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Abstract: In order to solve the problem of pedestrian positioning in the indoor environment, this paper
proposes a high-precision indoor pedestrian positioning system (HPIPS) based on smart phones.
First of all, in view of the non-line-of-sight and multipath problems faced by the radio-signal-based
indoor positioning technology, a method of using deep convolutional neural networks to learn the
nonlinear mapping relationship between indoor spatial position and Wi-Fi RTT (round-trip time)
ranging information is proposed. When constructing the training dataset, a fingerprint grayscale
image construction method combined with specific AP (Access Point) positions was designed, and
the representative physical space features were extracted by multi-layer convolution for pedestrian
position prediction. The proposed positioning model has higher positioning accuracy than traditional
fingerprint-matching positioning algorithms. Then, aiming at the problem of large fluctuations
and poor continuity of fingerprint positioning results, a particle filter algorithm with an adaptive
update of state parameters is proposed. The algorithm effectively integrates microelectromechanical
systems (MEMS) sensor information in the smart phone and the structured spatial environment
information, improves the freedom and positioning accuracy of pedestrian positioning, and achieves
sub-meter-level stable absolute pedestrian positioning. Finally, in a test environment of about 800 m2,
through a large number of experiments, compared with the millimeter-level precision optical dynamic
calibration system, 94.2% of the positioning error is better than 1 m, and the average positioning error
is 0.41 m. The results show that the system can provide high-precision and high-reliability location
services and has great application and promotion value.

Keywords: indoor localization; smartphone; map constraints; sensors; deep neural network

1. Introduction

Indoor positioning is an extension of navigation positioning technology to the indoor environment.
It uses a variety of positioning technologies and sensor information to determine the location of
people and objects in indoor space. Outdoors, the direct method of positioning is to use the Global
Navigation Satellite System (GNSS), including GPS (Global Positioning System), GLONASS (Global
Navigation Satellite System), BDS (BeiDou Navigation Satellite System), etc. However, due to
the limited performance of satellite signals in indoor environments, it is impossible to provide
high-precision location services in indoor environments. With the increasing demand for services
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based on indoor locations, such as finding cars in underground garages, rapid medical treatment
in hospitals, rapid positioning of materials in factories, etc., more and more research scholars
have explored various indoor positioning technologies. According to factors such as application
environment, positioning equipment, accuracy requirements, and some users with different needs,
the current indoor positioning technology can be divided into professional indoor positioning and
lightweight solutions indoor positioning [1]. Common professional indoor positioning technologies
include ultra-wideband positioning [2], pseudolite positioning [3], radio frequency identification
positioning [4], and ultrasonic positioning [5]. These professional-level positioning technologies are
usually required to achieve decimeter or even centimeter-level positioning accuracy, and require
high-precision hardware equipment and specific infrastructure. However, when facing the daily
applications of the general public, lightweight indoor positioning solutions are a necessary condition.
Thanks to the unique popularity and portability of smart phones, smart phones have become a potential
mass-level indoor positioning platform. Usually, the low-cost sensors integrated in the mobile phone
are used to perceive the user’s movement information and environmental information in real time,
and the location of the mobile phone user can be determined. In addition, because smart phones
have strong network interconnectivity, smart phone-based indoor positioning has a broader space
for development in improving the quality of indoor location services. Generally, the positioning
methods based on smart phones mainly include positioning based on wireless sensor networks and
the pedestrian dead reckoning (PDR) algorithm. Among them, the most extensively studied include
Wi-Fi positioning [6], Bluetooth positioning [7], visual positioning [8], geomagnetic positioning [9],
and cellular network positioning [10].

Positioning methods based on wireless signals are favored by researchers because of their
advantages, such as wide coverage and mature infrastructure. In particular, positioning methods
based on wireless signal location fingerprints have attracted widespread attention. Fingerprint-based
positioning technologies are more reliable than connection-based positioning technologies because they
do not make any assumptions about communication in the network. However, a pre-configuration stage
is required, in which fingerprint collection is performed to model the network to obtain a fingerprint
database, that is, a radio map. In the positioning phase, the Radio Signal Strength Intensity (RSSI)
collected by any given node is combined with information from the fingerprint database to find the
user’s location. The advantage of fingerprint-based technology is that collecting information from the
network allows us to consider many characteristics of the environment, such as multipath propagation,
wall attenuation, etc. “Location fingerprint” associates a location in the actual environment with
a certain “fingerprint”, and a location corresponds to a unique fingerprint. The fingerprint can be
single-dimensional or multi-dimensional. For example, when the device to be positioned is receiving or
sending information, the fingerprint can be one or more measured values of this information or signal
(the most common is signal strength), and any feature that can be used to distinguish positions can be
used as fingerprint data, such as carrier phase, pseudo-range, and Doppler in satellite positioning,
as well as indoor geomagnetic signals, air-pressure values on different floors, etc. [11]. Commonly used
methods include deterministic algorithms, probabilistic algorithms, fingerprint clustering methods,
and algorithms based on machine learning. Microsoft first started the research work on Wi-Fi location
fingerprint positioning in 2000 and, for the first time, proposed to use the Euclidean distance between
the RSS vector and each vector in the fingerprint vector library, to determine the location of the mobile
device [12]. The probabilistic location algorithm based on Wi-Fi location fingerprints was first proposed
by Reference [13]. The basic idea is that, if you simply use the statistics of an RSS sample (such as
the mean value of RSS), it may bring errors, because the actual RSS value should be a distribution.
Therefore, the joint probability distribution of multiple APs can be used as a fingerprint, by calculating
the probability of all grid points, and then selecting the grid point with the highest probability as the
location of the mobile device. There is a problem that is not considered above. Not all grid points can
always detect the same set of APs, so the clustering method is proposed in Reference [14]. The basic
idea is that the grid points of the same group of APs are considered as a cluster, and the cluster is
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determined based on the probability of seeing these APs on each grid point, so this method is also
called “clustering”. Reference [15] introduced the idea that clustering fingerprints in the signal space
can reduce the complexity of fingerprint search. Therefore, he assumed that the same set of APs can be
seen in all locations. References [16–18] model the relationship between RSS and location information
by using deep neural networks and use them to check the match between real-time samples and
fingerprint libraries. Because deep neural networks have better learning generalization capabilities,
they have achieved better positioning accuracy.

