A RTl C L E W) Check for updates

Feedforward prediction error signals during
episodic memory retrieval

Rafi U. Haque', Sara K. Inati® 2, Allan I. Levey® 3 & Kareem A. Zaghloul® '™

Our memories enable us to form expectations for our future experiences, yet the precise
neural mechanisms underlying how we compare any experience to our memory remain
unknown. Here, using intracranial EEG recordings, we show that episodic memories formed
after a single visual experience establish expectations for future experience within
neocortical-medial temporal lobe circuits. When subsequent experiences violate these
expectations, we find a 80-120 Hz prediction error signal that emerges in both visual
association areas and the medial temporal lobe. Critically, this error signal emerges in visual
association areas first and then propagates to the medial temporal lobe. This error signal is
accompanied by alpha coherence between the two regions. Our data therefore suggest that
internal models formed from episodic memories are generated throughout the visual hier-
archy after just a single exposure, and that these internal models are then used for com-
parison with future experiences.
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hen exposed to any experience, we rely upon our

memories to set our expectations. These expectations

determine the extent to which any experience involves
new information. For example, when we enter our home, we
rarely consider the fact that the couch is still next to the wall since
that arrangement has been embedded in our memory. Con-
versely, coming home to find the couch on the other side of the
room would be surprising and violate our expectations for how
the room should look based on our memory.

From a computational perspective, it would be efficient to
dedicate more cognitive resources when an experience is novel or
if it violates our expectations!~4 This is because identical
experiences contain no new information whereas novel or
unexpected experiences do. This hypothesis, termed predictive
coding, has been articulated in computational and theoretical
accounts of brain processing and posits that neural activity is
optimized to maximize information®>~7. A key requirement of
this hypothesis is that the expectations and predictions to which
new experiences are compared are stored in memory. For simple
visual and auditory stimuli, these expectations are learned
through a lifetime of observing and processing the statistical
regularities of the natural world and are stored as memory in the
brain networks and synaptic weights of primary visual and
auditory cortexS. Efficiently processing new sensory inputs
involves comparing those inputs to our expectations for how the
visual and auditory world should appear2~>-7,

While the principles of predictive coding have been supported
and described in empirical accounts of lower level sensory pro-
cessing, it is not clear if and how similar mechanisms may be
engaged when considering single episodes or events that we
experience. We rely upon episodic memory to encode and
remember these events!®!l, An important distinction between
episodic memory and memory of the statistics of the natural
world is that we can form episodic memories even when the
experiences we are remembering involve just a single exposure!0.
These memories are generated and stored through feedforward
and feedback interactions between the neocortex and medial
temporal lobe (MTL)!2-14, When presented with a similar
experience, the previous experience can be retrieved through
autoassociative reactivation of these neocortical-MTL repre-
sentations!>~16, This framework therefore provides an internal
memory to which new experiences may be compared. Any dif-
ference between past and present experience should violate the
expectations set by our episodic memory and therefore signal an
error in the predictions we had established for the new
experience.

Here we examine whether comparing a new experience to an
episodic memory indeed evokes a prediction error signal, and the
neural mechanisms that underlie this process in the human brain.
We were specifically interested in how such error signals are
represented in the neocortex and the MTL, as the interactions
between them underlie our ability to encode and retrieve episodic
memories!>13, We presented participants with images of natural
scenes and objects that they encoded into memory. We then
tested their memory for these images by presenting them with the
same images. Critically, during testing, we manipulated some of
the images to either remove items from or add items to the
original scene. Successfully recognizing this manipulation there-
fore requires participants to not only retrieve the past visual
experience but to also then compare the retrieved memory with
the present image. We examined changes in intracranial elec-
troencephalography (iEEG), captured through subdural electro-
des implanted for seizure monitoring, and how these changes
were temporally related to eye movements that participants made
as they scanned the new scenes during recognition testing.
Recognizing manipulated images, and therefore successfully

identifying a difference between past and present experience,
evoked a high frequency band prediction error signal in visual
association cortex that then propagated toward the MTL. During
successful recognition of these manipulations, this error signal
was also accompanied by elevated low frequency coherence
between the neocortex and MTL. Our results therefore provide a
direct account of how violations of the expectations set by the
episodic memory of a previous experience are encoded in the
human brain.

Results

Fourteen participants (7 males, 40.9 + 12 years) with intracranial
electrodes placed for seizure monitoring performed a visuospatial
recognition memory task (Fig. la; see “Methods”). During the
encoding portion of the task, we presented images of natural
scenes containing different items to participants and instructed
them to remember the images. We then subsequently presented
the same images during the recognition phase of the task and
tested their memory for the images. We either added or removed
an item from some of the images that were presented during the
recognition phase and instructed the participants to indicate
whether each image was identical to the one they had encoded or
if it had been manipulated. We therefore designated the three
different types of images presented during recognition testing as
repeated, added, or removed versions of the original images based
on the manipulation we performed. If the participant indicated
that the image had been manipulated, we then instructed them to
identify the location of the manipulation using a mouse click on
the screen (Fig. 1a).

