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Abstract: Homozygous deletions (HDs) may be the cause of rare diseases and cancer, and their
discovery in targeted sequencing is a challenging task. Different tools have been developed to
disentangle HD discovery but a sensitive caller is still lacking. We present VarGenius-HZD, a sensitive
and scalable algorithm that leverages breadth-of-coverage for the detection of rare homozygous
and hemizygous single-exon deletions (HDs). To assess its effectiveness, we detected both real and
synthetic rare HDs in fifty exomes from the 1000 Genomes Project obtaining higher sensitivity in
comparison with state-of-the-art algorithms that each missed at least one event. We then applied
our tool on targeted sequencing data from patients with Inherited Retinal Dystrophies and solved
five cases that still lacked a genetic diagnosis. We provide VarGenius-HZD either stand-alone or
integrated within our recently developed software, enabling the automated selection of samples using
the internal database. Hence, it could be extremely useful for both diagnostic and research purposes.

Keywords: copy-number variation; homozygous deletion; rare diseases

1. Introduction

Next-generation sequencing (NGS) is commonly used to unveil genetic causes of
diseases and whole-exome-sequencing (WES) has become one of the most commonly
used diagnostic tools both in the clinic and in several programs investigating rare genetic
diseases. Rare diseases collectively affect a significant fraction of the population (estimated
to be about 4–5%) [1,2] with a resulting high impact on health-care costs and mortality
rates. Currently, the standard protocol to investigate rare diseases includes multiple clinical
diagnostics assays. Nonetheless, half of the cases still remain without a diagnosis [3–5]. One
of the reasons for this is the limited knowledge of how to detect Copy Number Variation
(CNV) from sequencing data. It is estimated that about 12% of the genome in the human
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population is subject to copy number changes [6,7]. To detect CNVs, diagnostic laboratories
often use multiplex ligation-dependent probe amplification (MLPA) and array comparative
genomics hybridization analysis (ArrayCGH) prior to executing NGS-based analysis [8].
However, both methods have high ranges in resolution (from kilobases to megabases)
and add complexity to the overall patient screening process. Whole-genome-sequencing
(WGS) data are more even in coverage in comparison to WES because of the enrichment
protocols used, making it more reliable for CNV calls. However, due to extensive use
of WES in diagnostics, there is a need for reliable methods to infer CNVs from exome
data as well [9–11]. Indeed, leveraging the sequencing outcome to detect CNVs offers
potential advantages leading to increased diagnostic yield without increasing laboratory
costs [10,12].

Several CNV-detection algorithms for WES data have been developed, all of which rely
on the use of depth-of-coverage (DoC) from multiple samples to infer copy numbers [13–16].
Unfortunately, the CNV search is hampered by biases due to differences in capture pro-
tocol efficiency, the presence of GC-rich regions, and different coverage resolutions that
influence DoC, among others [17–19]. Such heterogeneity complicates the downstream
analysis of the detected events, leading to false positives [18,20–22] while compromising
the ability to reliably detect CNVs when these span less than three exons [10,19,20,23,24].
Even though CNV detection could represent a valuable complementary way to analyze
NGS data, the low concordance of detected events suggests that the algorithms designed so
far are yet to be optimized [19,22,24,25]. Moreover, comparative works have demonstrated
that these results are often difficult to replicate despite the high specificity and sensitivity
declared [26]. One method to overcome these issues could be to generate a consensus of
variants called by different algorithms [24]. However, to use any of these approaches, the
user needs to prepare BAM files for unrelated samples sequenced with the same target
writing ad hoc scripts, making such analyses difficult for those laboratories that do not
have bioinformatics expertise. Therefore, the implementation of a fully automated CNV
workflow along with different methods to investigate CNVs in WES data beyond the DoC
strategies is of high importance for the scientific community.

Single-exon homozygous/hemizygous deletion (HD) detection methods, which com-
pare normalized coverage values among samples produced with the same kits, already
exist (e.g., Atlas-CNV, CoNVaDING, DECoN, and HMZDelFinder) [27–30]. While Atlas-
CNV and CoNVaDING, as suggested by the authors, can only be used with high-coverage
sequencing data (e.g., small targeted gene panels), HMZDelFinder and DECoN are ad hoc
tools for exonic CNV detection. However, these tools are based on the assumption that data
have a defined distribution and hence require intra- and inter-samples homogeneity [26].