However, the fingerprint-based positioning method is more dependent on the indoor environment,
and changes in the environment will affect fingerprint measurement accuracy, resulting in large
fluctuations in the positioning results. Therefore, many scholars have proposed the use of filtering
methods combined with other sensors to smooth the fingerprint positioning results, and the most used
is the combination of inertial navigation technology independent of external infrastructure. Commonly,
a wide range of low-cost multi-sensor devices such as smart phones are used to provide information
about changes in the state of the user and the environment during the journey, while detecting the
relative movement of the user, thereby improving the continuity and accuracy of positioning results.
The integration of Wi-Fi fingerprint positioning and pedestrian dead reckoning (PDR) positioning
is an effective indoor integrated positioning solution. Generally, the state equation is constructed
based on the estimation of the pedestrian position in the PDR equation, and the output position
information of the Wi-Fi positioning is used as the observation information to modify and update
the navigation solution [19–21]. Li et al. [22] considered the pose information of pedestrians in the
position tracking algorithm and provided continuous position updates through the PDR algorithm.
In addition, the errors in Wi-Fi fingerprint positioning are corrected by sensors such as gyroscopes.
Finally, Wi-Fi positioning is passed to the system location tracking module as a metric. Deng et al. [23]
used two Extended Kalman Filter (EKF) models to fuse the positioning results of Wi-Fi and PDR.
The first measurement model of EKF is based on nuclear density estimation, which can realize accurate
Wi-Fi positioning and adaptive measurement noise statistical estimation. The second EKF model is
based on the quaternion method, which estimates the heading by fusing the output of the gyroscope
and accelerometer. References [23,24] apply UKF and particle filter (PF) to Wi-Fi/PDR system, which
achieves a better positioning effect, but the real-time performance is relatively poor. Reference [25]
uses adaptive extended Kalman filter to fuse Wi-Fi fingerprint positioning and PDR positioning results,
and then uses the fusion results and the wireless signal free space power attenuation model to modify
the observation information of the filter to improve the positioning performance of the system.

Although the accuracy and continuity of fingerprint positioning can be improved by filtering
and fusion, the characteristics of fingerprint signals are a key factor affecting the positioning results.
The commonly used signal strength is extremely susceptible to environmental interference, including
indoor temperature and humidity, pedestrian movement and obstruction, and rapid signal fading.
Therefore, it is also very important to find a stable and robust fingerprint signal. At present, Wi-Fi
round-trip time (RTT) location is a kind of location method based on round-trip time ranging, and
Wi-Fi RSSI location is more based on signal fingerprint matching. The measurement technology
based on Wi-Fi RTT can theoretically achieve an accuracy of 0.1 ns for time measurement, that is,
a range accuracy of about 3 cm. Although limited by multipath factors, accurate ranging in complex
environments such as non-line-of-sight cannot be achieved, the ranging information obtained through
the fine time measurement (FTM) technology is relatively stable and has obvious spatial position
discrimination, which meets the characteristics of fingerprint information [26]. In response to the
above problems, we combined the characteristics of fingerprint positioning and the advantages of
FTM ranging, and used the deep learning network to learn the mapping relationship between spatial
line-of-sight/non-line-of-sight geographic locations and ranging information to build a positioning
model. Then, in response to the problem of real-time position jump caused by the fluctuation of the
ranging information in absolute positioning, a nonlinear particle filter model is introduced to fuse
sensors related to the PDR algorithm and a priori map information to constrain the user’s position.
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Finally, a high-precision, high-stability continuous absolute positioning system (HPIPS), was realized
on the smartphone. The specific contributions of this article are as follows:

1. A deep convolutional neural network model is proposed to learn the mapping relationship
between indoor spatial location and Wi-Fi RTT ranging information. In the dataset construction
stage, the indoor area is divided into equally spaced grids, and each grid corner is used as a
sampling point. At the same time, the collected data are visualized as a gray image with ranging
information and actual AP location information. Then, the data features are extracted through the
convolution operation of each layer for position prediction. Finally, the experimental results show
that the proposed positioning model has higher positioning accuracy than common positioning
algorithms based on fingerprint matching.

2. Aiming at the problems of poor stability and low accuracy of positioning results, a method of
fusing the positioning results of Wi-Fi models, sensors related to the PDR algorithm information,
and structured indoor map information, using an adaptive particle filter algorithm, is proposed.
The microelectromechanical systems (MEMS) sensor in the smartphone can estimate the motion
state of the pedestrian, and adaptively update the particle filter state transition equation, thereby
improving the degree of freedom and stability of pedestrian positioning. At the same time,
combined with indoor priori map information to restrict pedestrian trajectories, and further
improve the positioning accuracy and stability of the positioning system.

3. In order to verify the positioning performance of the HPIPS system, a large number of experiments
and performance analysis work were carried out in an experimental environment of about
800 square meters, and the positioning accuracy was compared with millimeter-level optical
calibration systems and commonly used positioning algorithms. The experimental results
prove that the constructed indoor positioning system can provide users with stable, reliable,
continuous, and high-precision absolute position information, which has certain popularization
and application value.

The remainder of this paper is organized as follows: In the second section, some previous work
related to the research content of this paper is summarized, and the basic principles of FTM ranging and
filtering fusion are also introduced. In the third section, the system framework and workflow proposed
in this paper are described. The fourth section introduces the indoor positioning technology based on
convolutional neural network and the fusion details based on particle filter. In Section 5, we verified
the positioning performance of the proposed system through a large number of experiments. In the
last section, we summarized all the work of the article, discussed the advantages and limitations of the
system, and looked forward to some work to be done in the future.

