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Abstract: In this study, a novel data-driven control scheme is presented for MEMS gyroscopes
(MEMS-Gs). The uncertainties are tackled by suggested type-3 fuzzy system with non-singleton
fuzzification (NT3FS). Besides the dynamics uncertainties, the suggested NT3FS can also handle the
input measurement errors. The rules of NT3FS are online tuned to better compensate the disturbances.
By the input-output data set a data-driven scheme is designed, and a new LMI set is presented to
ensure the stability. By several simulations and comparisons the superiority of the introduced control
scheme is demonstrated.

Keywords: fuzzy system; learning algorithm; MEMS gyroscopes; machine learning; LMI set; data-
driven control

1. Introduction

Micro-electro-mechanical-system gyroscopes (MEMS-Gs) have specific properties and
vast applications in navigation systems, industrial plants, automobile systems, and so on.
MEMS-Gs mainly measure the rate of the rotation around the axis. The control problem of
MEMS-Gs can be challengeable, because the MEMS-Gs performance can be significantly
influenced by fundamental perturbations such as time-varying dynamics, cross stiffness,
external noises, and damping [1–4].

Interestingly, design of MEMS-Gs can be impressively boosted through powerful
control schemes which can eliminate or at least reduce the error signals [5,6]. In turn,
some algorithms have been proposed to control MEMS-Gs. For instance, the chattering
phenomenon in control signal applied to the MEMS-Gs has been removed by employing
an integral sliding-mode control (SMC) [7]. Moreover, a robust SMC has been developed
to improve trajectory tracking and remove the chattering for the similar problem [8]. An
adaptive dynamic SMC with the sliding surface comprised of fractional-order terms has
been utilized to control the Z-axis vibrating MEMS-Gs in [9], and an adaptive dynamic
SMC via a backstepping technique to analyze the same problem has been used in [10].
Based on an LMI approach and the concept of a nonsingular terminal SMC strategy,
the stabilization conditions of the MEMS-Gs have been addressed in [11]. The tracking
problem of uncertain MEMS-Gs with disturbances has been analyzed by using an adaptive
prescribed performance SMC in [12]. Moreover, the nonsingular terminal SMC which
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involves an online identifier to approximate the angular velocity has been suggested by
using the backstepping scheme in [13].

On the other hand, the stability analysis and control problem become more complex
when unknown nonlinear dynamics and uncertainties exist in the model of MEMS-Gs.
These types of uncertainties may devastate the performance of MEMS-Gs [14].

In the literature, FLS-based control techniques are widely used for uncertain sys-
tems [15,16]. For instance, in [17], a type-2 (T2) FLS with a tuned scheme for secondary
memberships has been implemented for the frequency regulation problem subject to un-
known dynamics and multiple disturbances. In [18], based on T2-FLSs, the unknown
nonlinearities have been approximated to analyze the synchronization of chaotic systems
under unknown slave systems. The problem of synchronization of chaotic systems in
the presence of unknown dynamics has been solved by using a dynamic programming
technique and type-2 wavelet-based FLSs [19]. To upgrade the estimation precision in
the system identification problem, a dynamic deep learned T2-FLS has been introduced
in [20]. The predictive control of glucose level with unknown metabolism has been studied
by using T2-FLSs in [21]. Based on an LMI scheme and a deep tuned T2-FLS, the leader
following problem of multi-agent plants under perturbed dynamics has been studied
in [22]. Moreover, to upgrade approximation performance, an interval type-3 (T3) FLS with
an online learning scheme has been developed in [23]. Recently, a self-organizing interval
T3-FLS has been suggested in [24] to promote the precisions of a learning algorithms
in versus of non-Gaussian noises. In [25] a new FLS based predictive control system is
introduced for networked systems. In [26], a new system based on FLSs is designed for
transporting of hazardous materials.