To overcome these challenges, we developed a new algorithm for the detection of rare
single-exon HDs that exploit breadth-of-coverage (BoC), and we named it VarGenius-HZD
(where HZD stands for homozygous/hemizygous deletion detection). Additionally, we
automated its execution along with that of ExomeDepth and XHMM within our recently
developed software that we devised for variant detection analysis and management of
samples, i.e., VarGenius [31]. This software is now able to automatically pick selected
samples generated with the same target and to perform CNV, calling separately on auto-
somes and sex chromosomes and in parallel across different cores of a High-Performance
Computing (HPC) system managed with a Portable Batch System (PBS) scheduler. The
VarGenius-HZD algorithm is either integrated within VarGenius software, where it scales
across HPC nodes, or is available as a stand-alone version that takes as input a list of
manually selected BAM files and allows scaling across CPU cores.

We have validated our algorithm using 50 samples from the 1000 Genomes Project
(1KGP) (https://www.internationalgenome.org/, accessed on 1 February 2021) for which
both WGS and WES was present and in which we detected both existing and artificially
inserted HDs. For these test cases we compared VarGenius-HZD results with those of
HMZDelFinder, DECoN, and ExomeDepth, and our algorithm obtained the highest sensi-
tivity. Furthermore, we applied VarGenius-HZD on targeted sequencing data from a cohort

https://www.internationalgenome.org/
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of 188 individuals with Inherited Retinal Dystrophies (IRDs), resolving 5 out of 64 undiag-
nosed cases by identifying pathogenic HDs, which were then experimentally validated.

2. Results
2.1. BoC Can Be Used Along with DoC to Detect Rare HDs
2.1.1. Results Comparison with 1KGP Data

To compare the performances of different algorithms in detecting rare HDs, we applied
VarGenius-HZD, ExomeDepth, HMZDelFinder, and DECoN to 50 samples from the 1KGP
selecting only rare HD (see Methods). The resulting calls are in Table S1. One of the
five HDs found in the 1KGP VCF file appeared to be a false positive (sample NA19473—
position: chr9:107366951) when inspected in IGV, as it was covered by ~60 reads, and none
of the tools detected it (Table S1 and Figure S1). Therefore, we considered only four real
HDs. ExomeDepth detected only one event and two were filtered out (Tables S2 and S3);
HMZDelFinder found only one HD (Tables S1 and S4); and DECoN could detect only one
HD and one was filtered out (Table S5). VarGenius-HZD was able to detect the highest
number of true positive events—three out of four—and one was filtered out (Tables S1 and
S2). The HD in sample NA11919 (position: chr5:140222138) was called by all tools. For
the sake of curiosity, we inspected in IGV the regions near single-nucleotide homozygous
variants present in total in four samples: NA20798, NA19137, NA18504, and NA18950
(Table S6). Intriguingly, in sample NA20798, we found that the genes CFHR3 and CFHR1
were deleted. We could infer the call after inspection of the coverage of the nearby CFHR
and CFHR4 genes coverage and through comparison with control samples (Figure S2).
This event was correctly detected by all tools but was not included in the 1KGP results
(Tables S1–S5). Furthermore, a putative HD of gene UGT2B28 in sample NA18504 was
detected by VarGenius-HZD, ExomeDepth, filtered out by DECoN, and visually confirmed
by comparing samples coverage in IGV (Figure S3 and Tables S1–S5).

To assess our results, we computed precision, recall, and specificity scores for all tools
(none of the newly discovered variants was included in such calculations). VarGenius-
HZD obtained higher recall, specificity, and precision when compared with ExomeDepth
and DECoN (recall: ~25% vs. ~0.4%; specificity: ~2% vs. ~0.3%; precision: ~5% vs.
~0.3%). However, VarGenius-HZD results are comparable with those of HMZDelFinder:
we obtained higher recall with our tool (75% vs. 25%) but higher specificity (10% vs. 2%)
and precision (10% vs. 6%) with HMZDelFinder (Table 1). HMZDelFinder appeared to be
the most precise tool returning very few events to inspect, reducing the number of false
positives (FP) but at the cost of missing true positive (TP) events and losing sensitivity. The
highest number of true positive calls was instead obtained by VarGenius-HZD. All tools
found one additional putative TP HD. However, this variant should be experimentally
confirmed, which was out of the scope of this study.