2. Preliminaries and Overview of System

2.1. Wi-Fi FTM

IEEE 802.11mc-2016 standardized FTM protocol [27], which enables a pair of Wi-Fi base stations
to estimate the distance between them. Figure 1 shows the principle of FTM ranging. Ibrahim M and
his partners analyzed the key factors affecting Wi-Fi ranging performance based on the open platform,
and revised the standard error correction technology for Wi-Fi FTM-based positioning systems [28].
FTM is a point-to-point (P2P) single-user protocol, which includes the exchange of multiple message
frames between the initiator station (ISTA) and the receiving station (RSTA). RTT is calculated based
on the time stamp captured when the FTM frame leaves and arrives. The protocol itself is similar
to the previous 802.11v timing measurement protocol. One of the most significant improvements
is the increase in time stamp resolution from 10 nanoseconds to 100 picoseconds. During the FTM
process, ISTA starts an FTM session with RSTA. One ISTA can initiate multiple sessions at the same
time (for example, one ISTA measures the distance to multiple APs, or one AP responds to multiple
ISTAs). FTM conversation includes three stages in total: negotiation, metric exchange, and termination,
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the details of which are shown in Figure 2. First, ISTA sends an FTM request to RSTA and waits for its
ACK message. Then, RSTA receives the FTM request and sends an ACK message back to ISTA. Then,
multiple RTM feedbacks are sent from RSTA to ISTA, and RSTA records the ToD (departure time) t1 (1)
of the FTM packet. Once ISTA receives the ToA (time of arrival) t2(1) of the FTM packet, it will also be
measured. The process of ACK packet exchange is similar. After recording ToD t3 (1) and ToA t4 (1),
an FTM exchange has been completed. If the ACK exchange of FTM is performed n times, (1) can be
used to estimate the average round-trip time [29]:

RTT =
1
n

 n∑
k=1

t4(k) −
n∑

k=1

t1(k)

 − 1
n

 n∑
k=1

t3(k) −
n∑

k=1

t2(k)

 (1)

Figure 1. Schematic diagram of the ranging process of Wi-Fi fine time measurement (FTM).

Figure 2. Filter-based target tracking and positioning process.

After obtaining the average round-trip time, the distance between ISTA and RSTA can be obtained
by multiplying the time by the speed of light. The theoretical ranging model can be defined as follows:

Range = RTT ×
C
2n

(2)

Among them, C = 3× 108 m/s is the propagation speed of the electromagnetic signal. In order
to provide a more accurate RTT estimation, the FTM interaction can usually be repeated multiple
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times in the form of a pulse train. The smartphone in Figure 1 needs to meet the operating system
above Android Pie and support the FTM (IEEE 802.11mc) protocol, such as the Google Pixel series of
mobile phones.

2.2. Filtering Technology in Target Tracking

To address the problem of state estimation of the target to be located, one of the common methods
is Bayesian filtering, which provides a general framework for estimating the state of the system based
on its observations [30]. Usually a state and the state-related confidence coefficient (such as the form of
a covariance matrix) is used to estimate the system state. The first step in performing target tracking
and positioning is usually to build a model that describes the target’s movement. Once the previous
state is known, the motion model (also called the state space model) can be used to predict the actual
state. For example, if you know the location, speed and direction of a driving vehicle, you can use
the state-space model to predict its current location. However, the longer the forecast range, the
greater the uncertainty of the estimate. Therefore, this uncertainty also needs to be included in the
state space model. The second step is to update the predicted value using other received information.
This information can be any relevant observations collected from the positioning network. In Figure 2,
the process of exchanging the target with various sensors in the network while moving is described.
A relationship must be found between the required location and the collected metrics to modify the
model, that is, we need to define a metric model (observation model).

Of course, various uncertainties must be considered in this model. Generally, depending on
the type of measurement, an appropriate filtering method can be selected to balance the information
from the state space model and the observation model. For example, if the observation model is
linear, the Kalman filter can be used [31]. The filter first uses the previous estimated position and
the state space model to predict the unknown position. Then, the observation model is used to
correct the predicted position. The main limitation of the Kalman filter is that it is only reliable for
almost linear systems. In order to solve the problem of nonlinear estimation, methods based on
extended Kalman filter (EKF) [32] and unscented Kalman filter (UKF) [33] have been proposed by
researchers. However, the main disadvantage of these methods is that they perform linearization
and approximation, resulting in suboptimal performance and sometimes divergence of the filter [34].
In particular, since EKF is essentially a linear approximation of the observation equation, it can hardly
achieve a good approximation of a highly nonlinear observation model.

Aiming at the problem of nonlinear and non-Gaussian target tracking and positioning, the famous
particle filter (PF) was proposed by Branko Ristic, in 2004 [35]. Particle filtering is also called Monte
Carlo filter and relies on the minimum mean square error estimation of the target state. It attempts
to represent the posterior distribution of the hidden state through a large number of appropriately
weighted random samples that change over time. When the number of samples reaches infinity, in a
certain statistical sense, the weighted average of these samples will converge to the true estimate of
the currently unknown state [36]. For this type of filter, the observation model can be non-linear, and
the initial state and noise distribution can take any desired form. Compared with the Kalman-based
method, this algorithm requires more calculations due to particle generation and resampling, but it has
greater potential when the noise is not Gaussian and the model is nonlinear [37]. Moreover, due to the
improvement of computer hardware level, the iterative calculation of a large number of particles has
been efficiently realized on smart phones, making real-time target tracking and positioning possible.

