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Abstract
In the past decades, the incidence rate of cancer has steadily risen. Although advances in early and accurate detection have 
increased cancer survival chances, these patients must cope with physical and psychological sequelae. The lack of personal-
ized support and assistance after discharge may lead to a rapid diminution of their physical abilities, cognitive impairment, 
and reduced quality of life. This paper proposes a personalized support system for cancer survivors based on a cohort and 
trajectory analysis (CTA) module integrated within an agent-based personalized chatbot named EREBOTS. The CTA module 
relies on survival estimation models, machine learning, and deep learning techniques. It provides clinicians with supporting 
evidence for choosing a personalized treatment, while allowing patients to benefit from tailored suggestions adapted to their 
conditions and trajectories. The development of the CTA within the EREBOTS framework enables to effectively evaluate 
the significance of prognostic variables, detect patient’s high-risk markers, and support treatment decisions.
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Introduction

Breast cancer is the most common cancer in women world-
wide and the second leading cause of cancer death for this 
population [1]. According to the American Cancer Society, 
the incidence rate of breast cancer has risen by 0.5% per year, 
estimating 281, 550 new cases solely in the United States in 
2021. From 2013 to 2018, medical advancements reduced 
the death rate by 1% per year, increasing the cancer survival 
rate up to 90% after five years from the diagnosis [2].

According to the World Health Organization (WHO), 
the improvement of treatment adherence would be more 
beneficial to the patient’s health than the development of 
new drugs [3]. However, the correct identification of some 
cancers’ stages and their evolution is still a challenging 
task [4], which often lead to insufficient or unnecessary 

treatments  [5]. Therefore, the development of assistive 
technologies that (i) effectively evaluate the significance of 
prognostic variables (e.g., death or relapse), (ii) facilitate the 
detection of patient’s high-risk markers, (iii) support treat-
ment decisions, and (iv) improve the patients’ treatment 
adherence, is imperative.

In this paper, we introduce a cohort and trajectory analy-
sis (CTA) approach for the EREBOTS agent-based person-
alized chatbot system [6]. The CTA enables EREBOTS to 
support patients through treatment adjustment, and provides 
a dedicated interface for clinicians to fine-tune the chatbot 
behaviors. Numerical evaluations show the effectiveness of 
trajectory analysis for providing insightful prediction and 
classification results in the context of breast cancer survivor 
patient support.

The rest of the paper is organized as follows. “State of 
the Art” presents the state of the art followed by the open 
challenges. The multi-agents framework EREBOTS is 
introduced in “Architecture of the Agent-based Chatbot 
Platform”, together with its components, behaviors, and 
interfaces. The EREBOTS Cohort and Trajectory Analysis 
module is presented in “Model for Cohort and Trajectory 
Analysis”, whereas “Model Evaluations” provides its evalu-
ation. Finally, “Conclusion” presents the discussions and 
conclusions of the paper.
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State of the art

Chatbot technologies are progressively being used to sup-
port cancer survivors [7]. Greer et al. [8] confirmed that 
technology can be an effective vector to reach young 
adults with positive psychology stimulation. As a result, 
the patients reported a sensible reduction of anxiety and 
depression. Chaix et al. [7] proposed Vik, a health care 
chatbot supporting breast cancer survivors. Although these 
works have shown the potential use of chatbots for support-
ing fragile cancer survivors, the challenge of personalizing 
interactions and interventions remains open. The usage of 
AI-powered models built upon patient information and their 
trajectories have been explored to fill this gap as seen in the 
next section.