Table 1. Precision/Recall/Specificity obtained by the tools with the 50 samples from 1KGP dataset. TP (True positives), TN
(True Negatives), FN (False Negatives), FP (False Positives).

Algorithm TotalPutativeHZDel TP TN FN FP Recall Specificity Precision NewTP

ExomeDepth 274 1 1 3 273 0.25 0.0036 0.0036 2

VarGenius-HZD 51 3 1 1 48 0.75 0.0204 0.0588 2

HMZDelFinder 10 1 1 3 9 0.25 0.10 0.10 1

DECoN 267 1 1 3 266 0.25 0.0037 0.0037 1

2.1.2. Detection of Synthetic HDs

To evaluate our results with synthetic data, we simulated five deletions in five distinct
samples of 1KGP selected randomly from our cohort of fifty. After running the tools using
the fifty samples, to ameliorate positive and negative identification, we considered only
HD calls for the selected samples after filtering, as described in Material and Methods.
ExomeDepth and DECoN could not find any of the simulated events, HMZDelFinder
missed only one, and VarGenius-HZD found them all (Table 2). Since all the detected
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events were true positives, HMZDelFinder obtained 100% precision and 80% recall. On
the contrary, VarGenius-HZD detected all the true-positive synthetic deletions inserted as
well as one additional putative false positive, reaching 100% recall and 83% precision. We
speculate that downstream CNV filtering is always needed and performed in several ways
(e.g., visual inspection in IGV, gene panel selection, clinical phenotype, etc.); hence, for
clinical diagnostics, a higher recall at the cost of a bit of downstream manual work would
be preferable, as it leads to a higher number of positive genetic diagnoses.

Table 2. Precision/recall/specificity obtained by the tools used with the synthetic HD test.

Algorithm TotalCalls TotalFiltered TP TN FP FN Recall Specificity Precision

HMZDelFinder NA 4 4 0 0 1 0.8 0 1

VarGenius-HZD 4201 6 5 0 1 0 1 0 0.83

DECoN 38234 45 0 0 45 5 0 0 0

ExomeDepth 3949 3 0 0 3 5 0 0 0

2.2. Automated SNV/Indel and CNV Calling

We had previously developed VarGenius to execute SNV/Indel calling and annotation
while exploiting the GATK BestPractices pipeline. VarGenius is able to scale across nodes
of an HPC cluster with the PBS scheduling system and to construct a PostgreSQL database
to store sample information enabling several queries for general genetic investigation.

We have embedded within VarGenius the execution of ExomeDepth, XHMM, and
VarGenius-HZD for CNV analysis. Validation of results from ExomeDepth demonstrated
high specificity and sensitivity for the detection of rare variants [16,21,32], while further
studies suggested Conifer and XHMM for the low occurrence of false-positives, but with
the disadvantage of a low detection sensitivity [13,14,18,21,25]. Thus, XHMM, Conifer and
ExomeDepth are the tools best adapted to detect rare variants [33]). However, Conifer has
not been updated for years, and it relies on the installation of old versions of R, making its
integration within an automated pipeline difficult.

State-of-the-art CNV detection tools need as input several BAM files sequenced with
the same enrichment kit, and different analyses should be performed for autosomes and sex
chromosomes to avoid ploidy biases. We automated this process in VarGenius by querying
for their numeric identifiers within the PostgreSQL database (see Methods Section and
Figure 1). Several software are available to execute scalable CNV analysis for targeted
sequencing data such as bcbio (https://github.com/bcbio/bcbio-nextgen accessed on 1
Februay 2021) and nf-Sarek [34], yet they require the user to manually select the BAM files
to use. Other open-source tools (e.g., Hpexome, HemoMIPs and Swift/T) allow automated
and scalable detection of SNV/Indel using multiple samples, but not CNVs (Table 3). Since
VarGenius automates the complete workflow needed to execute CNV analysis, it can be a
valuable resource for laboratories lacking bioinformatic expertise.

Table 3. Availability of SNV/CNV analysis automation in existing open-source software.