These techniques have provided the opportunities to address the uncertainties and
unknown dynamics of MEMS-Gs. A fractional-order SMC of a micro gyroscope with
unknown model has been studied via a double-loop FLS [27]. The bat algorithm has been
used for parameter tuning of PID SMC of MEMS-Gs in [28]. Furthermore, both the SMC
and the NTSMC have been designed by considering composite neural learning method to
achieve finite-time stability and enhance the tracking accuracy of MEMS-Gs [29]. Authors
in [30] have utilized a neural adaptive control with hysteresis logarithmic quantizer for
the MEMS-GS in the presence of constraints on the states. In [31], using a simple neural
network (NN) to approximate nonlinearity of the MEMS-Gs, the fast terminal SMC has been
developed to analyze short-time convergence. Based on the error compensation scheme,
the TSMC problem has been investigated for the subject of uncertainties in [32]. An output
feedback controller has been designed using NNs and SMC for the same problem in [33].
Moreover, a NN constrained output feedback controller which incorporates a hybrid
quantizer has been suggested to enhance tracking error of the MEMS-Gs [34]. Recently, the
predictive control (MPC) approach with T3FLSs has been designed to control MEMS-Gs
which suffers from actuator faults [35]. Considering non-singleton FLSs and Boltzmann
machine, a new fuzzy controller has been suggested for MEMS-Gs in the presence of
nonlinearities and unknown dynamics [36].

Data-based control strategies are at the center of attention due to their applications in
engineering. Along with model-based and system identification approaches, direct data-
driven control methods can be implemented to investigate the stability analysis of systems
with unknown dynamics. In this regard, direct data-driven control method is able to tackle
the complexities of learning a precise model of a system. Recently, some valuable direct
data-driven control techniques have been proposed. For instance, based on persistently
exciting data, data-dependent LMIs have been provided in [37,38] to obtain the optimal
control and robustness in the presence of noise corrupted measurements via applying
a data-based state feedback controller. Authors in [39] propose a method to improve
the conditions of designing data-driven control. Based on past measured trajectories, an
implicit model has been considered to design a robust data-driven MPC [40]. Recently, these
ideas have also been utilized to control the unknown nonlinear polynomial systems [41].
Utilizing the framework of matrix S-Lemma and LMIs, H2 and H∞ data-based controllers
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are designed through noisy data in [42]. Based on data-driven control and reinforcement
learning, the Linear Quadratic Regulator (LQR) has been developed for the stabilization of
linear systems with unknown dynamics in [43]. Data-driven control and fault estimation
of unknown systems has been studied in [44]. Moreover, a data-based feedback controller
with a guaranteed attraction has been considered to analyze the stabilization of bilinear
systems [45].

Motivated by above research studies, in this paper, a non-singleton T3-FLS is es-
tablished to tackle the nonlinearities of the system model and unknown dynamics of
MEMS-Gs, which in turn enables us to develop the accuracy of the suggested controller.
The contributions of this paper are consist of developing the direct data-driven control
strategy and merging with a non-singleton type-3 FLS to design a novel hybrid controller.
Based on the finite response samples and considering the basic sufficient conditions, a
hybrid controller is utilized for the stability of the tracking error. In contrast to the pro-
posed methods of [35,36], where the MPC strategy and a deep learned RBM have been
utilized, in current study, a data-driven scheme is implemented to upgrade the accuracy of
the applied controller, characterize, and achieve the stability of the error system without
explicitly identifying a model or using a deep learned RBM. More specifically, to tackle the
conditions on characterization of the error dynamic system proposed in [35,36] which lead
to the conservatism, modeling error, and high computational complexity, direct data-driven
control mechanism is formulated to enhance the system performance. To this goal, based
on the optimization problem, sufficient data-based conditions in the framework of the
LMI are acquired and the gain of the data-based controller is computed. Employing the
suggested direct data-driven control method, the stability of the error dynamics is ensured
via a Lyapunov function, which in turn ensures that our data-driven algorithm steers the
error signal to the zero.

2. Problem Formulation

Consider the following dynamics of MEMS-G [35]:

M ¨̃r1 + a11 ˙̃r1 + (a12 − 2Mθ̃ρ) ˙̃r2 + (Λ11 −Mθ̃ρ
2
) ˙̃r1 + Λ11r̃2 + Λ13r̃3

1 = η̃1 (1)

M ¨̃r2 + a22 ˙̃r1 + (a21 + 2Mθ̃ρ) ˙̃r1 + (Λ22 −Mθ̃ρ
2
) ˙̃r2 + Λ21r̃1 + Λ23r̃3

2 = η̃2 (2)

where Λ13, Λ21, Λ23, and Λ11, Λ22 are the stiffness coefficients and the coefficients of stiff-
ness coupling. Moreover, r̃1/r̃2 denotes the displacement of drive/sensitive axis and θ̃ρ is
the level sensitivity. The dimensionless positions are as follows:

Mr̈1 + a11ṙ1 + (a12 − 2Mθρ)ṙ2 + (Λ11 −Mθ2
ρ)ṙ1 + Λ11r2 + Λ13r3

1 = η1 (3)

