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Abstract
Purpose The purpose of this paper is to present a method for registration of 3D computed tomography to 2D single-plane
fluoroscopy knee images to provide 3D motion information for knee joints. This 3D kinematic information has unique utility
for examining joint kinematics in conditions such as ligament injury, osteoarthritis and after joint replacement.
Methods We proposed a non-invasive rigid body image registration method which is based on two different multimodal
similarity measures. This hybrid registration method helps to achieve a trade-off among different challenges including, time
complexity and accuracy.
Results We performed a number of experiments to evaluate the performance of the proposed method. The experimental
results show that the proposed method is as accurate as one of the most recent registration methods while it is several times
faster than that method.
Conclusion The proposed method is a non-invasive, fast and accurate registration method, which can provide 3D information
for knee joint kinematic measurements. This information can be very helpful in improving the accuracy of diagnosis and
providing targeted treatment.

Keywords Edge position difference · Image registration · medical image analysis · Similarity measure · Sum-of-conditional
variance

Introduction

Image registration is a fundamental task used to match
two or more pictures taken, for example, at different times,
from different sensors, or from different viewpoints [4]. In
medical image analysis, there is a need for dynamic 3D
images of anatomical structures of the human body. This
can enable specialists to track events, carry out and evaluate
surgical, and radio therapeutical procedures [10]. Roent-
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gen stereo photogrammetry analysis (RSA) [16] is one of
the current techniques that is used to measure joint kine-
matics. This method is accurate, but invasive, because it
requires the implanting of tantalum beads into the bone
before the image capturing process. Although non-invasive
video/optical tracking systems can be used for motion mea-
surements these systems suffer from low accuracy, and the
markers used on the skin may move independently of the
underlying bone [18]. Consequently, because of the impor-
tance of providing dynamic 3D images, techniques involving
3D to 2D image registration are now being applied in this
area. In 3D to 2D image registration, 3D motion information
is provided by registering dynamic 2D images with a high-
resolution 3D image or a 3D model of the human anatomical
structures. In 3D to 2D image registration, multimodal simi-
larity measures [3,11,15,21,22] should be applied for images
captured using different modalities because the relationship
between the pixels in the images is nonlinear [11]. Mutual
information (MI) is a popular similarity measure which has
proven to be a very robust and reliable similarity measure
for intensity-based registration of multimodal images, but it
is sensitive to the dimensions of overlapped image regions.
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Studholme in [17] used a normalized mutual information
(NMI) measure which addressed this issue. The other diffi-
culty with regard to MI is the registration of small images
as the use of prior information estimated from the entire
image may lead to false maxima in the MI goal function.
To solve this issue, Andronache in [2] applied MI for global
registration, and the cross correlation to register small image
patches. A combination of NMI and gradient information
was also employed in [13]. In [14], a non-rigid image regis-
tration approach was proposed. This approach used regional
mutual information (RMI)which is an entropy based similar-
ity measure that considers local neighbourhood information.
A model-based registration method was proposed in [20].
Thismethod applies a similaritymeasure basedon aweighted
edge-matching score (WEMS) which gives a high priority
to longer edges in the images to be registered. However,
the computation time is still required to be reduced in this
method. In [5] a registration method was proposed in which
a weighted histogram of image gradient directions (WHGD)
was adopted as the image feature. This method is faster and
more robust against large initial displacements compared to
existing techniques. However, it may not provide accurate
results if there is an irrelevant object in the reference image,
and in this case the method requires a pre-registration seg-
mentation. A gradient-based method was applied to register
CT to fluoroscopic X-ray images in [7]. In this proposed
method, outliers and foreign objects are removed from
the fluoroscopic X-ray images using the volume gradients
applied. In another recent approach [11], Pickering proposed
a new method that applied the multimodal similarity mea-
sure SCV in conjunction with Gauss–Newton optimization.
This method was shown to be more accurate and robust
as well as more computationally efficient than the tech-
nique which used MI proposed by Thevenaz and Unser [19].
Another recent multimodal similarity measure is the EPD
[15] which has very low computational complexity. A num-
ber of methods [21,22] combine aspects of both structural
and neighbourhood information which offers more robust-
ness and a high level of registration accuracy. The authors
in [21] proposed a novel integrated method named CNVS
for multimodal brain image registration. In [22], a multi-
modal registrationmethodwas proposedwhich used regional
mutual information (RMI). This method used a combination
of features and intensity information to offer a more robust
method. Dimensional mismatch, the nonlinear pixel rela-
tionship of the multimodal images, image quality in terms
of resolution and noise due to the low doses of radiation,
high computation time, low accuracy, and not being robust
against large initial displacements can be considered as the
main challenges of the 3D CT to single-plane fluoroscopy
image registration approaches. In this paper, we propose a
fast and robust hybrid rigid body registration method which
is based on two different multimodal similarity measures:

edge position difference (EPD) [15] and sum-of-conditional
variance (SCV) [12]. In theproposedmethod, at first, theEPD
is used to perform a coarse registration, which reduces the
range of the search space covered in the next step that uses
a method based on SCV to register the images accurately.
The remainder of the paper is arranged as follows: 3D CT
to 2D single-plane Fluoroscopy Image Registration explains,
in detail, different steps of our proposed hybrid registration
method. The experiments carried out to evaluate the perfor-
mance of the proposed method and the discussion related to
these results are provided in “Experiments and discussions”,
and finally the paper is concluded in “Conclusions”.

3D CT to 2D single-plane fluoroscopy image
registration

In 3D CT to 2D single-plane fluoroscopy image registra-
tion, real-time video fluoroscopy images are captured by an
image intensifier, and stored as frames in a digital video file.
A 2D projection of the 3D CT data for each bone is then
registered to the image of the same bone in the fluoroscopy
frame. In order to register a 3D CT image (a sensed image)
to a 2D fluoroscopy image (a reference image), a number
of pre-processing methods should be performed on the input
images. As single-plane fluoroscopy images suffer from pin-
cushion distortion partly caused by the curved nature of the
image intensifier, at first this distortion in the images should
be corrected using the method applied in [11]. Regarding
the 3D CT image, this image is segmented by first perform-
ing a simple method based on thresholds and it is followed
by a more accurate manual segmentation. For example, in
the case of knee joints, the soft tissue is removed from the
CT image of the patient, and then it is segmented into two
separate images for the femur and tibia. In order to find infor-
mation about the kinematics of a knee joint, each segmented
CT image should be registered independently with the same
bone in thefluoroscopy frame.After the pre-processing stage,
the corrected fluoroscopy and CT image are the input images
in the registration process. The proposed registration method
has a number of steps that are repeated iteratively until the
best transformation for alignment is reached. The first step in
the registration section is dimensional correspondence. In the
proposedmethod, we use digitally reconstructed radiographs
(DRRs) [6,11] which is by far the most common method of
producing a simulated X-ray projection image from a CT
image using ray-casting. By using a DRR, the 3D CT image
is projected to a 2D image which can be registered with each
2D fluoroscopy frame. After that, the similarity measure S
between these 2D images is computed. When the minimum
similarity measure S is found, the registration finishes, oth-
erwise, the required transformation change is estimated, and
the CT image is transformed according to the changes. This
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process is repeated until the best alignment is found. In the
registration stage, a fast and robust method is proposed. Our
proposed method is based on a hybrid registration approach,
which is divided into coarse and fine registration steps. In
the coarse registration step, the geometric transformation
parameters are estimated using the EPD similarity measure
[15], and are updated for the fine registration step. In the
final registration step, an accurate registration method based
on the SCV similarity measure [11] is employed which
is accompanied by a Gauss–Newton optimization method
to finally refine in-plane and out-of-plane parameters repre-
senting the transformation needed for the matching between
the two images to be registered. These registration steps are
explained in more detail in “In-plane registration” and “Final
registration based on theSCVsimilaritymeasure”.As out-of-
plane transformation parameters are changed by 3D motions
perpendicular to the fluoroscopy imaging plane, finding the
value of these parameters is much more complicated than
finding the in-plane values. Therefore, the in-plane param-
eters are estimated first which reduces the processing time
required in the next steps.