Software SNV/Indel Calling CNV Calling Scalability Automated Dataset Creation

bcbio yes yes yes no

Nf-sarek yes yes yes no

Hpexome yes no yes no

HemoMIPs yes no yes no

Swift/T yes no yes no

https://github.com/bcbio/bcbio-nextgen
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Figure 1. Experimental validation of the HD detected with our algorithm in the RAX2 gene. (A) Coverage heatmap of
retinopathy genes in the WES data of IRD patients. Patient samples are shown in the x axis and gene names on the y axis.
The extent of coverage is plotted according to the reported color scale. The RAX2 gene is well covered across all individuals
but poorly covered in A392 (asterisk in the framed column). (B) IGV coverage tracks for the alignment file from patient
A392 (upper track) and a control patient (lower track). The lack of reads spanning the exon 2 of RAX2 in A392 (green box)
suggested that the corresponding region was deleted in both alleles of the analyzed proband. (C) PCR amplification of the
genomic region spanning the identified deletion in the proband’s genomic DNA (‘Patient DNA’) and in a control DNA
sample. The difference in size between the two amplicons (red arrowheads) indicates the presence of an extensive HD in
the proband.

We have applied ExomeDepth, XHMM, VarGenius-HZD, and HMZDelFinder with
default parameters to the 188 samples of the IRD cohort running different analyses for
different enrichment kits. We first filtered only calls for the 64 unsolved cases using our
panel of retinopathy genes and the thresholds suggested in the corresponding user guides
(see Methods). ExomeDepth obtained the highest number of calls and, as a consequence, of
false positives to filter followed by VarGenius-HZD and XHMM. After filtering, we have
selected candidate HDs to inspect in IGV according to disease gene and its association
with the patient phenotype (in Table S7, the sum of VisButNotFit and FitButNotVis) and
obtained eight HDs from ExomeDepth, five from XHMM, ten from VarGenius-HZD, and
from HMZDelFinder. Only six events in total passed all the evaluation filters and five of
them were confirmed through PCR (Table 4). VarGenius-HZD identified all these events
and HMZDelFinder found four out of five. We went back to unfiltered results from the
other tools to see at which stage they were lost: XHMM did not find any of these HDs;
ExomeDepth detected all of them, but they were initially filtered out because of their low
BF value (<5). Indeed, reducing the BF threshold in ExomeDepth increases the number of
calls to assess. The excellent performance of VarGenius-HZD was particularly striking as it
obtained the highest number of true positives at a low cost of variants to manually inspect.
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Table 4. VRCIRD cases resolved by detection of a HD.

Sample Gene Region XHMM ExomeDepth (BF) VarGenius-HZD HMZDelFinder

ID_A739 RAX2 19:3772155-3772224 NO 7.4 YES YES

CREv1_A392 RAX2 19:3771519-3772224 NO 11 YES YES

CREv1_A348 RP2 X:46719422-46719537 NO 7.8 YES YES

CREv1_ARRP129 RP2 X:46719424-46719537 NO 9 YES YES

ID_A860 RPGR X:38186587-38186793 NO 9 YES NO

Experimental Validation of Detected HDs

The five identified HDs were validated by PCR and/or Sanger sequencing in the
following patients: first, an HD of the first two exons of the RAX2 gene [35] was identified
in two reportedly unrelated subjects (a female and a male), who had a clinical diagnosis
of autosomal recessive retinitis pigmentosa (Figure 1). Both patients were born in a small
village of ~1000 inhabitants in Campania (Italy). We believe that a founder effect within
this small isolated community could account for the fact that they both carried the same
deletion. Second, a hemizygous deletion in the RP2 gene was identified in two young
male subjects (a 17- and a 21-year-old) who were first-degree cousins and diagnosed with
X-linked early-onset retinitis pigmentosa (OMIM #300757, http://www.omim.org/entry/,
accessed on 1 October 2021). Finally, the fifth case was a male patient carrying a hemizygous
deletion of exon 1 of the RPGR gene, and his clinical presentation was consistent with
a diagnosis of an X-linked Retinitis Pigmentosa associated with mutations in this gene
(OMIM #312610, http://www.omim.org/entry/, accessed on 1 October 2021).

3. Methods
3.1. NGS Procedures

The 188 subjects considered in this study were selected for targeted sequencing after
being assessed at the Referral Centre for Inherited Retinal Dystrophies of the Eye Clinic at
Università degli Studi della Campania ‘Luigi Vanvitelli’ (VRCIRD) (Table 5). Peripheral
blood samples were collected upon written informed consent of the patient or their par-
ents/legal guardians (for minors). All procedures adhered to the tenets of the Declaration
of Helsinki and were approved by the Ethics Board of Fondazione Telethon and Università
degli Studi della Campania ‘Luigi Vanvitelli’.