Mr̈2 + a22ṙ1 + (a21 + 2Mθρ)ṙ1 + (Λ22 −Mθ2
ρ)ṙ2 + Λ21r1 + Λ23r3

2 = η2 (4)

One can estimate the dynamics of MEMS-G as follows:

˙̂r1 = G1(x|Ξr1) + η1 (5)
˙̂r2 = G2(x|Ξr2) + η2 (6)

where G1(x|Ξr1) and G1(x|Ξr1) are the designed NT3FSs, Ξr1 and Ξr1 are the tunable
parameters and the vector x is:

x =
[
r1 r2 ṙ1 ṙ2

]T (7)

By applying the online optimized FLS to tackle the uncertainties, a data-drive scheme is
proposed stabilize the tracking error dynamics. See the general scheme in Figures 1 and 2.
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Figure 1. General control scheme.

Figure 2. Control scheme.

3. Type-3 FLS

The dynamics of the MEMS-G are perturbed by various disturbances and also the
mathematical equations are considered to be fully uncertain. Then in control of MEMS-Gs
we deal with a high uncertain problem. Type-3 FLSs can better model the high-level
uncertainties, because of their higher degrees of freedom in contrast to type-1 and type-2
counter parts. The secondary memberships and upper bounds of uncertainties in type-3
fuzzy sets are not fixed values but they are also fuzzy sets. Regarding above reasons, in
this paper T3-FLSs are employed to tackle the uncertainties in dynamics of MEMS-G as
given in (5). The suggested scheme is given in Figure 3. The computation details of output
signal is written as:
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(1) The inputs of NT3FSs are x = [y1, ẏ1, y2, ẏ2].
(2) The operation of fuzzifications are applied as:

x̄i,κ̄ j(t) =
xi(t)σ̄2

Λn
i ,κ̄ j

+ cΛn
i ,κ̄ j

σ̄2
x

σ̄2
Λn

i ,κ̄ j
+ σ̄2

x
, (8)

x̄i,κ j
(t) =

xi(t)σ̄2
Λn

i ,κ j
+ cΛn

i ,κ j
σ̄2

x

σ̄2
Λn

i ,κ j
+ σ̄2

x
, (9)

xi,κ̄ j
(t) =

xi(t)σ2
Λn

i ,κ̄ j
+ cΛn

i ,κ̄ j
σ̄2

x

σ2
Λn

i ,κ̄ j
+ σ̄2

x
, (10)

xi,κ j
(t) =

xi(t)σ2
Λn

i ,κ j
+ cΛn

i ,κ j
σ̄2

x

σ2
Λn

i ,κ j
+ σ̄2

x
, (11)

where, xi(t) is the i-th input, cΛn
i ,κ̄ j

, σΛn
i ,κ j

, σΛn
i ,κ̄ j

, σ̄Λn
i ,κ j

, σ̄Λn
i ,κ̄ j

denote the mean and
standard-divisions for n-th fuzzy set (FS) for yi at κ slice level. σ̄x is a constant value.
(3) The memberships are written as:

ϕ̄Λn
i ,κ̄ j

(xi(t)) = exp

−
(

x̄i,κ̄ j(t)− cΛn
i ,κ̄ j

)
σ̄2

Λn
i ,κ̄ j

, (12)

ϕ̄Λn
i ,κ j

(xi(t)) = exp

−
(

x̄i,κ j
(t)− cΛn

i ,κ j

)
σ̄2

Λn
i ,κ j

, (13)

ϕ
Λn

i ,κ̄ j
(xi(t)) = exp

−
(

xi,κ̄ j
(t)− cΛn

i ,κ̄ j

)
σ2

Λn
i ,κ̄ j

, (14)

ϕ
Λn

i ,κ j
(xi(t)) = exp

−
(

xi,κ j
(t)− cΛn

i ,κ j

)
σ2

Λn
i ,κ j

. (15)

(4) The firing level of rules are [23]:

µ̄h
κ̄ j
= ϕ̄Λ

n1
1 ,κ̄ j
· ϕ̄Λ

n2
2 ,κ̄ j
· · · ϕ̄Λ

nN
n ,κ̄ j

, (16)

µ̄h
κ j
= ϕ̄Λ

n1
1 ,κ j
· ϕ̄Λ

n2
2 ,κ j
· · · ϕ̄Λ

nN
n ,κ j

, (17)

