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In this study, we propose a deep-learning technique for functional MRI analysis.
We introduced a novel self-supervised learning scheme that is particularly useful for
functional MRI wherein the subject identity is used as the teacher signal of a neural
network. The neural network is trained solely based on functional MRI-scans, and the
training does not require any explicit labels. The proposed method demonstrated that
each temporal volume of resting state functional MRI contains enough information to
identify the subject. The network learned a feature space in which the features were
clustered per subject for the test data as well as for the training data; this is unlike the
features extracted by conventional methods including region of interests (ROIs) pooling
signals and principal component analysis. In addition, applying a simple linear classifier
to the per-subject mean of the features (namely “identity feature”), we demonstrated that
the extracted features could contribute to schizophrenia diagnosis. The classification
accuracy of our identity features was comparable to that of the conventional functional
connectivity. Our results suggested that our proposed training scheme of the neural
network captured brain functioning related to the diagnosis of psychiatric disorders
as well as the identity of the subject. Our results together highlight the validity of our
proposed technique as a design for self-supervised learning.

Keywords: deep-learning, functional MRI, neural network, feature extraction, psychiatric diagnosis, self-
supervised learning

INTRODUCTION

In this study, we propose a novel deep-learning technique which extracts a feature from
brain functional magnetic resonance images (fMRIs). Our proposed method solely depends on
MRI-scans and does not require any additional data regarding the subjects (e.g., diseases or
cognitive impairments), whereas the extracted features effectively capture the psychopathological
characteristics of the subjects. Recent advances in machine learning have demonstrated its
capability for medical sciences. Skin cancers have been successfully diagnosed from skin images
(Esteva et al., 2017) and retinal diseases from three-dimensional optical coherence tomography
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(OCT) images (De Fauw et al., 2018). In addition, Titano et al.
(2018) reported that machine learning with three-dimensional
brain computed tomography (CT) images performed well in
terms of detection of acute neurologic events including stroke,
hemorrhage, and hydrocephalus. These studies suggested the
further potential of the deep neural networks, especially for
the analysis of spatially structured data, including MRIs and
functional MRIs. These studies trained a neural network to
directly infer diseases from the input. This framework is called
fully supervised learning and is known to be effective when a
large training dataset with accurate labels is available. Titano et al.
(2018), who aimed to classify acute neurological events, collected
37,236 brain images with clinical annotations for training and
used 96,303 extra clinical reports to make the clinical annotations
more suitable for training. In the supervised learning framework,
the network is specialized for the target diseases, which further
enhances the performance. However, the requirement of a vast
amount of training data is not always practical; the number
of patients is sometimes too small to train a neural network
(Durstewitz et al., 2019; Khosla et al., 2019), and the accurate
diagnoses require expert skills (Durstewitz et al., 2019). These
drawbacks are remarkable especially for psychiatric disorders
because the sample size tends to be small, accurate diagnoses
are especially difficult, and the underlying mechanisms are still
under discussion. In contrast, self-supervised learning does not
require any explicit labels for training. Instead, the teacher signals
(i.e., labels) are generated from the original input data in self-
supervised learning. For example, Noroozi and Favaro (2016)
proposed a self-supervised learning scheme for natural image
processing, in which the input image was divided into nine
pieces, and the network was trained to infer the original position
of each piece. The intermediate outputs of the network were
subsequently fed into another linear classifier, which resulted
in comparable performance to fully supervised deep neural
networks. The advantages of self-supervised training potentially
overcome the shortages of clean labels for psychiatric disorders,
although the teacher signal must be carefully designed. In many
previous deep-learning studies for MRIs without additional labels
(Suk et al., 2016; Aghdam et al., 2017; Heinsfeld et al., 2018; Oh
et al., 2019; Yamaguchi et al., 2021), the teacher signal was the
same as the input, namely auto-encoder. Such an auto-encoder
tends to suffer from the bias-variance trade-off, wherein the
network either underfits or overfits the teacher signals due to
a lack of constraints to the feature manifold. In contrast, this
study proposes a novel self-generated teacher signal for resting-
state functional MRI; we used the temporal volumes as input,
and the subject ID as the teacher signal. The explicit labels enable
the network to generate a compact feature that represents a
conceptual distance from the owner of the input to the subjects
used in the training. In this study, we experimentally showed that:
(i) each temporal volume of functional MRI contains enough
information to identify the subject, (ii) the network learned a
feature space in which the features cluster subject-by-subject for
test data as well as for training data, and (iii) the extracted feature
contributes to a schizophrenia diagnosis. These experiments
together exhibit the validity of our proposed method as a design
for self-supervised learning.