In-plane registration

In this section, two different methods for finding in-plane
parameters are described. In the first in-plane registration
method, which is explained in “In-plane registration”, an
estimation of the in-plane transformation parameters is com-
puted by a fast method based on the EPD similarity measure.
In the second method, the in-plane parameters, computed by
applying the in-plane fast EPD registration on a wide search
range of in-plane parameters, are then used as the input to a
more robust but slower in-plane registrationmethod based on
the SCV similarity measure. However, this further in-plane
registration step, based on the SCV, is applied to a narrower
search range. Regarding the initial 3D position of bones to be
registered, the first frame is registered semi-automatically. At
first, it is registered manually, and then it is registered by the
proposed registration method. For the other frames, the reg-
istered output which shows the correct position of the bone
in the 3D CT image for one frame can be used as the initial
position for the 3D CT image for the next frame.

In-plane registration based on the EPD similarity measure

In the first step of this in-plane registration method, based
on the EPD, the 3D CT volume is segmented, and then
projected to a 2D DRR image. Meanwhile, a distortion cor-
rection method is applied to the fluoroscopy image. After
that, the binary edge images of the fluoroscopy and the 2D
DRR images, which are denoted by ER and EI , respectively,
are computed using the Canny edge detection method. This
results in a reduction of the amount of data that will be pro-

cessed in the next steps. Then, a chamfer distance image,
denoted by DR , is computed for the fluoroscopy binary edge
image. Figure 1 shows an example of using the EPD in
the proposed 3D CT to 2D fluoroscopy image registration
method. A full search registration algorithm is then per-
formed on a wide range of in-plane parameters (Tx , Ty and
Rz). However, as this method is based on the EPD, which is
very fast, the computation time required for this step is quite
low. In each iteration of the search on the in-plane parameters,
the CT image is transformed according to the new values of
the in-plane parameters. After that, the edge position is com-
puted by using the input parameters of the transformed 2D
edge image of the DRR (EI ) and the chamfer distance com-
puted for the binary edge image of the fluoroscopy (DR).
If the EPD similarity measure computed in this iteration is
less than the minimum similarity measure Smin computed in
previous iterations, then the optimal in-plane parameters are
updated. These steps are repeated for the entire search range.

In-plane registration based on the SCV similarity measure

This in-plane registration method is based on the registration
method described in [11] using the SCV similarity measure.
SCV is amultimodal similaritymeasure,whichwas proposed
by Pickering in [12]. This similarity measure is based on the
joint probability distribution of the images to be registered. In
the first step, the 3D CT volume is segmented and projected
to a 2D DRR image. Then, a Laplacian-of-Gaussian (LoG)
filter is used on the 2D DRR image. Meanwhile, a distortion
correction method is applied on the fluoroscopy image. A
LoG filter is then applied to the fluoroscopy image to reduce
the amount of noise and enhance the edges.Next, a full search
is performed on a range of in-plane parameters. In each iter-
ation of the search, the segmented CT image is transformed
according to the new value of the in-plane parameters. After
that, the SCV similarity measure is computed using the flu-
oroscopy and 2D DRR image. If this similarity is less than
the minimum similarity computed in previous iterations, the
value of theminimumsimilaritymeasure Smin andoptimal in-
plane parameters are updated. The whole process is repeated
until the maximum similarity between the images to be reg-
istered is found.