Survival models evaluate the significance of prognostic 
variables in outcomes such as death or relapse, informing 
clinicians and patients of their treatment options [9]. The 
Kaplan–Meier estimator is one of the most used survival 
analysis models for cancer patients [10]. It allows estab-
lishing an estimation of the survival function from lifetime 
data, taking into account censored data and estimating lost 
event occurrence at a patient’s follow-up [11]. On the other 
hand, the Cox Proportional Hazard (CPH) model [12] is a 
standard method that can be adjusted with patient covari-
ates using linear combinations [13]. In the past few years, 
researchers have developed non-linear models, based on 
deep learning architectures, to the problem of survival 
analysis [14]. In particular, they focused on neural networks 
(NN) for classification tasks [15], event estimations [16], 
and risk prediction [17]. Those neural networks learn highly 
complex and nonlinear relationships between prognostic 
features and individuals risks. However, previous studies 
have demonstrated mixed results on predicting risk, fail-
ing to demonstrate improvements beyond the linear Cox 
model [18, 19].

The studies previously presented intersect several dis-
ciplines and domains including patient trajectory analysis, 
conversational agents, and eHealth patient support. The 
opportunities arising from the combined synergy of these 
areas are: (i) the dissemination of health information and 
coaching instructions; (ii) the collection of patient data to 
enable profiling, monitoring, and adherence boosting inter-
actions; (iii) the incentive of positive behavioral change; 
(iv) the support of persuasive strategies for self-efficacy 
evaluation.

Cancer survivors could concretely benefit from the 
accomplishment of such combinations. Equipping chat-
bots with behaviors bridging patients’ trajectories and 
persuasive techniques can support eHealth systems, which 
are facing the strain of a significant demand for patient 
empowerment.

Architecture of the agent‑based chatbot 
platform

To address the challenges mentioned above, we rely on an 
agent-based chatbot platform named EREBOTS. The multi-
agent-based architecture of the platform allows autonomous 
execution of personalized behaviors towards patients and 
isolated management of personal data.

Figure 1 shows the EREBOTS platform [6] comprises 
four main components: Database management, Communi-
cation Server, Multi-Agent System back-end for the doctor 
agents, and Multi-Agent System back-end and front-end for 
the patient agents.

–	 The Database component manages two types of infor-
mation: (i) system-related (non-personal) data, managed 
through MongoDB, and (ii) user personal data through 
Pryv1.

–	 The Communication server for inter-agent communica-
tion within the Multi-Agent Systems (MAS) uses Pros-
ody2, an XMPP server instance.

–	 The Doctor agent is designed to autonomously manage 
a campaign, including the type of interactions defined 
for the patients and the monitoring of their activities. It 
organizes the patients’ data, elaborates patients trajec-
tories based on machine learning models, updates the 
forecast trends, and enables further analysis. Overall, the 
Doctor agent is characterized by three building-blocks: 
Persuasion models to foster the Patient(s) behavioral 
change, the agent set of Behaviors, and the CTA​ module.

–	 The Patient agent manages the patients’ connections and 
their messages from the chat platform(s).

Please refer to [6] for more details of the EREBOTS archi-
tecture and development.

Model for cohort and trajectory analysis

In our approach, agents deployed in EREBOTS take either 
the patient or the doctor role, autonomously managing the 
interactions produced and received through the chatbot mes-
sages. Within the doctor agent, we propose the inclusion of 
the Cohort and Trajectory Analysis model, whose purpose 
is to provide decision-support information for clinicians 
regarding risks, symptoms, and disease associations.

Figure 2 illustrates the general scheme of the trajec-
tory and cohort analysis process. Specifically, trajectories 
represent the patient’s evolution from the diagnosis of 

1  https://​www.​pryv.​com/
2  https://​proso​dy.​im/
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the disease. The CTA requires EHRs data, provided by 
the doctor-agent, and behavioral data, provided by the 
patient-agent. Through the analysis of the trajectories, 
it is possible to identify associations between symptoms 

and events, and to quantify risks. Finally, these results 
allow the identification of high-risk markers for detri-
mental treatment effects, subsequent cancer disease, and 
metastatic cancer disease.