Table 5. Summary of samples used from the VRCIRD cohort.

Platform CREv1 CCP ID Total Solved Cases Examined

NextSeq500 14 51 123 188 124 64

DNA samples from peripheral blood were processed using the Illumina NextSeq500
(Illumina Inc., San Diego, CA, USA). Three different enrichment kits (Agilent Technologies)
were used for library preparation. In particular, 123 samples were sequenced using the
Agilent ClearSeq Inherited Disease (ID) and 51 samples using the SureSelect Clinical
Constitutional Panel (CCP), and 14 samples were prepared using the SureSelect Clinical
Research Exome version 1 (CREv1) (Table 5). BCL files were processed using Illumina
bcl2fastq. Raw fastq files were processed using our previously developed software [31].

3.1.1. Calling Homozygous Deletions Leveraging BoC

The VarGenius-HZD algorithm was written in PERL and R programming languages
and needs the execution of three steps: sample selection, pre-processing, and rare HD
detection (Figure 2).

http://www.omim.org/entry/
http://www.omim.org/entry/
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Figure 2. VarGenius-HZD workflow. The workflow of our algorithm consists of three steps:
1. sample selection, which is automated in VarGenius software and manual in the stand-alone
version; 2. pre-processing, which includes the generation of NCEs files and raw DoC informa-
tion; 3. rare-HD detection step, which involves the calculation of NCE frequencies, the detection of
putative HDs, and the annotation of such regions for variant prioritization.

The samples selection step is automated within the VarGenius software by querying
the PostgreSQL database for unrelated samples sequenced with the same target, while for
the stand-alone version, this step is manual; i.e., the user must provide a file with the paths
to the BAM files and the BED file for the target sequenced.

The pre-processing step aims to generate an exons-on-target-intervals file. To this
end, BED files for genes and exons were downloaded from the University of California
Santa Cruz (UCSC) platform (https://genome.ucsc.edu/cgi-bin/hgtables, accessed on 1
February 2021) and included within the package. We selected UCSC genes as the track,
Hg19 as the genome assembly, start and end of exons/genes, and BED as output format.
The BED file is then intersected with the target file using the bedtools intersect. This
procedure is executed only once per target.

https://genome.ucsc.edu/cgi-bin/hgtables
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Furthermore, each BAM file undergoes bedtools coverage to compute the BoC and the
DoC of the previously generated exonic intervals using this command: bedtools coverage
-a input.bam -b exons_on_target.bed g ucsc.hg19.genomefile -sorted. As suggested in the
bedtools guidelines, we used the -sorted parameter and a genome file in input to accelerate
such computation. The genome file was generated with the following commands: samtools
faidx ucsc.hg19.fa; cut -f1,2 ucsc.hg19.fa.fai > ucsc.hg19.genomefile (https://bedtools.
readthedocs.io/en/latest/content/tools/coverage.html, accessed on 1 February 2021). The
resulting output, containing the BoC, is filtered to select only exons with BoC < 0.2 (<20%
of the exon covered) and annotated with the UCSC genes for downstream analyses. This
procedure generated two tab separated files (TSV) for each sample: one containing putative
non-covered exons (NCEs) and another containing raw DoC for the exons-on-target.

The third step aims at rare HDs detection using the two TSV files previously produced.
First, all NCEs files are loaded within a unique array. Second, putative rare HDs are ob-
tained by computing their frequency and selecting those where it is lower or equal to 2 (this
parameter can be customized). Third, the exonic raw DoC of parents (whenever available),
proband, and average across all samples are added. Once complete, the annotated table of
putative rare HDs is provided, and manual filtering of relevant calls based on the difference
in coverage between the proband and her/his parents and between the proband and the
overall dataset can be performed downstream (Figure 3).
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Figure 3. VarGenius-HZD algorithm and results illustration. VarGenius-HZD leverages BoC along with DoC, which is used
as follows: (A) the target BED used for the sequencing is intersected with UCSC exon intervals to obtain an exon-on-target
file, which is used to compute the BoC and DoC exploiting bedtools coverage. (B) NCEs for each sample are counted, and
only those with frequency lower or equal to 2 are retained as putative HDs (e.g., exon 4 in (B)). (C) The tabular output
contains statistics for putative HDs: chromosome, start and end, the BoC for the subject sample, the DoC for the parents
(FDoC and MDoC), and average exon DoC for the overall dataset.