3. System Overview

The HPIPS positioning system designed in this paper is composed of Wi-Fi RTT devices and smart
phones that support the IEEE 802.11mc protocol, at present, Google pixel and Samsung mobile phones
already support this agreement. In the fingerprint positioning technology based on smart phones,
the traditional way of searching and matching using fingerprint database cannot meet the real-time
requirements of positioning due to searching too much fingerprint data, and it increases the burden
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of system energy consumption. Therefore, in order to improve positioning efficiency, a positioning
framework, as shown in Figure 3, is proposed. The fingerprint dataset is trained by machine learning
methods to extract representative important features and output these feature parameters in the form
of a model. In this way, the built-in deep learning positioning model can quickly respond when users
need to locate, and achieve real-time positioning effects. In the offline phase, the fingerprint data of the
signal are first collected in the area to be located, and a fingerprint database is constructed. Then the
preprocessed dataset is trained through the designed deep learning network model, and the positioning
model is obtained and loaded into the positioning software to perform the real-time execution of the
model. In the online phase, using the HPIPS application software installed on the smartphone, users
can achieve rapid positioning in the indoor building environment without any operation.

Figure 3. Structure diagram of high-precision indoor pedestrian positioning system (HPIPS).

4. Proposed Method and Implementation Details

4.1. RTT Fingerprint Location Technology Based on Convolutional Neural Network

4.1.1. Overview of Basic Ideas

After consulting relevant information and experimental tests, it is found that the ranging error
of RTT does not follow Gaussian distribution, but a discrete value related to location. For direct
positioning based on RTT ranging, it is difficult to ensure that each position can achieve a good
positioning estimation, especially under the influence of non-line-of-sight and multipath. Therefore,
we use deep convolutional neural networks to learn as much as possible the mapping relationship
between the location and the RTT ranging fingerprint information database, and find stable and reliable
feature information to achieve pedestrian location estimation in an indoor environment. Among them,
the convolutional neural network (CNN) model is a deep network, which can be used to understand
the data from the spatial structure of the data. A typical CNN network generally consists of three parts:
convolutional layer, pooling layer, and fully connected layer. Through the free combination of the above
three parts and the adjustment of parameters and structure, different CNN models can be constructed
to solve different problems. The fingerprint image constructed by Wi-Fi RTT ranging information is
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used as the input of the convolutional layer of the CNN network. Among them, it is necessary to
convert the two-dimensional data in the original fingerprint database into three-dimensional data and
realize the image processing of the data as the input of the CNN network model, and the output as the
position coordinates. The convolutional layer understands the characteristics of the fingerprint image
by identifying the spatial relationship between different pixels in the image. When preprocessing the
input image, our method is different from the traditional one-dimensional data directly converted into
a two-dimensional image, but when each image is constructed, the specific location information of the
AP is combined to fill in the fingerprint data. In this way, a two-dimensional grayscale image that
conforms to the real physical meaning is constructed, and when the convolutional neural network is
trained, more representative features are extracted to facilitate the learning of the model.

4.1.2. Description of Algorithm Details

Building Training Datasets

Generally, researchers choose the signal strength of AP to build a fingerprint database. However,
in indoor environments, the signal strength is severely affected by the environment, and short-distance
signals are quickly fading, which often results in a large range of signal fluctuations at the same
location. Figure 4 shows the comparison data of signal strength value and ranging over a period of time.
When the user is stationary in the same location, it reflects the changes of the received RSS and RTT
ranging information over time. In order to improve the convergence speed and classification accuracy
of deep learning networks, normalized preprocessing is usually performed on the data input to the
network. At the same time, the coefficient of variation (CV) is used to measure the degree of variation
of observations with different dimensions. The calculation method of CV is ratio of standard deviation
to average. In this article, we have compared and analyzed the dispersion degree of the preprocessed
ranging information and RSSI for the same AP, the same receiving device at the same location, over a
period of time. It can be seen from the figure that the dispersion degree of using RSSI to construct
environmental fingerprints is much greater than that of ranging fingerprints, where CV-RSS = 0.5544
and CV-RTT = 0.1804. If RSSI is used to construct a fingerprint database, it will increase the difficulty
of learning the network model, resulting in poor positioning effect. Therefore, from the perspective of
fluctuation degree and model training, FTM’s ranging information is used for fingerprints, which can
improve the convergence speed of the network and is more suitable for positioning.

Figure 4. Compare the fluctuation of ranging and Radio Signal Strength Intensity (RSSI) by coefficient
of variation.

In the offline dataset construction stage, the existing AP equipment in the structured indoor
environment is usually used as the signal source, but it is uncertain whether the location of the public AP
is often moved or the signal is often blocked. Therefore, in response to the above problems, we choose
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to deploy some APs that support Wi-Fi RTT in the environment to be located, and measure the location
of the APs through a total station. Taking into account factors such as deployment cost and positioning
accuracy, the number of APs usually deployed is limited. To achieve a better positioning effect,
the traditional fingerprint database construction method must be improved. Therefore, in view of the
characteristic that the CNN network can learn the structural characteristics between data, a fingerprint
database construction method based on the known real AP location is proposed. The constructed
fingerprint map does not only reflect the RTT ranging information of each location, but also reflect the
location of the AP in the real environment. Specific steps are as follows.

First, deploy APs in the indoor environment to be positioned, with the principle of maximum
visibility. Then, the area to be positioned is divided into equally spaced positioning grids, and the grid
size is determined according to the positioning accuracy requirements. The experimenters collected
the distance measurement information in different directions from the north, south, east, and west at
the corners of each grid, and, at the same time, formed fingerprint data with the coordinates of the
corresponding corners. Finally, define each piece of fingerprint data as an image with a fixed length
and width (the length and width here can be determined according to the size of the specific scene to
be positioned). Fill in the corresponding distance information according to the location coordinates
of the AP, where the depth of gray represents the strength of the distance fingerprint. The concrete
realization is shown as in Figure 5. In the figure, m is the number of deployed APs, and n is the number
of sampling points. Each square in the grayscale image represents the distance information between
the current location and each AP. Calculate the distance between different sampling points and each AP
based on Formulas (1) and (2), where d21 represents the distance from position 2 to AP1. For example,
as shown in Figure 5. Among the pixels numbered (a, b, c, and d), a represents the location label, b
represents the abscissa of the AP, c represents the ordinate of the AP, and d represents the standardized
value of the distance between the location a and the AP.