Final registration based on the SCV similarity
measure

In the final registration step, the hybrid method uses the
updated transformation parameters from the previous in-
plane registration, explained in “In-plane registration”, as the
input data. The final registration step is intended to estimate
the out-of-plane parameters (Rx , Ry), and refine and update
the in-plane parameters and the out-of-plane translation (Tz).
Indeed, the final values of all transformation parameters are
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Fig. 1 a, b show an example of
2D projection of a CT image
and a fluoroscopy image to be
registered. c Represents the
binary edge image of the 2D
projection of the CT image. The
distance to the edge position of
the fluoroscopy image is shown
in d

updated in this stage. The final registration method is based
on the registration method in [11] using the SCV similar-
ity measure. The final registration starts with a search which
is performed in order to find the out-of-plane rotations (Rx

and Ry). Inside this search, a Gauss–Newton optimization
method is employed to find the best parameters which, when
applied to the CT volume, will minimize the similarity mea-
sure. Using this optimization, the in-plane parameters and
the out-of-plane translation (Tz) are refined and updated to
provide amore accurate alignment between the input images.
To describe the final registration method in more detail, first,
the distortion in the fluoroscopy image is corrected, and after
that, a LoG filter is applied to the fluoroscopy image. At the
same time, the 3D segmented CT image is transformed by
the new values of Rx and Ry . The transformed image is then
projected to a 2D DRR image, and a LoG filter is applied to
this image. Then, the SCV similarity measure between the
two images (the 2D fluoroscopy and the 2D DRR image),
the hessian matrix and the gradient vectors required for
the following Gauss–Newton optimization method are com-
puted [11]. Next, in the optimization step, the new changes
for Tx , Ty , Rz and Tz are estimated. Then, the segmented CT
is transformed using these new parameters, projected and fil-
tered for a new SCV computation. If the computed SCV is
less than the minimum similarity measure computed in the
previous steps, the parameters are updated. Then, Rx and
Ry are changed and the whole process is repeated for these
new values. The optimization method estimates the values
of the similarity measure iteratively for each combination of
the value of Rx and Ry in a small neighbourhood around
the current value of the remaining transformation parame-
ters. This results in an estimation of the changes required for
Tx , Ty , Rz and Tz . Finally, the six geometric transformation
parameters, which describe the estimated 3D position of the
3D CT volume, form the result of the registration process.

Experiments and discussions

To evaluate the performance of the proposed method, a num-
ber of experiments were performed to analyse the method’s
accuracy and computation time. These experiments are dis-
cussed in “Accuracy test” and “Computational times”. The

experiments were run on an Intel Core i7 computer that ran
at 3.6 GHz and had 16 GB of RAM. In the experiments,
we compared the accuracy and computation time of the pro-
posed algorithm with the registration approach in [11] which
is based on the SCV similarity measure optimized by the
standard Gauss–Newton method. Both methods were imple-
mented using the same programming language (MATLAB).
The database which was used in the experiments was col-
lected by capturing a number of CT and fluoroscopy images
from the bones of three knee cadavers. The data capturing
processes is explained in more detail in 3.1.

Accuracy test

In order to evaluate medical registration methods, in most
studies in the literature, an accuracy measure is computed.
However, ground truth position data should be known first,
and then the output of the proposed registration method
which is going to be evaluated can be compared with the
knownground truth. The ground truth canbe computed in dif-
ferent ways. Most researchers performed experiments using
human cadavers. Images from human cadavers can provide
information and data which are close to the typical patients’
images to be registered. Although some researchers used
synthetic data in their evaluation experiments [20], a num-
ber of differences can be seen between real and synthetic
images including object appearance, background, artefacts
and noise. To evaluate the accuracy of the proposed method,
we used a mechanical positioning system to collect data and
to compute the ground truth from three human knee cadav-
ers. Then, we evaluated the proposed method’s accuracy by
running the method on the acquired cadaveric data and com-
paring the results with the gold standard. This is explained
in more detail in “Cadaveric data collection procedure” and
“Accuracy analysis”.