3.1.2. KGP WES Dataset

We selected 50 samples for which genome wide CNV calls were available and from
the 1KGP data as in [20] from (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/,
accessed on 1 October 2021) and their consensus target BED file from (http://ftp.1000
genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/exome_pull_down/20
120518.analysis_exome_targets.consensus.annotation.bed, accessed on 1 October 2021).
Whole genome Variant Calling Format (VCF) files with genotypes were downloaded from

https://bedtools.readthedocs.io/en/latest/content/tools/coverage.html
https://bedtools.readthedocs.io/en/latest/content/tools/coverage.html
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/data/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/exome_pull_down/20120518.analysis_exome_targets.consensus.annotation.bed
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/exome_pull_down/20120518.analysis_exome_targets.consensus.annotation.bed
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/exome_pull_down/20120518.analysis_exome_targets.consensus.annotation.bed
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(http://hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/, accessed on 1 October
2021). First the VCF file was intersected with the consensus BED files using bedtools
intersect. Then, we filtered the VCF for rare HDs selecting those calls with sv_type = del
within the VCF info field and where only one sample had gt = 1|1. BAM files for the
50 samples were used with ExomeDepth, HMZDelFinder, DECoN, and VarGenius-HZD.
Results from the four tools are in Tables S3–S5. HDs called were further filtered with
the following approaches: for ExomeDepth and DECoN, we retained only the calls with
reads.ratio < 0.001; HMZDelFinder provided a filtered output, and hence we did not apply
any filter; VarGenius-HZD produced a filtered output as well, and we picked those calls
where the average DoC was greater than 50.

3.1.3. Synthetic Homozygous Deletion Detection

The 50 samples from 1KGP were also used to conduct a test using simulated deletions
generated with bedtools. We inserted 5 HDs in 5 distinct samples (NA06989, NA07347,
NA12058, NA12748, NA12830), choosing regions that we have visually inspected and
had sufficient coverage surrounding the chosen HDs (>20x) across the overall dataset
(Table 6). The commands used to generate such deletions were: bedtools intersect -a
sample.bam -b deletion_i.bed -v > sample_deleted.bam; samtools sort sample_deleted.bam
> sample_deleted_sort.bam; samtools index sample_deleted_sort.bam.

Table 6. The 5 simulated HDs inserted in samples of 1KGP dataset.

Sample Chr Start End

NA06989 21 48063447 48063551

NA07347 21 27326904 27327003

NA12058 21 35091133 35091161

NA12748 21 10906904 10907040

NA12830 21 40188932 40189015

HDs were filtered with the following methods only for the 5 samples: DECoN and
ExomeDepth: reads.ratio <= 0.001. VarGenius-HZD: raw average DoC >50; HMZDelFinder:
no filtering.

3.1.4. Recall, Precision, and Specificity Scores

To compare results from different tools, we calculated recall, precision, and specificity
scores with the following formula: Recall = TP/(TP + FP); Specificity = TN/(TN + FP);
Precision: TP/(TP + FP).

In this formula, true positives (TP) are HDs called and present in the 1KGP VCF;
true negatives (TN) are HDs not called that are not present; false positives (FP) are HDs
called that are not present; false negatives (FN) are HDs not called that are instead in the
1KGP VCF.

3.2. Analysis of the VRCIRD Cohort
3.2.1. Automated CNV Detection Workflow

All samples of the VRCIRD cohort were subject to SNVs/Indels and CNV calling. We
used the GATK3.8 BestPractices with default parameters [36]. Alignment used BWA [37],
PCR duplicates were marked with PICARD MarkDuplicates (http://broadinstitute.github.
io/picard/ accessed on 1 May 2021), and further BAM pre-processing was performed using
BaseRecalibrator prior to variant calling with HaplotypeCaller. We performed GATK hard
filtering with VariantFiltration, and Annovar was used for the annotation [38]. Further
parsing of the VCF file and annotation table was performed to provide an XLS tabular
output to the physician. Sample information (such as sample and analysis name, gender,

http://hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
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kinship, and target used) provided within the sample sheet were parsed and stored within
the PostgreSQL database.