Figure 5. Dataset construction method.

Build Indoor Positioning Model

Convolutional neural network is a feed-forward neural network inspired by biological natural
visual cognitive mechanism. In general, the input image matrix, convolution kernel, and feature map
matrix are all square matrices. We set the input matrix size to ω, the convolution kernel size to K,
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the stride size to s, and the number of zero-padded layers to P. Then the calculation Formula (3) for the
size of the feature map ω′ generated after convolution is calculated as follows:

ω′ =
(ω+ 2p−K)

s
+ 1 (3)

After the feature map is obtained, pooling (also called sub-sampling) is usually required to reduce
the amount of data. Like convolution, pooling also has a sliding kernel, which can be called a sliding
window. Usually, max pooling or mean pooling can be used to compress the data in the sliding area to
reduce the complexity of the model. Connect the output of the pooling layer to the fully connected
layer for final classification or regression. Suppose we train a multi-channel image V, define this
training process as c (K, V, s), and minimize the loss function J (V, K). In the forward propagation
process, we need to obtain the output intermediate quantity Z through c, and then Z is passed to the
rest of the network and used to calculate the loss function J. In the process of backpropagation, we will
get a tensor G that satisfies Formula (4):

Gi, j,k =
∂

∂Ki, j,k,l
J (V, K) =

∑
m,n

Gi,m,nV j,(m−1)×s+k,(n−1)×s+l (4)

If this layer is not the last layer of the network, the gradient of V needs to be calculated by Formula
(5), so that the error is further propagated back.

h(K, G, s)i, j,k = ∂
∂Vi, j,k

J (V, K)

=
∑
l, m
s.t.

(l− 1) × s + m = j

∑
n, p
s.t.

(n− 1) × s + p = k

∑
q

Kq,i,m,pGq,l,n
(5)

In the above formula, i represents the i-th output channel, j and k represent the output row and
column, the input channel is l, and the input row offset term and column offset term are M and
N, respectively. Generally speaking, in the conversion process from input to output, a non-linear
operation is realized by adding a bias term to each channel, and this bias term can be shared in each
convolutional layer [38]. In this article, the deep learning library keras [39] serves as a network model
building tool. Generally, the construction steps of keras include the following: model selection, network
layer construction, compilation, training, and prediction. In the construction of the network layer,
a convolutional neural network including an input layer, a convolutional layer, a pooling layer and a
fully connected layer is designed. In this article, according to the size of the actual test scene and the
actual location of the AP deployment, multiple 25*25 images are constructed as input data. The specific
construction method is as follows: First, 12 7*7 convolution kernels and 2*2 maximum pooling (strides
= 1) are used to convolve the image, and the part smaller than the size of the convolution kernel is
discarded. Then, using the 5*5 convolution kernel, the maximum pooling of 2*2 (step size = 1) is
performed again for the convolution operation. Finally, the structure of the pooling layer is flattened
and then connected to the fully connected layer for location prediction. Among them, ReLU is used
as an activation function. Its advantage is a piecewise linear function, which belongs to a unilateral
inhibition function, and can make neurons have sparse activation. At the same time, in order to
prevent the training from overfitting and the trained model from being too concise, the Dropout layer
is usually added after the fully connected layer, and the value is 0.5, and the learning rate is set to 0.001.
The specific model structure is shown in Figure 6. The back propagation algorithm is used to train the
entire network, and when the loss function between adjacent iterations drops below the threshold or the
number of iterations is met, the network parameters are saved and the training is stopped. Generally,
a cross-validation method is adopted, and training is repeated until the model converges. Finally,
the trained model is stored in the memory of the smartphone for real-time fingerprint positioning.
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Figure 6. Convolutional neural network (CNN)-based indoor positioning model.

The keras model function is used to visualize the structure of the model, including the number of
layers and the parameters of each layer, as shown in Figure 7.

Figure 7. Visualization of positioning model structure.

4.2. Multi-Information Fusion Positioning Algorithm Based on Particle Filter

Considering that in the real environment, there are often many interference factors in radio signal
propagation, such as signal reflection, refraction, or diffraction, which leads to the unsatisfactory
effect of using the wireless signal fingerprint library for positioning. Therefore, a particle filter
method that uses excellent performance in nonlinear and non-Gaussian problems is introduced to fuse
the multi-sensor information in the smart phone and the map information in the structured space
environment to smooth the positioning results of the CNN network model. Thereby further improving
the stability and continuity of the positioning results. The implementation details of particle filter
fusion of multiple information sources will be introduced in this section. In the prediction process of
the particle filter algorithm, some state transition rules are set for particles based on experience, such as
moving each particle at a uniform speed, and estimating the possible position of the particle at the next
moment according to the change of the real building environment. It is also possible to define more
detailed randomness to simulate various motion states. Therefore, particle filtering is more suitable for
indoor positioning applications where the state distribution is unknown and cannot be formulated.
Generally, dynamic systems can be described by state models and observation models, as shown in
Formulas (6) and (7):

Xk = fk (Xk−1, Wk) Wk ∼ N (0, Qk) (6)

Zk = hk (Xk, Vk) Vk ∼ N (0, Rk) (7)

where Xk ∈ Rnx and Zk ∈ Rnz are the state value and observation value of the system at time k,
respectively. Wk ∈ Rnw and Vk ∈ Rnv are process noise and measurement noise, which are usually
considered Gaussian noise with zero mean and covariance matrices Qk and Rk.
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fk : Rnx ×Rnw → Rnx is a nonlinear function that reflects the relationship between the current state
and the previous state, and hx : Rnx ×Rnv → Rnz represents the relationship between the observed
value and the state [40]. The basic process is as follows.