Cadaveric data collection procedure

In this section, the method used for providing the cadaveric
dataset with its ground truth is explained. The ground truth
includes the kinematic parameters (three relational trans-
lation kinematic parameters: medial–lateral shift, anterior–
posterior draw and distraction–compression, as well as
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Fig. 2 Capturing a fluoroscopy
frame from one of the knee
cadavers

Table 1 Mean error, standard deviation of error and mean absolute error of the proposed method for the relational kinematic parameters

Relational kinematic parameters The proposed method

Mean error Standard deviation of error Mean absolute error

Flexion–extension (mm) 0.1153 0.6985 0.6195

Internal–external (mm) −.0698 0.4151 0.3426

Abduction–adduction (mm) 0.1622 0.6426 0.5750

Medial–lateral (◦) 0.5410 2.0432 1.7187

Anterior–posterior (◦) −0.0548 1.0196 0.7254

Distraction–compression (◦) 0.2533 0.1986 0.2690

Table 2 Mean error, standard deviation of error and mean absolute error of the SCV method for the relational kinematic parameters, respectively

Relational kinematic parameters The SCV method

Mean error Standard deviation of error Mean absolute error

Flexion–extension (mm) 0.1427 0.6611 0.5839

Internal–external (mm) −0.0617 0.4182 0.3438

Abduction–adduction (mm) 0.1859 0.6134 0.5481

Medial–lateral (◦) 0.5375 2.0192 1.6864

Anterior–posterior (◦) −0.0527 0.9909 0.6963

Distraction–compression (◦) 0.2621 0.1955 0.2752

the three relational rotation parameters: flexion–extension,
internal–external rotation and abduction–adduction) which
are most commonly used to describe knee joint movements
and investigate joint kinematics [8].

Three cadaveric lower limbs supplied,with permission, by
the Australian National University (ANU) medical school
were used. We also used a mechanical positioning system
which is shown in Fig. 2 to place the cadavers in known
positions at the timeof the image capturing process. The steps
in the experimental procedure for each cadaver are explained
below: Firstly, the cadaver was tightly attached to a wooden
board. The tibia and femur were fixed tightly to the board to
eliminate any relative movement between them. After that, a
CT image was acquired from the fixed cadaver. The relative
position of the bones, when the CT scan image was captured,
was considered to be the ground truth. Thismeans that finding
the kinematic parameterswhen both bones (the femur and the
tibia) have notmoved relative to each other (i.e., when Tx , Ty ,
Tz and Rx , Ry , Rz are all zero) will produce the kinematic

parameters for the bones when the CT is captured. In the
next step, as can be seen in Fig. 2, the fixed cadaver was
mounted using a mechanical positioning system. There are
three micrometres on the system by which the position of the
cadaver can be changed. In the data capturing process, these
micrometres were used to change out-of-plane parameters
(RX , RY and TZ ). Then, a number of fluoroscopy frames
from each cadaveric knee were captured when the knee was
in 27 different positions. Each time, when the position of the
cadaver was set, the changes in rotations and the translation
were a combination of the below values: Rx : − 5, 0, 5 Ry :
− 5, 0, 5 Tz : − 20, − 10, 0.

Accuracy analysis

To evaluate the performance of our hybrid registration
approach,we compared the proposed algorithmwith theSCV
registration approach in [11]. The methods were run on the
cadaveric data to register each 3D CT cadaveric knee image
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Fig. 3 a, b and c show box plots of the error in relational rotation kinematic parameters per frame per cadaver obtained by the proposed and the
SCV methods. d, e and f show box plots of the error in relational translation kinematic parameters obtained by the methods

123



International Journal of Computer Assisted Radiology and Surgery (2022) 17:1313–1320 1319

with its associated 27 fluoroscopy images. Then, after reg-
istration of the CT image with the fluoroscopy frames, the
kinematic parameters are computed and compared with the
ground truth.