CNV detection was performed with XHMM, ExomeDepth, and VarGenius-HZD, as
follows: the software executed a query to the PostgreSQL database to obtain samples
which are sequenced with the same target. VarGenius automatically picked the BAM
files to provide as input for the tools from its results folders using sample identifiers,
kinship, gender, and the target used. XHMM and ExomeDepth were executed following
the author’s guidelines and with default parameters. Autosomes and sex chromosomes
were analyzed separately to avoid gender biases. Once finished, all the CNVs called (herein
“calls”) were annotated using AnnotSV [39] (Figure 4). Causative SNVs/Indels for all
subjects were investigated, and a subset of 124 cases received a diagnosis. The remaining
64 cases were subjected to CNV prioritization. However, in this work, we specifically
discuss only HDs.
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Figure 4. Flowchart of CNV detection and annotation pipeline in VarGenius. This is performed
using XHMM, ExomeDepth, and the VarGenius-HZD algorithm. Several unrelated samples must be
used for such analyses; thus VarGenius collects sample identifiers from the database querying for
samples sequenced with the same target and considering the kinship. XHMM requires the use of
GATK DepthOfCoverage with specific parameters. This is called for all samples parallelizing the
execution within the cluster. Once all tools produced their calls, results are merged within a unique
tabular output and are annotated using AnnotSV.

3.2.2. Homozygous Deletions Filtering for Patients

Manual inspection in Integrative Genomics Viewer (IGV) of detected HDs was per-
formed for 64 undiagnosed cases, which could not be solved with a causative SNV/Indel
(Table 5). To increase the probability of diagnosis through known disease genes, we filtered
the resulting calls using our internal panel of known retinopathy genes (data not pub-
lished). Selection of resulting events to inspect in IGV as a first-tier validation was manually
performed keeping into account AnnotSV annotation (OMIM, Decipher) and different
scores depending on the tool. For ExomeDepth, we considered the Bayes factor (BF > 10);
for XHMM, we used the mean normalized DoC (MEAN_RD); for VarGenius-HZD, we
selected calls with average raw DoC > 30. BAM files for the proband and her/his parents
(whenever available) or for different probands were loaded as controls.
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3.2.3. Polymerase Chain Reaction (PCR) and Deletion Breakpoint Analysis

For the amplification of deleted coding exons, PCR on genomic DNA was performed
using Taq polymerase according to standard protocols. Breakpoint analysis was done only
for the RAX2 deletion. To this aim, long-range PCR was performed using the High-Fidelity
LA Taq DNA Polymerase (Takara) according to the manufacturer’s recommendations and
the oligonucleotide primers RAX2_del1_F: 5′-TGTTACCCACACCATTCTCTGC-3′ and
RAX2_del1_R: 5′-CCCTCTCCTTTCCATCTCTAG-3′. Amplicons spanning the junction of
the deletion extremities were Sanger sequenced and aligned to the reference genome (hg19)
using the UCSC Genome Browser (http://genome.ucsc.edu/, accessed on 1 October 2021)
to determine the breakpoints at the nucleotide level.

4. Discussion

HDs often lead to loss of function with pathogenic roles both in Mendelian diseases
and cancer [40–43]. Indeed, a significant percentage of human Mendelian diseases is re-
ported to be caused by molecular disruption within exons [6,7]. NGS-based approaches
became cheap during the last decade, allowing diagnostic laboratories to use targeted
sequencing [44]. Nonetheless, the investigation of CNVs in WES is still challenging for
several reasons mostly due to uneven coverage and due to enrichment kits and regions of
the genome difficult to sequence [18,45,46]. State-of-the-art tools require as input several
samples for such comparison that should be unrelated and sequenced with the same tar-
get [13,16,20]. Yet, comparative works have demonstrated a high number of false positives
and hence alternative CNV detection strategies and filtering methods are needed [18,20,22].