Fig. 1   EREBOTS architecture and interactions containerized via Docker

Fig. 2   Cohort and Trajectory Analysis (CTA) architecture in EREBOTS
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Trajectory estimation

In the context of cancer survivorship, one key aspect is the 
prediction of life expectancy, related to the probability of 
cancer relapse. To address this challenge, we introduce 
survival models, which aim to answer the question: “what 
is the probability that a patient survived any time t?.” We 
denote the survival function as S(t) = Pr(T > t) where T 
is the time of an event, and t is the time from the begin-
ning of an observation period to an event. Please notice 
that S(t) = 1 when t = 0 , whereas S(t) = 0 when t = ∞ . 
In case the study ends or the patient is withdrawn from 
it, the data is considered censored. Given a dataset with 
patients observing time and event outcome, we are enabled 
to estimate the survival curve through the Kaplan-Meier 
Estimator [11]:

With di and ni the number of patients that had an event 
at time i and the number of patients that survived at time 
i, respectively. Please note that the Kaplan-Meier estima-
tor formula is obtained by using the chain rule for random 
variables. Indeed, the Kaplan-Meier estimator is calcu-
lated considering the notion that the probability can be 
broken up into the product of probabilities during specific 
intervals.

(1)S(t) =

t
∏

i=0

1 − Pr(T = i, t >= i) =

t
∏

i=0

1 −
di

ni
.

To provide personalized patient treatments, we need to 
evaluate the hazard function that analyzes individual risks 
answering the question: “What is the immediate death risk 
for a patient that survived at time t?”.

The Cox Proportional Hazard model provides the tool 
to estimate individual risks as follows:

where t is the observation period and �0 is the baseline risk. 
Whereas, the factor in 2 identifies the way of modeling 
patient features (e.g., age, tumor stage, and treatments) to 
estimate patient risk. In this work, given its performance, we 
define the factor risk as a linear combination of the patient’s 
features X = (x1, x2, .., xn) and the respective features’ 
weights Θ = (�1, �2, .., �n) , with n the number of patient fea-
tures.Therefore,

Please notice that the survival function 1 is strictly 
related to the hazard function, as follows:

and vice versa

(2)�(t) = �0e
(factor)

(3)�(t) = �0e
(�1x1,�2x2,..�nxn) = �0e

(
∑n

i=0
�ixi) = �0e

(ΘtX).

(4)S(t) = e− ∫ t

0
�(u)du,

(5)�(t) = −
S�(t)

S(t)

Fig. 3   Kaplan-Meier survival probability estimation of the breast cancer population in METABRIC grouped by tumor stage
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Survival classification

The survival and risk approaches described above provide the 
means for doctor agents to build a comprehensive trajectory 
model that can be used to support clinical decisions. Comple-
mentary to these features, we propose incorporating classifi-
cation prediction capabilities, which may help understanding 
an individual trajectory based on similar healthcare records.

To identify common patterns of patient data, we define a 
classification task based on the use of several machine learn-
ing and deep learning models. These survival classifiers iden-
tify the relationship of the features based on the patient out-
come event (e.g., death), while providing interpretable results. 
They take as input the data of the patients (e.g., cancer type, 
tumor stage, and Nottingham Prognostic Index) and provide 
as output the label group to which the patient belongs, such 
as the patient’s vital status or relapse-free status.

Notice that this first step to cluster patients with similar 
features requires a training phase (i.e., supervised learning), 
contrary to clustering approaches presented later (i.e., unsu-
pervised learning).

The classification itself starts first with the task of find-
ing the event probability of the dependent binary variable 
(outcome), e.g., to be alive or deceased. To understand the 
decision boundary of the classification task, we use Sup-
port Vector Machine. Decision trees, random forests, and 
stochastic gradient boosting are the tree-based models used 
for the classification as well for the trajectory analysis tasks. 

Those models handle continuous and categorical features, 
outliers, and missing data. Finally, as the last classifier, we 
use a deep learning model —Neural Networks, which show 
high accuracy for large datasets.