µh
κ̄ j
= µ

Λ
n1
1 ,κ̄ j
· µ

Λ
n2
2 ,κ̄ j
· · · µ

Λ
nN
n ,κ̄ j

, (18)

µh
κ j
= µ

Λ
n1
1 ,κ j
· µ

Λ
n2
2 ,κ j
· · · µ

Λ
nN
n ,κ j

. (19)

where, N is input numbers. The h-th rule is given as:

y1 is ϕ̄Λ
n1
1 ,κ̄ j

and y2 is ϕ̄Λ
n2
2 ,κ̄ j

and

yn is ϕ̄Λ
nN
n ,κ̄ j

Then yh ∈
[
Ξh,j, Ξ̄h,j

]
,

(20)

where, Ξh,j and Ξ̄h,j denote rule coefficients.
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(5) The output signal is written as [23]:

y =

nκ
∑

j=1
nκ
∑

j=1
κ̄ j


Y
∑

h=1
κ̄ j

(
µ̄h

κ̄ j
+µh

κ̄ j

)
Ξ̄h,j/2

Y
∑

h=1

(
µ̄h

κ̄ j
+µh

κ̄ j

) +
κ j

Y
∑

h=1

(
µ̄h

κ j
+µh

κ j

)
Ξh,j/2

Y
∑

h=1

(
µ̄h

κ j+µh
κ j

)
 (21)

where, nκ and Y are the number of slices and inputs. From (21), G1(µ|Ξ1) and G2(µ|Ξ2)
we have:

G
(
µ|Ξy1

)
= ΞTµ, (22)

where,
ΞT =

[
Ξ1,1, ..., Ξ1,nr , ..., ΞY,1, ..., ΞY,nr ,

Ξ̄1,1, ..., Ξ̄1,nr , ..., Ξ̄1,1, ..., Ξ̄1,nr ],
(23)

µT = 0.5
Λ
∑

j=1
κ̄ j

 κ1

(
µ̄1

κ1
+µ1

κ1

)
Y
∑

h=1

(
µ̄1

κ j+µ1
κ j

) , ...,
κnκ

(
µ̄1

κnκ
+µ1

κnκ

)
Y
∑

h=1

(
µ̄1

κ j+µ1
κ j

) ,

κ1

(
µ̄Y

κ1
+µY

κ1

)
Y
∑

h=1

(
µ̄1

κ j+µ1
κ j

) , ...,
κnκ

(
µ̄Y

κnκ
+µY

κnκ

)
Y
∑

h=1

(
µ̄1

κ j+µ1
κ j

) ,

κ̄1

(
µ̄1

κ̄1
+µ1

κ̄1

)
Y
∑

h=1

(
µ̄h

κ̄ j
+µh

κ̄ j

) , ..., κ̄nκ

(
µ̄1

κ̄nκ
+µ1

κ̄nκ

)
Y
∑

h=1

(
µ̄h

κ̄ j
+µh

κ̄ j

) ,

κ̄1

(
µ̄Y

κ̄1
+µY

κ̄1

)
Y
∑

h=1

(
µ̄h

κ̄ j
+µh

κ̄ j

) , ..., κ̄nκ

(
µ̄Y

κ̄nκ
+µY

κ̄nκ

)
Y
∑

h=1

(
µ̄h

κ̄ j
+µh

κ̄ j

)
,

(24)

The rules are optimized as follows:

Ξ(t + 1) = Ξ(t) + γµ(t)e(t) (25)

where, e represents tracking error and 0 ≤ γ < 1.

Figure 3. NT3FS structure.
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4. Data Driven Control System

From (5), the basic controller is considered as:

ηz = r̈dz − Gz(x|Ξrz)− ι1 ėz − ι2ez (26)

where, Gz(x|Ξrz) is suggested FLS, rdz is the desired signal, and ι1 and ι2 are constant. Then
tracking error dynamics becomes:

ëz = −ι1 ėz − ι2ez − εz − uz (27)

where, εz represents the approximation error. The linearized equations of error system are
considered as:

ez(k + 1) = Aez(k) + Buz(k) (28)

As mentioned before, we consider a linear discrete time system to model the error
system where the system information are fully unknown. Therefore, the aim of this section
is to construct a feedback control system no the basis of limited collected data from previous
operation of the system, in order to steer the error to the origin. In this regard, a feedback
controller uz(k) = Fez(k) is considered and we have to formulate the gain F based on data
(without identifying the matrices A, B). During the operation of the system, we collect
τk samples from the input and error as the sequences of uz(0), uz(1), . . . , uz(τk − 1) and
ez(0), ez(1), . . . , ez(τk − 1). These are organized as