The goal of this work was to explore different solutions for HD discovery in targeted
sequencing and to automate the overall workflow. We developed VarGenius-HZD, which
searches for HDs within the single sample and leverages multi-sample information to
corroborate such calls, and we integrated it within our recently developed VarGenius.
CNV detection is still a challenging task, and we think that currently only highly trained
bioinformaticians might disentangle the intrinsic difficulty of detection of such types of
variation to understand the underlying complexities and cavities, especially for clinical
practice. However, being able to automate CNV analysis and to reduce false positives for
HD detection and, as a consequence, the number of events to manually inspect out of the
tool could increase the availability of human-readable results and, hopefully, of genetic
diagnoses for those laboratories lacking bioinformatics expertise. To make VarGenius-HZD
useful for researchers exploiting other software for variant calling, we also developed
a stand-alone VarGenius-HZD; in this version the user provides the list of full paths to
the BAM files and the target file. One limitation of the stand-alone tool (compared to the
complete VarGenius software) is that it cannot provide parents’ coverage as annotation but
only on average across all samples used.

To compare our algorithm with state-of-the-art methods, we applied VarGenius-
HZD, ExomeDepth, HMZDelFinder, and DECoN to 50 samples from 1KGP. The highest
number of TPs was achieved only with our algorithm; hence, it is more sensitive than
state-of-the-art tools, demonstrating that BoC can be effectively used to detect such variants.
Furthermore, our tool was able to correctly detect all the synthetic HDs that we inserted
within randomly chosen samples in the same dataset, achieving a sensitivity of 100%, while
the only comparable results were obtained with HMZDelFinder with a sensitivity of 80%.
ExomeDepth and DECoN were not able to detect any of the simulated HDs. Our results
are in agreement with other comparative studies, which describe ExomeDepth’s ability to
discover long CNVs covering large chromosomal regions while missing events that affect
less than three exons. However, DECoN, which is based on ExomeDepth, provided similar
results. We speculate that a higher number of TPs and thus higher sensitivity rather than
precision would be preferable for clinical diagnosis at a cost of filtering few additional
CNVs during downstream prioritization.

We then assessed the performance of VarGenius-HZD in a clinical context using
targeted sequencing data from a cohort of unsolved IRD patients. Analysis of CNVs using

http://genome.ucsc.edu/
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ExomeDepth and XHMM with such data turned out to be challenging. These tools detect
hundreds of events, and filtering FPs was a tough task. We observed several false positives
detected by ExomeDepth and XHMM, in agreement with current studies showing that
state-of-the-art CNV-calling algorithms are influenced by different instrument outcomes
and low-coverage samples, possibly due to the high number of off-target bases, duplicates,
and low base quality. We speculated that CNV callers should deal with such issues, and,
to reduce the false discovery rate, as a pre-processing step, it could be useful to remove
outlier samples which have a high number of calls (e.g., >2 standard deviation).

After filtering, we could confirm, through experimental assays, five pathogenic HDs.
Only VarGenius-HZD was able to detect all of them. In summary, XHMM lost all of them;
ExomeDepth detected all except one but provided very low BF score, and hence they were
initially excluded; HMZDelFinder detected all except one. One of the called HDs was
instrumental in defining a new association of biallelic variants in the RAX2 gene with
autosomal recessive Retinitis pigmentosa [35].

5. Conclusions

In summary, the use of targeted sequencing data for CNV discovery, as well as the
automation of this process (which currently requires programming skills) are of great
importance. Here, we report an algorithm that could be useful to identify rare HDs,
demonstrating that BoC is a valuable feature for their detection. Given the extensive use
of targeted sequencing as a first-tier method for molecular genetic diagnosis, our work
has a great importance for research and clinical practice. Our tool is available under GNU
General Public License, version 3 at: https://github.com/frankMusacchia/VarGenius-
HZD (accessed on 6 December 2021)

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12121979/s1, Table S1: HDs called in 1KGP data, Table S3: 1KGP HDs in VarGenius-HZD
result, Table S2: 1KGP HDs in ExomeDepth result, Table S4: 1KGP HDs in HMZDelFinder result,
Table S5: 1KGP HDs in DECoN result, Table S6: Single nucleotide homozygous variants found in
1KGP samples, Table S7: Summary statistics of HDs found and filtered in the VRCIRD cohort, Figure
S1: IGV screenshot of a false positive detected in 1KGP data, Figure S2: Deletion of genes CFHR1 and
CFHR3 in sample NA20798 of 1KGP data, Figure S3: HD of gene UGT2B28 in NA18504 1KGP data.
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