MATERIALS AND METHODS

Dataset
We used a dataset from the Center for Biomedical Research
Excellence (COBRE) (Aine et al., 2012). The dataset is composed
of anatomical and resting-state functional MRI scans; 72
scans were from schizophrenia patients and 75 from healthy
controls. The anatomical and functional scans were acquired by
MPRAGE and EPI by 3.0-Tesla Siemens Trio scanner (Siemens
Healthineers, Erlangen, Germany). Each functional scan was
composed of 150 timepoints, and the repetition time was 2 s.
Each timepoint was originally composed of 64 × 64 × 32 voxels
(3 × 3 × 4 mm3), which was transformed to 91 × 109 × 91
voxels in MNI coordinates by the preprocessing (Supplementary
Section 1). We excluded subjects without meta-data and controls
with other psychiatric diseases, resulting in 69 patients (56 males
and 13 females, 37.8 ± 14.0 years old) and 72 controls (51 males
and 21 females, 35.9 ± 11.7 years old). We divided the patients
and controls into training 1, training 2, and test dataset with
random sampling stratified over present illness, age, and gender.
The training 1 dataset was used for training the neural network,
and training 2 was used for training the linear regressor for
inferring the subject attributes. The number of patients p and
controls c was (p, c) = (51, 54) in training 1, (9, 9) in training
2, and (9, 9) in test datasets. The mean and standard deviation
of the ages were 37.0± 13.4 in training 1, 36.4± 11.6 in training
2, and 36.3± 11.9 in test datasets. The number of males m and
females f was (m, f ) = (78, 28) in training 1, (15, 3) in training
2, (14, 4) in test datasets. We unequally allocated samples to
the three datasets because the neural network in training 1
possessed a huge number of optimization parameters (about
2 million), while the linear regressor/classifier used in training
2 has a relatively small number of optimization parameters
(3–10,000).

Training 1
The input of the network was a batch of temporal MRI volumes,
whose size was set to (80, 96, 80) by trimming outside of the
brain. The network included four convolutional blocks, followed
by two convolutional layers and one dense layer. Each block
consisted of two three-dimensional convolutions and one average
pooling layer (Figure 1). The number of convolutional blocks was
preliminarily explored. The less number of convolution blocks
resulted in underfitting, wherein the training accuracy was almost
the same as the chance, while the training did not converge for the
network with more convolution blocks.

The kernel size k and stride s were (k, s) = (3, 1) for each
convolutional layer, and (2, 2) for each pooling layer. The
number of output channels was set as 8 at the first convolutional
layer and doubled before the pooling layers, resulting in 128
before the dense layer. We used softmax cross-entropy as the
loss function, which was computed against a 105-dimensional
one-hot vector of subject ID. The network was optimized using
Adam (Kingma and Ba, 2015) with α = 0.0001 for the first 17,000
iterations and α = 0.00001 for the following 110,000 iterations,
with a batch size of 32.

Frontiers in Neuroscience | www.frontiersin.org 2 August 2021 | Volume 15 | Article 696853

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-696853 August 23, 2021 Time: 14:54 # 3

Hashimoto et al. Deep Feature Extraction for MRI

FIGURE 1 | Network architecture. Each rounded square represents a layer with the weight parameters. The number after the comma denotes the number of
channels for the layer.

Training 2
The output of the dense layer was extracted for each timepoint as
a feature vector. Subsequently, the feature vectors were averaged
for each subject, yielding an identity feature for each subject.
The identity features for the training 2 dataset were then fed
into a linear classifier (regressor) to learn schizophrenia diagnosis
and age regression.

We also trained a linear classifier with a slightly modified
version of the feature vector, in which the average of all elements
in the feature vector was subtracted from each element. This
operation was naturally introduced by the formulation of the
softmax function, in which the subtraction of the average does
not affect the output of the function or the training process. In
the following sections, we call the original feature vector (the
output of the dense layer) as classification, and the modified one
as classification+.

Experiment 1: Training Convergence
The training accuracy of the subject classification was computed
to evaluate training. Reporting training accuracy is slightly
unconventional in studies on neural networks because the
convergence of training is now trivial in conventional two-
dimensional natural scene image processing. However, to the best
of our knowledge, this is the first report which trained networks
to classify the subject from a single timepoint of functional MRI
by stacked three-dimensional convolutions, and we concluded
that the training convergence is worth reporting.