Clustering

While in the previous section the classification methods tar-
geted prediction on predefined trajectory outcomes, in this 
section we investigate different clustering approaches for the 
patient cohort analysis. Such unsupervised approaches ben-
efit from the trajectory analysis and overcome the limitations 
of the classification task, which is based on the outcome of 
events such as the vital or the relapse status of the patient. 
Using clustering, a doctor agent can find similar trajecto-
ries without pre-defined assumptions about their patient’s 
characteristics.

To fine-tune groups of patients with similar outcomes 
but different features, we use K-Means, Gaussian Mixture 
Models, and Trajectory-based clustering algorithms.

Model evaluations

To evaluate the Cohort and Trajectory Analysis module, 
we have applied it in the context of breast cancer sup-
port. The fundamental principle is that these models can 

Fig. 4   Kaplan-Meier survival probability estimation of the breast cancer population in METABRIC grouped by cancer type
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autonomously provide personalized prediction of risks, 
as well as classification of trajectory patterns to incorpo-
rate into an EREBOTS doctor agent. In the following, we 
describe first the dataset used during the evaluation followed 
by the trajectory and cohort analysis results.

Dataset

In order to train and evaluate our models, we use the META-
BRIC dataset (Molecular Taxonomy of Breast Cancer Interna-
tional Consortium [20]). The METABRIC dataset consists of 

Fig. 5   Kaplan-Meier survival probability estimation of the breast cancer population in METABRIC grouped by surgery type and tumor stage

Fig. 6   Kaplan-Meier survival probability estimation of the breast cancer population in METABRIC grouped by menopause status
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gene expression data and clinical features for 2, 498 patients 
labeled as follows: 33.34% “Living”, 25.74% “Died due to 
breast cancer”, 19.80% “Died due to other causes”, and the 
rest “not observed”. METABRIC includes 32 features such 
as age at diagnosis, type of breast surgery, and ER status. 
Moreover, the dataset presents the number of patient’s months 
of relapse-free status and overall survival status, respectively 
with a median relapse time of 99 months and survival time of 
116 months. The mean age at diagnosis is 60, with the young-
est patient at the age of 21 and the oldest at the age of 96.

Trajectory analysis

In this section, we illustrate the main results of our trajectory 
analysis. We start analyzing the METABRIC dataset using the 
Kaplan-Meier estimator (KM). Figure 3 shows the KM estima-
tion of the breast cancer population grouped by tumor stage. 
We can see the impact of the tumor stage on the survival prob-
ability. Indeed, while a stage 2 tumor patient has a similar trend 
to the overall KM estimation above presented, patients with 
a stage 4 tumor have a huge drop in the survival probability 

Fig. 7   Cox Proportional Hazard based on the survival analysis of the breast cancer population in METABRIC
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estimation. According to our estimation, 80% of patients with 
a tumor stage 2 survived at least 50 months, whereas only 40% 
of patients with tumor stage 4 survived at least 50 months and 
just a few percentages survived more than 10 years.

In Fig. 4, we report the KM estimation of the breast can-
cer population grouped by cancer type. In particular, we 
arranged 4 types of cancers: Invasive Ductal, Invasive Lob-
ular, Mixed Ductal-Lobular, and other types that represent 
less than 5% of our dataset. From our KM estimation, we 
notice that all types of breast cancer in our dataset report the 
same KM estimation except for the group “Others”, which 
reports the best survival probably. However, given the small 
population and the numerous missing data, the KM estima-
tion for the group “Others” presents a huge confident inter-
val and a survival probability drop at 250 months.

A significant difference in the survival probability con-
cerns the type of surgery. Figure 5 shows the KM esti-
mation for the breast cancer population grouped by two 
surgeries: mastectomy and breast-conserving. We can see 
that breast-conserving surgeries provide a higher survival 
probability than mastectomy surgeries even for patients 
with similar tumor stages. Indeed, in Fig. 5, we report the 
KM estimation of both surgeries for patients with stage 2 
tumors. We notice that tumor stages do not affect the sur-
vival trajectory estimation based on the type of surgery.