Themean error, standard deviation (SD) of error andmean
absolute error of the relational kinematics parameters com-
puted by the methods are shown in Tables 1 and 2. As can
be seen the mean error ± SD of the proposed method for
themedial–lateral shift, anterior–posterior draw, distraction–
compression, flexion–extension, internal–external rotation
and abduction–adduction were 0.1153 ± 0.6985, -.0698 ±
0.4151, 0.1622 ± 0.6426, 0.5410 ± 2.0432, − 0.0548 ±
1.0196 and 0.2533 ± 0.1986, respectively. These errors are
considered to be accurate and acceptable to be used for
knee kinematics analysis. Furthermore, the results for the
proposed method were very similar to those of the SCV
method. Figure 3 shows the error of the kinematics param-
eters which were computed by the SCV and the proposed
methods. As can be seen, for both methods, the median of
the errors is close to zero. For the proposed method, the
median of the errors of flexion–extension, internal–external,
abduction–adduction, medial–lateral, anterior–posterior and
distraction–compression was 0.2450, 0.1256, − 0.0770,
0.0183, − 0.0563 and 0.1890, respectively. For the SCV
method, the resultswere 0.1954, 0.1433,−0.0407,−0.0062,
− 0.0532 and 0.2043. The box plots of the errors in the rela-
tional kinematics parameters of the proposed method show
that it could provide results that were almost identical to
the SCV registration method. For both methods, the largest
error is related to the medial–lateral kinematic parameter.
The main reason for this larger error is that finding Tz is
muchmore challenging compared to the other transformation
parameters as a small displacement in the directionwill cause
a large error. However, this error is acceptable in some appli-
cations as large translational motion between the femur and
tibia in the medial–lateral direction is prevented by certain
physical constraints [9]. Indeed, fibrous capsule, ligaments
andmuscles restrict the three relational translation kinematic
parameters, medial–lateral shift, anterior–posterior draw and
distraction–compression significantly. However, the great-
est range of motion is for the relational rotation parameter
flexion–extension while the other relational rotation param-
eters abduction–adduction and the internal–external rotation
are also more restricted [1].

Computational times

In certain applications, the importance of the speed of the
registration method applied can be seen more clearly, for
example, in the applications used for knee joint analysis,
when a large number of fluoroscopy frames, for instance 300
frames, should be registered with a CT or a 3D model of
the femur and tibia to provide 3D kinematic data. Although

Table 3 Computation Time

Method Computation time (seconds)

The SCV method 172.5

The proposed method 48.8

some registrationmethodsmay apply aGPU implementation
based on a special workstation to reduce the execution time,
they may not be applicable in standard clinics or research
departments. To show the speed of the proposed method,
the computational time required to register each frame for
each bone using our proposed method and the SCV tech-
nique is shown in Table 3. The results show that the proposed
method’s computational time is around 48.8 s, and it is almost
3.5 times faster than the SCV method while it is as accurate
as the latter. In the proposed method, performing a coarse
registration based on the EPD similarity measure, which
is computationally efficient, helps to reduce the data to be
processed in the final registration step, leading to a faster
registration method.

Conclusions

In medical image analysis, multimodal image registration
can be very helpful in improving the accuracy of diagno-
sis and providing targeted treatment. While for mono-modal
registration, the images to be registered are acquired by the
same sensor, for multimodal image registration, the images
can be taken from different devices or imaging protocols,
which makes the registration process much more challeng-
ing. There are a number of challenges in multimodal image
registration including, computation time and accuracy. In this
paper, we proposed a hybridmultimodal registrationmethod,
which is based on the multimodal EPD and SCV similar-
ity measures, to perform a trade-off between accuracy and
computational time. The experimental results show that the
proposed method is several times faster than the most recent
registrationmethodswhile itmaintains very similar accuracy.
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