Uz[0,τk ]
= [uz(0) uz(1) . . . uz(τk − 1)] (29)

Ez[0,τk ]
= [ez(0) ez(1) . . . ez(τk − 1)] (30)

Ez[1,τk−1] = [ez(1) ez(2) . . . ez(τk − 1)] (31)

Lemma 1. Let C ∈ Rτk×n satisfies I = Ez[0,τk ]
C. Then, the error system (28) with the state

feedback controller uz(k) = Fez(k) which is formulated as F = Uz[0,τk ]
C has the following

equivalent representation

ez(k + 1) = Ez[1,τk ]
Cez(k) (32)

Proof. Applying the state feedback controller uz(k) = Fez(k) to the error system (28) and
based on I = Ez[0,τk ]

C, one can achieve that

ez(k + 1) = (A.I + BF)ez(k)

=
(

AEz[0,τk ]
C + BUz[0,τk ]

C
)

ez(k) (33)

Since the error data in (31) satisfies Ez[1,τk ]
= AEz[0,τk ]

+ BUz[0,τk ]
, Lemma 1 is proved.

In the next part, sufficient condition in the framework of LMI will be proposed for the
stabilization of the error system (32).

Theorem 1. If there exist a matrix R such that the following LMI holds[
Ez[0,τk ]

R Ez[1,τk ]
R

∗ Ez[0,τk ]
R

]
> 0 (34)

Then, the error system (28) is asymptotically stable and the direct data-driven controller is

computed via uz(k) = Uz[0,τk ]
R
(

Ez[0,τk ]
R
)−1

ez(k).
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Proof. Since (32) is the data-based closed-loop representation of the error system (28),
the asymptotical stability of (32) should be guaranteed. For this purpose, the Lyapunov
function is considered as V(k) = ez

T(k)Pez(k).
The time difference of V(k) is as follows

∆V(k) = ez
T(k + 1)Pez(k + 1)− ez

T(k)Pez(k)

= ez
T(k)

(
Ez[1,τk ]

RP−1RTEz
T
[1,τk ]

)
ez(k)− ez

T(k)Pez(k) (35)

where the change of variable R = CP is employed. Regarding Lemma 1, one can achieve
that P = Ez[0,τk ]

R. Now, applying Schur Complement Lemma to the inequality ∆V(k) < 0
results in the LMI (34). Furthermore the gain of the direct data-driven controller is

computed as F = Uz[0,τk ]
C = Uz[0,τk ]

RP−1 = Uz[0,τk ]
R
(

Ez[0,τk ]
R
)−1

. This completes
the proof.

5. Stabilization with Noisy Data

Consider the error system (28), but in this system the only measurable signal is

en(k) = ez(k) + n(k) (36)

where n(k) is an unknown measurement noise with no particular statistics on the noise.
The aim here is to construct a stabilizing control technique on the basis of the open-loop
measurable noisy data en(k). Defining the following data sequences

N[0,τk ]
= [n(0) n(1) . . . n(τk − 1)] (37)

N[1,τk ]
= [n(1) n(2) . . . n(τk)] (38)

in which n(k), k = 0, . . . , τk are noise samples collected during the experiment. Moreover,
one has

En[0,τk ]
= Ez[0,τk ]

+ N[0,τk ]
(39)

En[1,τk ]
= Ez[1,τk ]

+ N[1,τk ]
(40)

Assumption 1. The matrices
[

U[0,τk ]

En[0,τk ]

]
, En[1,τk ]

are full ranked.

Assumption 2. For δ > 0 and Sn[0,τk ]
= AN[0,τk ]

−N[1,τk ]
, the following inequality holds

Sn[0,τk ]
Sn

T
[0,τk ]
≤ δEn[1,τk ]

En
T
[1,τk ]

(41)

The Theorem 2, provides sufficient conditions for the stabilization of (28) with noisy
collected data.