Experiment 2: Qualitative Analysis of
Extracted Features
The characteristics of the acquired feature space were first
qualitatively analyzed. We plotted the feature vectors in the
training 2 and test datasets by t-distributed stochastic neighbor
embedding (t-SNE) (Maaten and Hinton, 2008). The clusters
were then quantitatively evaluated by precision@150 for each

identity feature. Because the number of timepoints was 150
for each subject, precision@150 would be 1 if all the feature
vectors for a subject clustered around his identity feature.
The formula of precision@150 is given in Supplementary
Section 2, wherein the feature vectors are ranked by Euclid
distance to each identity feature in the original feature space.
We applied these qualitative and quantitative analyses to the
features of the classification and classification+ feature vectors
as well as the signals averaged over the ROI defined by
the automated anatomical labeling (AAL) atlas (Suk et al.,
2016; see Tzourio-Mazoyer et al., 2002 as the reference to
AAL), namely ROI-pooled signals, and the top three and
10,000 principal components (Damaraju et al., 2014). For these
features, the “identity” feature was also defined as the centroid
for each subject.

We explored all the principal components up to 10,000
where the rational upper limit of computational resources
for experiments 2 and 3. The results demonstrated that the
number of principal components did not affect precision@150
in experiment 2 and the statistical significance of schizophrenia
diagnosis in experiment 3, while the number affected the age
regression performance in experiment 3 wherein the top three
principal components performed the best and showed statistical
significance in correlation between predicted and actual age.
Therefore, we reported the results of the best (top three) and the
maximum (10,000) principal components for experiment 2 and 3.

Experiment 3: Relation to Subject’s
Attributes
The schizophrenia classifier and age regressor developed in
section “Training 2” were applied to the test dataset. The
classification accuracy was computed and tested using a sign
test, which evaluates a probability parameter of the binomial
distribution underlying that the classification is significantly
larger than chance (50%). This procedure was also applied to
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the identity features of the ROI-pooled signals, the top three
and 10,000 principal components, similar to that in Experiment
2. In addition, the procedure was applied to the functional
connectivity matrix (Liang et al., 2006; Kim et al., 2016), defined
as the correlation coefficients among the time series of the ROI-
pooled signals.

Ethics Statement
All experiments in this study were performed in accordance with
the Ethical Guidelines for Medical and Health Research Involving
Human Subjects in Japan.

RESULTS

Experiment 1: Training Convergence
The network was trained to classify the subject ID from each time
point of fMRI. The training accuracy at the 127,000 iteration was
97.85%, which was considerably improved over the chance rate,
suggesting that the training successfully converged.

Experiment 2: Qualitative Analysis of
Extracted Features
The distributions of the feature vectors extracted by our proposed
neural network, ROI-pooling, and PCA were visualized by t-SNE,
and are depicted in Figure 2A. It should be noted that t-SNE
preserves local adjacence well but it does not necessarily retain
the global structure.

The features extracted by the network clustered for each
subject, unlike the features extracted by ROI-pooling and PCA.
The clustering performance was quantitatively evaluated using
precision@150 around the identity feature for each subject. The
precision@150 was 81.5 and 61.4% for our proposed classification
and classification+ feature vectors, whereas it was 5.6% for
the ROI-pooled feature and the top three and 10,000 principal
components (Figure 2B). The precision@150 for each subject is
shown in Supplementary Section 3.

Experiment 3: Schizophrenia Diagnosis
The average of the features was computed as the identity feature
for each subject, and the identity features were fed into a linear
classifier for schizophrenia diagnosis with a logistic loss function.
The accuracies were 61.1 and 77.8% for the identity feature of
our proposed classification and classification+ feature vectors,
respectively. The performance of classification+ was significantly
better than the chance (p = 0.015). The accuracy was 72.2% for
the connectivity matrix, which was marginally higher above the
chance (p = 0.048). The identity features of the top three and
10,000 principal components and the ROI-pooled signals did not
significantly discriminate between the schizophrenia and control
group (acc. = 27.8, 50, and 61.1%, respectively), as shown in
Figure 3A.

Similarly, subject age was regressed from the identity feature.
The correlations between the predicted and actual age were
not significant (r = 0.128 and 0.115 for classification and
classification+), while the top three principal components

showed significant correlation (r = 0.57, p = 0.013). The other
conditions (i.e., the top 10,000 principal components, ROI-
pooled signals, and functional connectivity matrix) did not show
significant correlation (r =−0.21,−0.29, and 0.34, respectively),
as shown in Figure 3B.