1. Initialization: The initialization phase includes two parts, namely particle state space
initialization and deep learning positioning model initialization. H =

{
xi
|i = 1, 2, · · · , n

}
is the

particle set, where n is the number of particles, which is determined according to the positioning
accuracy requirements and the real-time requirements of the system. In this article, the number
of particles is determined by the software-side algorithm running time and positioning accuracy.
For example, after selecting 2000 particles, it takes about 100 ms to test the algorithm operation on the
Android software side, which meets the real-time positioning requirements. The particle state space
contains position coordinates and movement steps. The initialization of the deep learning positioning
model generally constructs the same network model as the training before the positioning is executed,
and loads the model parameters and interfaces.

2. Position prediction: The PDR algorithm is used as the state transition equation of particles to
realize the prediction of particle position, as shown in Formula (8).[

xk
yk

]
=

[
xk−1
yk−1

]
+

[
Lk• sinθ
Lk• cosθ

]
(8)

Among them, the position coordinate at time k− 1 is (xk−1, yk−1), the position coordinate at time k
is (xk, yk), and the distance traveled at time before and after is lk. At this time, the moving distance
of each particle is calculated by the self-contained sensor in the smart phone and the step-length
estimation model to achieve adaptive motion. θ is the moving direction of the particles. Here, since the
accuracy of the direction sensor is relatively low, we do not restrict the direction to ensure the diversity
of particle states. The specific description is as follows.

(1) When pedestrians are walking, acceleration information is composed of three components:
horizontal, vertical, and lateral. When pedestrians place their smartphones horizontally in front of
them, they correspond to the y, z, and x axes of the mobile phone coordinate system. The common
method to detect walking is the peak detection algorithm. Because the acceleration information
in the vertical direction will change periodically, the difference in acceleration is used to detect the
peak and valley values that meet the threshold limit within one step, so as to obtain the number of
pedestrian steps.

(2) Step length estimation methods are generally divided into two types: One is to set a constant
value as the pedestrian step length according to the pedestrian’s height and weight, and the other is to
establish an adaptive step length calculation formula based on walking characteristics [41]. Although
the latter is more complicated, its accuracy will be improved to a certain extent, as compared to the
former. This research adopts the latter algorithm and calculates the step length by Formula (9).

L = K
(
(amax − amin) × 3.5 + 4√amax − amin

)
(9)

Among them, K is the step length estimation parameter, which is determined by the statistical
analysis of the measured data; amax and amin correspond to the maximum and minimum values of the
acceleration during a single step.

(3) Direction estimation generally uses an electronic compass for testing. In order to increase the
diversity of particles, we choose to move the particle set in random directions to improve the reliability
of posterior probability estimation.

Through the above three steps, we will update the step size attributes of each particle in real time
to further improve the degree of freedom of the system positioning. In the next section, we also did a
comparative test to verify the effectiveness of the adaptive step size motion model.

3. Weight update: Compare the predicted value with the probability distribution function obtained
from the actual measurement process to update the weight. Similarly, in this article, the CNN network
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model is used as an observation function to calculate the observation position through real-time
fingerprint data. Then, the Euclidean distance between each new particle and the Wi-Fi RTT fingerprint
positioning result is used to update the weight. The larger the weight, the closer to the true position.
Finally, calculate the weight of each particle by using Formula (10):

ω =
1

√
2πσω

exp

−
∣∣∣s− g(δ)

∣∣∣2
2σω2

 (10)

where s is the particle state at the current moment, g(δ) is the particle observation state obtained
through the deep learning positioning model, and σω is the measurement deviation. After all particles
have weights, particles with low weights need to be filtered out. These particles are considered to be
far from the user’s real state. The purpose of resampling is to concentrate the particles in the vicinity of
the high-weight particles so that the particle swarm can converge. However, in practical applications,
some particles will “through the wall” phenomenon during the state update process. Therefore, the
real geographical environment information should be considered in the stage of updating the weight.
For indoor positioning, building plans are very useful information, which can be used to improve
location accuracy and reduce the uncertainty of walking trajectories, and particle filters are often used
as a “map filtering” technology to consider building plan information. In this article, combining the
corridor boundary and doors and windows and other architectural structures, restrict the position
distribution of the particle swarm, and reset the weight of the particles through the wall to zero. As
shown in Figure 8, the blue point is the position where the user may move in the next second, and the
red point is the particle swarm distribution.

Figure 8. Schematic diagram of map constraints.

4. Resampling: The threshold of the number of particles is usually defined as Neff = N/2, where
N is the initial number of particles. When the number of particles is less than Neff, re-sampling is
required according to the weight.

5. Position estimation: Finally, the weighted average of all particles is used as the estimated
position at the current moment.

The implementation details of fusion strategy are shown in Algorithm 1.
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Algorithm 1: Integrated Positioning Strategy Based on Particle Filter

Input: Particle range: Initial range x, Initial range y. The number of particles: N.
Set particle moving direction: Random direction. Initialization weight: weights.
Initialization stride: L.
Output: Tracking results using particle filter and CNN model: state.

//g (δ) is the CNN positioning model, δ is real-time fingerprint grayscale image;
1: Initialization: sample a set of particles from the initial state distribution
2: while a new motion measurement do
3: Current location update;
// L is updated in real time according to the step stride estimation model (9).
4: for each particle do
5: Prediction: predict particle state by state transition Formula (8);
6: if g (δ) = true then // CNN positioning results as observation results.
7: Update particle weights by Formula (10);
8: else if Particles through the wall (or building structure);
9: Update particle weights by map information (building boundaries, doors, windows, etc.);
10: end for
11: Weight: normalized;
12: if 1/sum(square(weights)) <length(particles)/2 and Carrier is in motion then
13: Resample: generate new particles based on their weights (multinomial resample);
14: end if
15: Update the Current location using states and weights.