Theorem 2. Assume that Assumptions 1 and 2 hold and there exists a matrix R and a scalar

µ > 0 such that δ < µ2

(4+2µ)
and the following LMIs hold[

En[0,τk ]
R− µEn[1,τk ]

En
T
[1,τk ]

En[1,τk ]
R

∗ En[0,τk ]
R

]
> 0 (42)[

I R
∗ En[0,τk ]

R

]
> 0 (43)

Then, the error system (28) is asymptotically stable and the gain of the data-based controller is

designed under noisy collected data via F = U[0,τk ]
R
(

En[0,τk ]
R
)−1

.
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Proof. From Lemma 1, Equations (39) and (40), the following results can be concluded

en(k + 1) = (A + BF)en(k) =
(

AEn[0,τk ]
C + BU[0,τk ]

C
)

en(k)

=
(

A
(

E[0,τk ]
+ N[0,tk ]

)
C + BU[0,tk ]

C
)

en(k)

=
(

En[1,τk ]
+ Sn[0,τk ]

)
Cen(k) (44)

Consider Lyapunov candidate as V(k) = en
T(k)Pen(k). The time difference of V(k) is:

∆V(k) = en
T(k + 1)Pen(k + 1)− en

T(k)Pen(k)

= en
T(k)

((
En[1,τk ]

+ Sn[0,τk ]

)
R
(

En[0,τk ]
R
)−1

RT

(
En[1,τk ]

+ Sn[0,τk ]

)T
− En[0,τk ]

R
)

en(k) (45)

in which R = CP and En[0,τk ]
R = P are utilized. From (45), ∆V(k) < 0 results in

en
T(k)Ωen(k) < 0, where

Ω = (1 + ρ)En[1,τk ]
R
(

En[0,τk ]
R
)−1

(En[1,τk ]
R)T

+ (1 + ρ−1)Sn[0,τk ]
R
(

En[0,τk ]
R
)−1

(Sn[0,τk ]
R)T − En[0,τk ]

R (46)

in which ρ > 0. Regarding LMI (43), one has

Ω < −µEn[1,τk ]
En

T
[1,τk ]

+ ρEn[1,τk ]
En

T
[1,τk ]

+ (1 + ρ−1)Sn[0,τk ]
Sn

T
[0,τk ]

(47)

Now, choosing ρ = µ
2 and considering δ < µ2

4+2µ imply that the upper bound of Ω
in (47) is negative. Therefore, the proof is completed.

Remark 1. The advantages of the control scheme are that: (1) The uncertainties in dynamics of the
MEMS-G are online identified and there is no dependence on the predefined mathematical equations.
(2) The data of tracking error is collected and then a data-driven compensator is designed. (3) The
asymptotic stability is proved in two normal and noisy conditions.

6. Simulations

The reference signals rd1 and rd2 are considered to be cos(5t)− sin(3t) and sin(5t)−
cos(2t − 0.1). The initial conditions are as: r1(0) = −0.71 and r2(0) = −0.91. The
simulation parameters are given in Table 1. The trajectories of ri, i = 1, 2 are depicted in
Figure 4 that show good tracking. We see that ri, i = 1, 2 are approached to the references
rdi

, i = 1, 2 at a finite time with no overshoots. The trajectories of e1 and e2 in Figure 5 show
that the settling time is desired and error signals are reached to the zero level at a short
time. The estimated signals, control signals and phase portrait are given in Figures 6–8,
respectively. A strong synchronization in observed in Figure 8.
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Table 1. Control parameters.

Parameters Values Equations

κ̄ 0.5 0.8 1 (12) and (13)
κ 0 0.3 0.7 (14) and (15)

cΛ1
1

−1 (12)–(15)
cΛ2

1
1 (12)–(15)

cΛ1
2

−1 (12)–(15)
cΛ2

2
1 (12)–(15)

ι1 100 (27)
ι2 20 (27)

0 1 2 3 4 5 6 7 8 9 10
   Time(s)

-2

-1

0

1

2

0 1 2 3 4 5 6 7 8 9 10
   Time(s)

-2

-1

0

1

2

Figure 4. Output signals.
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Figure 5. Tracking errors.
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Figure 6. Estimated signals.
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Figure 7. Control signals.
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Figure 8. Phase portrait.
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For further evaluation, a comparison is presented with backstepping SMC (BSMC) [46],
FLS based SMC (FSMC) [47] and fractional-order neural-based controller (FNC) [48].
Table 2, presents the RMSE comparison results. We see that the designed data-driven
controller gives a better result. It worth to mention that the dynamics in our controller is
fully unknown.

Table 2. Comparison results.

Controller e1 e2

BSMC 7.4207 11.1113
FSMC 5.3741 10.3440
FNC 6.1931 7.0221

Proposed Controller 3.4442 3.4373

Remark 2. One of the main properties of the suggested controller is that the uncertainties are
tackled by a powerful estimation scheme based on T3-FLSs. On the other hand, a data-driven
compensator helps that the tracking error to be reduced. Then we see from simulation results that
the tracking errors are well reached to zero level at a good finite time.