A significant discrepancy in the survival estimation prob-
ability concerns the menopause status of the patients, which 
is strongly related to the patient’s age. Figure 6 shows the 

KM survival estimation of the breast cancer patients grouped 
by menopause status: pre-menopause and post-menopause. 
As Fig. 6 shows, patients post-menopause present higher 
risks than patients pre-menopause due particularly to the 
elder breast cancer population in the post-menopause group.

As a support to the relationship between patient’s age 
at diagnosis and patient’s risk, in Fig. 7, we present the 
Cox Proportional Hazard based on the survival analysis 
of the breast cancer population in METABRIC. Figure 7 
illustrates the relationship of the features with the log 
of the hazard function presented in “Model for Cohort 
and Trajectory Analysis” and the respective confident 
interval of 95% . Please note that the defined hazard func-
tion is exponential (see Eq. 3), therefore, the relationship 
between the features and the log of the hazard function is 
linear. In such a plot, a positive relationship means higher 
risk. On the other hand, a negative relationship means 
lower risk. As shown in Fig. 7, the patient’s age at the 
diagnosis is strongly related to higher risk. On the other 
hand, Relapse Free Status is strongly related to lower risk.

Cohort analysis

In this section, we illustrate the main results of our cohort 
analysis using the METABRIC dataset. As mentioned, we 
use supervised and unsupervised machine learning algo-
rithms such as Logistic Regression, SVM, Decision Tree, 
and Neural Networks.

Fig. 8   F-score for survival classification using Logistic Regression, SVM, Decision Tree, and Neural Networks
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We start analyzing the learning curves of the differ-
ent classifiers shown in Fig. 8. The figure illustrates the 
accuracy metric F-score for the survival classification task, 
defining patients’ risk, over the number of patients used 
for the training phase. We see that the classifiers enhance 
their accuracy when the number of patients in the training 
set increases. Particularly for the Neural Network model, 
which requires many examples to train its neurons. How-
ever, models such as Decision Tree and Logistic Regression 
provide the best accuracy level even for a small number of 
train examples.

Please notice that another important characteristic is the 
time to perform the cohort analysis. Indeed, while the trajec-
tory analysis does not require any training phase, the cohort 
could imply some delay in the EREBOTS framework.

In Fig. 9, we show the Gaussian Mixture model per-
forming the cohort analysis based on 10 random patient 
trajectories. We selected three main areas: high-risk, 
medium-risk, and low-risk. On the one hand, patients in 
the low-risk area have shown high survival probability. 
On the other hand, patients in the high-risk area have 
shown low survival probability. The Gaussian Mixture 
model clusters the patient trajectory in one of the above-
mentioned areas defining the patient risk. The trajectory, 
based on the Cox Proportional Hazard model, takes into 
account the relationship among the patient covariates and 
the relationship between patients.

Conclusion

This work coped with the challenge of personalized agent-
based chatbots as virtual assistants for breast cancer sur-
vivals and clinicians’ support. In this context, we pre-
sented a Cohort and Trajectory Analysis (CTA) approach 
for survival estimation, risk prediction and classification, 
designed to be integrated as a module of the EREBOTS 
multi-agent chatbot framework.

Overall, the CTA enables EREBOTS to personalize main-
stream interaction story-lines for dynamic personalization. 
By monitoring and reporting high-risk markers, the CTA 
provides support for the medical personnel for continuous 
healthcare supervision and prognosis. By using the CTA, our 
agent-based chatbots can model the users comprehensively 
for evolving patient models and behavior. The CTA can trig-
ger an adjustment of the patient’s treatments for dynamic 
persuasive techniques.

As future work, we are investigating how to dynami-
cally integrate user groups dedicated to enriching the chat-
bot interface (HemerApp) and its interactions. We wish 
to include in the CTA the mechanism presented in [21] 
and [22] for model ranking and accurate prediction on the 
overall survival of breast cancer patients.
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