intermediates (Yan et al., 2018).
This was observed in groEL mutants in the presence of the
ATP analog ADP·BeFx which is supposed to mimic the ATP
bound state, the ADP·Fx that mimics the transition state of
ATP hydrolysis, and ADP·VO4 that mimics the post-hydrolysis
state. ADP·BeFx binding to the trans ring of the asymmetric
groEL/ES complex triggers ring separation. The separated rings
reassemble after groES and ADP dissociate from the former cis
ring. Preventing ring separation viamutagenesis led to complexes
with reduced activity in-vitro and in-vivo. In our hands, these
nucleotide analogs yielded off-pathway intermediates suggesting
that the analogs were not behaving as predicted compared to
the natural nucleotides (ATP and ADP) (unpublished data). The
absence of a substrate prevented progression of the chaperonin
to the next conformational intermediate and so we decided to
simply use the natural nucleotides to avoid structural artifacts.

CONCLUSION

Single-ring intermediates have been identified for φ-EL, OBP and
hsp60/10 chaperonin complexes. Recently, groEL/ES complexes
have also been suggested to operate via single-ring intermediates
although further data is required to prove that single-rings are
relevant. The naturally occurring single-ring intermediates are
an integral part of bacteriophage and human mitochondrial
chaperonin protein-folding catalytic pathways. The exact
sequence, structural and cellular conditions that regulate the
formation of these single-ring intermediates in still unknown.
Further insight into single-ring chaperonins is important since
the human hsp60 is now implicated in the onset of a wide variety
of diseases including arthritis, cancer, and neurodegenerative
disorders (Hansen et al., 2002; Parnas et al., 2009; Ghosh et al.,
2010; Campanella et al., 2012; Henderson and Martin, 2013).
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