To better examine the robustness against the hard noisy condition, the disturbances
are considered to be noise with noise-power 10 which is shown in Figure 9. The trajectories
of output signals, tracking errors, estimated signals, and control signals are given in
Figures 10–13. We see that the suggested approach results in a good robust performance.
The output signals well track the references in the presence of high noisy condition and
unknown dynamics.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
   Time(s)

-400

0

400

Figure 9. High noise as dynamic perturbation.
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Figure 10. Output signals in the presence of high noisy condition.
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Figure 11. Tracking errors in the presence of high noisy condition.
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Figure 12. Estimated signals in the presence of high noisy condition.
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Figure 13. Control signals in the presence of high noisy condition.

7. Conclusions

This study proposes a novel data-driven control scheme for MEMS gyroscopes (MEMS-
Gs) based on type-3 FLSs. The suggested FLS by a non-singleton fuzzification is designed
to compensate the perturbations, uncertainties and measurement errors. The data-driven
control technique by guaranteed stability is proposed to develop the stability, accuracy
and robustness. The suggested controller is applied on a case-study gyroscope. Besides
the fully unknown dynamics, a measurement error and dynamic perturbation are also
considered as Gaussian noise. The simulations and comparisons with some conventional
approaches, show that the suggested data-driven control scheme results in better accuracy.
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fuzzy logic system. Vojnotehnički Glasnik 2021, 69, 355–390. [CrossRef]

27. Fei, J.; Feng, Z. Fractional-Order Finite-Time Super-Twisting Sliding Mode Control of Micro Gyroscope Based on Double-Loop
Fuzzy Neural Network. IEEE Trans. Syst. Man Cybern. Syst. 2020, 1–15. [CrossRef]

28. Rahmani, M.; Komijani, H.; Ghanbari, A.; Ettefagh, M.M. Optimal novel super-twisting PID sliding mode control of a MEMS
gyroscope based on multi-objective bat algorithm. Microsyst. Technol. 2018, 24, 2835–2846. [CrossRef]

29. Xu, B.; Zhang, R.; Li, S.; He, W.; Shi, Z. Composite Neural Learning-Based Nonsingular Terminal Sliding Mode Control of MEMS
Gyroscopes. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 1375–1386. [CrossRef]

30. Shao, X.; Shi, Y. Neural Adaptive Control for MEMS Gyroscope with Full-State Constraints and Quantized Input. IEEE Trans. Ind.
Inform. 2020, 16, 6444–6454. [CrossRef]

31. Zhang, R.; Xu, B.; Wei, Q.; Yang, T.; Zhao, W.; Zhang, P. Serial-Parallel Estimation Model-Based Sliding Mode Control of MEMS
Gyroscopes. IEEE Trans. Syst. Man Cybern. Syst. 2020, 1–12. [CrossRef]

32. Guo, Y.; Xu, B.; Zhang, R. Terminal Sliding Mode Control of MEMS Gyroscopes With Finite-Time Learning. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 4490–4498. [CrossRef]

33. Zhang, R.; Xu, B.; Shi, P. Output Feedback Control of Micromechanical Gyroscopes Using Neural Networks and Disturbance
Observer. IEEE Trans. Neural Netw. Learn. Syst. 2020, 1–11. [CrossRef] [PubMed]

34. Shao, X.; Shi, Y. Neural-Network-Based Constrained Output-Feedback Control for MEMS Gyroscopes Considering Scarce
Transmission Bandwidth. IEEE Trans. Cybern. 2021, 1–13. [CrossRef] [PubMed]

35. Vafaie, R.H.; Mohammadzadeh, A.; Piran, M.J. A new type-3 fuzzy predictive controller for MEMS gyroscopes. Nonlinear Dyn.
2021, 106, 381–403. [CrossRef]

36. Mohammadzadeh, A.; Vafaie, R.H. A deep learned fuzzy control for inertial sensing: Micro electro mechanical systems. Appl.
Soft Comput. 2021, 109, 107597. [CrossRef]

37. Van Waarde, H.J.; De Persis, C.; Camlibel, M.K.; Tesi, P. Willems’ Fundamental Lemma for State-Space Systems and Its Extension
to Multiple Datasets. IEEE Control. Syst. Lett. 2020, 4, 602–607. [CrossRef]

38. De Persis, C.; Tesi, P. Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness. IEEE Trans. Autom. Control
2020, 65, 909–924. [CrossRef]