5. Implementations and Evaluation

In this section, we mainly cover two parts of the experiment. First of all, in the first part,
we verified the performance of the designed deep learning model, including model convergence speed
and prediction accuracy, and compared it with commonly used machine learning models on the same
dataset, and checked the effectiveness of the model. Then, test the positioning performance of the
HPIPS system in different indoor scenarios. The specific test process is as follows.

The test site shown in Figure 9, including the first and second floors, and the test area of each floor
is about 16.9 m × 22.5 m. Eight APs are evenly deployed in the scene, and the base station deployment
guidelines in Reference [42] are adopted. Since we only compare the horizontal positioning accuracy,
the uniform distribution method is selected to have the smallest HDOP value and meet the principle of
minimum error precision factor. In the test scenario, we planned the test path, including line-of-sight
and non-line-of-sight parts, and selected some reference true values of total station calibration on the
path to test the positioning accuracy. In the dynamic positioning test, the positioning terminal is tracked
through a high-precision (mm-level) optical calibration system to complete real-time dynamic accuracy
analysis. In general, the test environment we chose includes typical line-of-sight and non-line-of-sight
parts and has test conditions to verify the performance of the proposed algorithm.

In the offline phase, the tester collects and records RTT ranging data every 1 m in the area to be
located. The range value changes due to factors such as the signal receiving ability of each mobile
terminal, the altitude, and the orientation of the AP. Therefore, when collecting data, five different
types of mobile terminals are used, with a distance of 1.5, 1.7, and 2 m from the ground, and four
orientations to collect data, to ensure the comprehensiveness of each sampling point. In the online
phase, the tester holds the smartphone and walks along the planned route in the positioning area.
At the same time, the optical calibration system tracks the position of the mobile phone. The positioning
frequency of the mobile phone and the output frequency of the optical calibration system are the
same. The positioning results are stored in the memory of the smartphone, to facilitate subsequent
positioning performance analysis.
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Figure 9. Positioning system test environment.

5.1. Analysis and Comparison of Model Performance

In order to verify the effectiveness of the proposed deep convolutional neural network model
for fingerprint map positioning and the performance of the model on the constructed dataset, we set
various hyperparameters as shown in Table 1.

Table 1. Hyperparameters of the CNN model.

Hyperparameters Values of Parameters

Input Size 25 × 25 (According to AP location)
Activation Function ReLU (Rectified Liner Unit)

Number of Convolutional Layers 2
Pooling Size 2

Stride 1
Number of FC Layers 1

Optimizer Adam
Learning Rate 0.001
Weight Decay 0.0005

Batch Size 50
Epochs 500

The model is trained by setting the above hyperparameters and the constructed dataset.
The performance of the model is analyzed from the four indicators of training accuracy, training loss,
and test accuracy and test loss. The test results are as follows.

It can be seen from Figure 10 that, after Epoch = 500 times, the initial loss of the model is reduced
from 8.12 to 0.91, and the accuracy finally reaches 94.4%. It is verified that the model has high prediction
accuracy for nonlinear and non-stationary ranging fingerprint signals, has good robustness, and can be
applied to indoor location prediction.

In order to verify the positioning performance of the proposed model, three commonly used
machine learning classification models in the third-party machine learning module Scikit-learn are
cited. Including Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), and the
most studied method in fingerprint positioning technology, K Nearest Neighbors (KNN). In QDA,
the prior probability is set to “null”, the regularization parameter is 0, and the iterative convergence
threshold is 0.0001. In SVM, the penalty coefficient C is set to 1, “Kernel” is set to the RBF function,
the coefficient of “gamma” is set to the default value “auto”, and the degree is set to 3. In KNN,
the positioning effect is obtained by comparing different K values, and finally K = 4 is determined by
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the Stratified k-fold cross validation score. In the test environment of Figure 9, the positioning accuracy
test implemented, and the test result is shown in Figure 11.

Figure 10. Performance analysis of positioning model: (a) loss curves and (b) accuracy curves.

Figure 11. Comparative analysis of commonly used models. QDA, Quadratic Discriminant Analysis;
SVM, Support Vector Machine; KNN, K Nearest Neighbors.

The biggest advantage of box plots is that they are not affected by outliers and describe the
discrete distribution of data in a relatively stable way, which can be used to analyze the positioning
performance of different models. In Figure 11, the solid line in each box plot drawn represents the
average value of the positioning error. Through comparison, it is found that the mean value of our
proposed model is about 2.73 m, the first quartile is less than 2 m, and the span is relatively small.
It performs better on the same dataset, which verifies the effectiveness of the model we designed and
the method of constructing fingerprint grayscale images.

5.2. Multi-Source Fusion Location Experiment

In the above, we verified the effectiveness of the localization model based on the CNN network.
The proposed CNN network model mainly provides a basis for the update of the observation equation
in the particle filter algorithm. In this section, we will test the positioning performance of the positioning
system fused with the CNN network model in the test scenario, and give clear test results through
data analysis.

(1) Test on the first floor of the test scene: The planned test route includes line-of-sight areas
and non-line-of-sight areas. In non-line-of-sight, the signal has to pass through wooden boards and
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concrete walls to reach the receiving terminal. It can be known from Reference [43] that the signal
loss of the template is about 1–1.8 dB, and the signal loss of the concrete wall is about 15–28 dB.
Therefore, the signal fading in this environment is relatively large, and it is difficult to accurately and
reliably locate through distance measurement. The tester holds a smartphone (the phone’s z-axis is
perpendicular to the ground) and walks along the planned trajectory. At the same time, the optical
calibration system is turned on to track the mobile phone. During the test, the pedestrian positioning
results are recorded. The test track is shown in Figure 12.

Figure 12. Positioning results in test environment 1: (a) CNN fingerprint positioning results, (b) particle
filter (PF) fusion positioning results, and (c) PF fusion microelectromechanical systems (MEMS) + MAP
positioning results.