DISCUSSION

We have shown that: (i) the self-supervised learning scheme
led our neural network to acquire the projection from the high
(∼106) dimensional signal space to the lower dimensional (∼102)
feature space in which each dimension represented subject
identity in the training dataset, (ii) the capability of the subject
identification was generalized to the unknown subjects in the
test dataset, and (iii) the temporal average of the extracted
feature vector reflected the psychiatric status of the subjects.
Surprisingly, our proposed method performed comparable to
or even better than the functional connectivity matrix for
schizophrenia diagnosis, which has been regarded as a promising
biomarker of cognitive functions (Liang et al., 2006; Kim et al.,
2016) and reported to reflect the cognitive trait in subjects
(Finn et al., 2015).

The transferred capability from the subject identification to
schizophrenia diagnosis can be regarded as a kind of “deep
feature extraction.” In the natural scene image processing, the
intermediate output in a neural network pre-trained with a
large-dataset classification often works well in another task,
known as a “deep feature extraction” (Oquab et al., 2014). The
underlying mechanism of the transferability is still under debate;
however, one of the dominant hypotheses is that the stacked two-
dimensional convolution itself works as the statistical prior of the
natural scene images, regardless of the training task (Ulyanov
et al., 2018). Our results showed that the transference also
occurred with the combination of the human-brain T2∗ images
and the stacked three-dimensional convolutions.

Our feature did not correlate with the subject’s age, unlike the
psychiatric status. This result suggests that subjects with similar
psychiatric status are adjacent on the feature space, whereas
similar age subjects are not. Given this discussion, the linear-
decomposition-based features (i.e., the principal/independent
components) and the functional connectivity matrix might have
potentially ignored the discontinuity on the signal-space, yielding
the results in the subject’s age regression different from our
identity feature.

Our identity feature and the functional connectivity exhibited
a significant performance on schizophrenia diagnosis. The
functional connectivity has been reported to be a good subject
identifier (Finn et al., 2015), and thus, the features that classified
patients from controls were those which behaved as the identifier
of the subjects. The linkage between subject identification and
the subject’s mental condition should be investigated in future
works. Although the difference in diagnosis accuracy was not
statistically tested due to the shortage of samples, the diagnosis
accuracy of our identity feature was slightly greater than that
of the functional connectivity. A potential reason behind this
superiority is the local interactions of the signal. In the functional
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FIGURE 2 | (A) Distribution of feature vectors, visualized by t-SNE. Each dot represents a feature vector for a single timepoint, colored for each subject.
(B) Precision@150 of the cluster for each feature vector.

FIGURE 3 | (A) Accuracy of the schizophrenia discrimination. (B) Pearson’s correlation coefficient of the age regression. The single asterisks show the statistical
significance at α = 0.05.

connectivity analysis, the signals are averaged for each ROI,
discarding the local signal interactions. In contrast, previous
studies have reported that both global and local activities in the
brain lead to our cognitive functions (see Panzeri et al., 2015 for
review). Both of the local and global interactions are modeled in
the neural network, and it might have led to a positive effect in
schizophrenia discrimination.

We introduced two versions of identity feature in this
study, namely “classification” and “classification+.” Both

the “classification” and “classification+” feature vectors
are the intermediate output of our neural network but the
characteristics of these feature vectors were slightly different:
“classification” feature vectors clustered more cohesive around
the subject’s identity feature than “classification+” feature
vectors, while “classification+” identity feature performed
better for schizophrenia diagnosis. The better performance
of “classification+” in the schizophrenia diagnosis might be
attributed to the small training dataset. The “classification+”
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feature can be regarded as the projected space from the
“classification” feature space to a hyperplane tangential to 1
(vector of all ones), which reduces the degree of freedom and
potentially regularizes the feature space. The regularization of
the feature space might have positively affected the training
with small samples for the schizophrenia diagnosis. The relation
between these two types of feature vectors should be investigated
in future work with a larger dataset.

In this study, we introduced a novel self-supervised learning
scheme and highlighted some of the characteristics of the
extracted feature, especially in terms of the relation to
schizophrenia. A few parameters, such as the optimal number of
subjects in the training, the optimal neural network architecture,
more detailed relations between the feature and the subject’s
attributes, and the mathematical analyses about the feature space
will be addressed in the future work. Furthermore, for the clinical
application, it is essential to evaluate the diagnosis accuracy
and robustness more precisely with larger dataset as well as to
explore better regressors rather than a simple linear regressor. We
hope these will be uncovered in future works along the further
accumulation of available datasets and with the advancement in
the field of machine learning.
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