39. Van Waarde, H.J.; Eising, J.; Trentelman, H.L.; Camlibel, M.K. Data Informativity: A New Perspective on Data-Driven Analysis
and Control. IEEE Trans. Autom. Control 2020, 65, 4753–4768. [CrossRef]

40. Berberich, J.; Köhler, J.; Müller, M.A.; Allgöwer, F. Data-Driven Model Predictive Control With Stability and Robustness
Guarantees. IEEE Trans. Autom. Control 2021, 66, 1702–1717. [CrossRef]

41. Guo, M.; De Persis, C.; Tesi, P. Data-driven stabilization of nonlinear polynomial systems with noisy data. IEEE Trans. Autom.
Control. 2021. [CrossRef]

42. van Waarde, H.J.; Camlibel, M.K.; Mesbahi, M. From noisy data to feedback controllers: Non-conservative design via a matrix
S-lemma. IEEE Trans. Autom. Control. 2020, 1. [CrossRef]

43. De Persis, C.; Tesi, P. Low-complexity learning of Linear Quadratic Regulators from noisy data. Automatica 2021, 128, 109548.
[CrossRef]

44. Liu, H.; Li, X.J.; Deng, C.; Ahn, C.K. Fault Estimation and Control for Unknown Discrete-Time Systems Based on Data-Driven
Parameterization Approach. IEEE Trans. Cybern. 2021, 1–12. [CrossRef]

45. Bisoffi, A.; De Persis, C.; Tesi, P. Data-based stabilization of unknown bilinear systems with guaranteed basin of attraction. Syst.
Control. Lett. 2020, 145, 104788. [CrossRef]

46. Chu, Y.; Fei, J.; Hou, S. Adaptive neural backstepping PID global sliding mode fuzzy control of MEMS gyroscope. IEEE Access
2019, 7, 37918–37926. [CrossRef]

47. Fei, J.; Yan, W. Adaptive control of MEMS gyroscope using global fast terminal sliding mode control and fuzzy-neural-network.
Nonlinear Dyn. 2014, 78, 103–116. [CrossRef]

48. Fei, J.; Chen, F. Dynamic Fractional Order Sliding Mode Control Method of Micro Gyroscope Using Double Feedback Fuzzy
Neural Network. IEEE Access 2020, 8, 125097–125108. [CrossRef]

http://dx.doi.org/10.1002/asjc.2566
http://dx.doi.org/10.1109/TFUZZ.2019.2928509
http://dx.doi.org/10.1016/j.ins.2021.05.031
http://dx.doi.org/10.31181/rme200101010p
http://dx.doi.org/10.5937/vojtehg69-29629
http://dx.doi.org/10.1109/TSMC.2020.2979979
http://dx.doi.org/10.1007/s00542-017-3700-6
http://dx.doi.org/10.1109/TNNLS.2019.2919931
http://dx.doi.org/10.1109/TII.2020.2968345
http://dx.doi.org/10.1109/TSMC.2020.2981807
http://dx.doi.org/10.1109/TNNLS.2020.3018107
http://dx.doi.org/10.1109/TNNLS.2020.3030712
http://www.ncbi.nlm.nih.gov/pubmed/33119514
http://dx.doi.org/10.1109/TCYB.2021.3070137
http://www.ncbi.nlm.nih.gov/pubmed/34033557
http://dx.doi.org/10.1007/s11071-021-06830-4
http://dx.doi.org/10.1016/j.asoc.2021.107597
http://dx.doi.org/10.1109/LCSYS.2020.2986991
http://dx.doi.org/10.1109/TAC.2019.2959924
http://dx.doi.org/10.1109/TAC.2020.2966717
http://dx.doi.org/10.1109/TAC.2020.3000182
http://dx.doi.org/10.1109/TAC.2021.3115436
http://dx.doi.org/10.1109/TAC.2020.3047577
http://dx.doi.org/10.1016/j.automatica.2021.109548
http://dx.doi.org/10.1109/TCYB.2021.3107425
http://dx.doi.org/10.1016/j.sysconle.2020.104788
http://dx.doi.org/10.1109/ACCESS.2019.2905927
http://dx.doi.org/10.1007/s11071-014-1424-z
http://dx.doi.org/10.1109/ACCESS.2020.3007233

	Introduction
	Problem Formulation
	Type-3 FLS
	Data Driven Control System
	Stabilization with Noisy Data
	Simulations
	Conclusions
	References