In the figure above, the positioning trajectories of three positioning methods are drawn, and the
yellow trajectory is the real planned path. The blue trajectory is the fingerprint positioning result of
the CNN network model, and it can be seen that the positioning trajectory has a large fluctuation.
Under the condition of line-of-sight and non-line-of-sight, the positioning result is relatively stable,
which can basically reflect the walking trend of the tester. The red trajectory is the particle filter fusion
CNN fingerprint positioning result, the trajectory is relatively smooth, and the fingerprint positioning
result is used as an observation result to guide the movement of the particles, which can improve the
positioning accuracy. The green trajectory is the particle filter fusion of the MEMS sensor information
in the smart phone, which adapts to the particle movement step length, and uses the map information
to dynamically update the weight information of the particles, which further improves the user’s
freedom of movement and positioning accuracy.

(2) Test on the second floor of the test scene: The characteristic of this test scene is that the signal
passes through the glass to reach the receiving terminal. According to Reference [43], the loss of
electromagnetic signals by glass is about 1.4–2.7 dB, which is usually isotropic and has relatively small
influence. The experimental results are shown in Figure 13.

As shown in Figure 13, the yellow trajectory is the planned real trajectory. In Figure 13a, the
middle blue trajectory is the fingerprint positioning result of the CNN model. It can be seen that there
are large fluctuations and can follow the user to achieve rough positioning. In Figure 13b, the red
trajectory is the result of particle filter fusion CNN fingerprint positioning. Its trajectory is relatively
smooth, but part of the positioning result is outside the real scene. In Figure 13c, the green trajectory
is the result of fusing the MEMS sensor and map information, constraining the movement state and
weight of the particles, eliminating the particles passing through the wall, and achieving a better
positioning effect. In order to compare the positioning performance of the positioning system more
clearly, the errors of the positioning results in the two test environments were statistically analyzed, as
shown in Figure 14.
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Figure 13. Positioning results in test environment 2: (a) CNN fingerprint positioning results, (b) PF
fusion positioning results, and (c) PF fusion MEMS + MAP positioning results.

Figure 14. Error analysis of positioning results: (a) positioning error and (b) cumulative distribution
function of error.

It can be seen from Figure 14 that the blue curve is the positioning error using only the CNN
model. The maximum positioning error is 4.9 m, the average positioning error is 2.58 m, and 59.4% of
the errors are less than 3 m. After smoothing the positioning results of CNN with particle filter, the
maximum positioning error is about 3.58 m, the average positioning error is 1.21 m, and 81.2% of the
positioning errors are less than 2 m, which improves the positioning performance to a certain extent.
The maximum positioning error of the HPIPS system proposed in this paper is only 1.38 m, and the
average positioning error is 0.41 m, of which 94.2% of the errors are less than 1 m, achieving a better
positioning effect. The specific positioning error statistics are shown in Table 2.

Table 2. Statistics of positioning errors.

Algorithm CNN PF + CNN PF + CNN/MEMS/MAP

Mean Error (m) 2.58 1.21 0.41
65% Error (m) 3.25 1.54 0.52

Maximum Error (m) 4.90 3.58 1.38

6. Discussion and Conclusions

A lightweight indoor positioning system based on smart phones was proposed, which can
effectively solve the indoor positioning problems of pedestrians in line-of-sight and non-line-of-sight
environments. First of all, in the first two sections of the article, the challenges faced by the current
indoor positioning technology and common solutions were introduced. Then, in the third section,
the composition framework and implementation process of the designed positioning system were
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introduced in detail. Then, in the fourth section, the implementation details of the algorithm were
described in detail. First, the fingerprint location algorithm based on convolutional neural network
was introduced, including the method of constructing dataset and the design of network model. Then,
aiming at the problem of large fluctuations in positioning results, a positioning method based on
adaptive particle filter fusion MEMS sensor and structured spatial information was proposed. It not
only improves the degree of freedom when the positioning system is used, but also significantly
improves the stability and positioning accuracy of the positioning results. In Section 5, the positioning
performance of the proposed algorithm was verified through a large number of experiments. Within
the coverage area, 94.2% of the positioning error is better than 1 m, and the average positioning error is
0.41 m. Therefore, as a lightweight, high-precision, and high-reliability positioning system, HPIPS
has greater application and promotion value. In the research of this article, we did not choose the
mainstream least square method based on distance measurement to solve the position, because factors
such as signal multipath or occlusion often cause the algorithm to fail to converge.

In practical applications, the current positioning system still faces some challenges. For example,
because the antenna of a smart phone is not isotropic, if we rotate the smart phone, the Wi-Fi RTT
ranging information may change greatly, leading to increased positioning errors. Therefore, it is
currently required that users who use the system must maintain a fixed posture, and cannot cover
the antenna of the mobile phone during use. Because different mobile phones have different abilities
to receive WIFI signals, the algorithm has poor adaptability to existing commercial mobile phones.
In response to this problem, many scholars have carried out related research. For example, the authors
of Reference [44] proposed a new method for establishing a fingerprint database which reduces the
dependence of the device on the fingerprint database. We will continue to explore and solve the
problem of differences in mobile-phone signal reception in subsequent research.

These problems seriously affect the user experience. Therefore, in the future work, it is an
important aspect to solve the problem of the attitude of the smart phone in the user’s hands. Moreover,
in the field of indoor positioning, the building structure in a structured environment is a kind of
effective prior information, and how to make full use of this information is also our main future work.
For example, as described in Reference [45], an RSSI map is established for each AP in combination
with the map, and then the signal propagation model is calculated in the LOS and NLOS environment,
thereby improving the positioning accuracy. The third point is to explore the use of deep learning and
other methods to learn natural landmarks in the indoor environment, to correct the positioning results,
and to achieve a lighter, more stable, and reliable low-cost indoor positioning solution which also has
greater research significance.
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