Participants successfully recognized 65 + 5, 68 + 4, and 88 +3%
of the added, removed, and repeated images, respectively, during
testing with a mean response time of 2.65 +0.23, 2.41 +0.19, and
2.51+£0.17s (Fig. 1b, c). Response times were significantly faster
when participants correctly recognized removed and repeated
images compared to when they were incorrect (removed, #(13) =
—2.31, p=0.038, paired t test; repeated #(12) = —2.85, p =0.014)
but not when comparing correct and incorrect added images (¢
(13) =—1.36, p=0.195).

In a subset of participants (n = 8), we recorded the location of
each participant’s gaze as they scanned the images during
recognition testing (Fig. 1d; see “Methods”). Participants spent at
least one fixation on 83 +4% of successfully recognized added
items, but on only 34 +4% of the regions in which items were
removed when successfully recognizing a removed image (£(7) =
112, p=1073; Fig. le). However, participants spent a greater
percentage of time viewing both the added item and the region of
the removed item during correct compared to incorrect trials
(added, #(7) =4.93, p=0.002; removed, #7)=2.52, p=0.040,
paired ¢ test; Fig. 1f). In addition, participants were able to cor-
rectly identify the location of the manipulation when successfully
recognizing the items had been added or removed in 82 + 6 and
70 + 6% of the trials, respectively (Fig. 1g). These data together
suggest that participants were able to successfully recognize when
and where an image was manipulated even though they were
more likely to explicitly fixate on the manipulation only when an
item was added.

80-120 Hz power progresses down the visual hierarchy and
reflects specific visual experience. We examined iEEG recordings
captured from intracranial electrode contacts in all participants as
they performed the visuospatial recognition task (Fig. 2a; see
“Methods”). In a representative example electrode in the posterior
temporal cortex (PT), we found an increase in high frequency
power that was centered at 80-120 Hz and that was reliably
detected across all trials during the recognition period (Fig. 2b).
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Fig. 1 Visuospatial memory task. a Participants viewed and encoded into memory a series of images. During recognition testing, participants indicated
whether the images were manipulated (items added or removed) or whether they were identical to the encoded images. Participants subsequently
identified the location of the manipulation using a mouse click. b Probability of successful recognition for the added (Add), removed (Rem), and repeated
(Rep) conditions across participants. ¢ Mean response times for correct (C) and incorrect (1) responses for added, removed, and repeated conditions
across 14 participants. Response times were significantly faster when participants correctly recognized removed and repeated images compared to when
they were incorrect (removed, t(13) = —2.31, p = 0.038, repeated t(12) = —2.85, p = 0.014). d Representative eye-movements during encoding,
recognition, and identification of the location of the manipulation. We converted the gaze path (yellow) into fixations (red) and calculated the percentage
of fixations within the critical region of each image (green box). e Probability of fixation within the critical region for correctly recognized added, removed,
and repeated items across 8 participants. We selected a random item as the critical region for the repeated condition to assess the probability of baseline
fixations. Participants spent at least one fixation on a greater percentage of the successfully recognized added compared to removed items (t(7) =11.2, p=
10—5). f Probability of viewing time within critical region for correctly and incorrectly identified images across 8 participants. Participants spent a greater
percentage of time viewing both the added item and the region of the removed item during correct compared to incorrect trials (added, t(7) =4.93, p=
0.002; removed, t(7) = 2.52, p = 0.040). g Probability of mouse click within critical region for correctly recognized added and removed conditions across
participants. All error bars indicate standard error of mean. Asterisks (*, **, ***) indicate significance at p < 0.05, p < 0.01, and p < 0.001, respectively; two-

sided paired t tests.

We divided electrode contacts in each participant into four
regions of interest—lateral occipital cortex (LOC), parietal cortex
(PAR), PT, and the MTL—based on the known feedforward
organization within the visual hierarchy!” (Supplementary Fig. 1).
In each of these regions across participants, we observed a con-
sistent increase in high frequency power centered around 80-120
Hz when averaged across all trials during the recognition period
(Fig. 2c). This frequency band has been previously implicated in
human memory retrievall®, and given the patterns of spectral
power here, we focused our subsequent analyses on changes in
spectral power within this band of high frequency activity.

When examining all recognition trials, we found that 80-120 Hz
power exhibited a significant increase above baseline 200 ms after
image presentation in all regions (p < 0.001, permutation procedure;
see “Methods”; Fig. 2d). This rise in 80-120 Hz power peaked
within 600ms in all regions but peaked at a significantly earlier
time following image presentation in LOC and PT compared to
MTL (p<0.05 permutation procedure). The rise in 80-120 Hz
activity was significantly faster in LOC, PAR, and PT compared
to MTL (LOC vs MTL, #(14)=2.26, p=0.04; PAR vs MTL,
#(16) = 3.14, p=0.006; PT vs MTL #(17) =2.84, p=0.011; see
“Methods”), suggesting that image presentation during the
recognition period evokes a rise in 80-120 Hz power that progresses
down the visual hierarchy.

Given that the images presented during recognition testing
were similar, but not identical, to the images presented during
encoding, we investigated whether the patterns of 80-120 Hz
power that arose along the visual hierarchy following image
presentation during recognition testing were also similar to the
patterns of 80-120 Hz power present during encoding. For each
image presented during encoding and again during retrieval, we
computed the distributed pattern of 80-120 Hz power across all
electrode contacts at each time point following image presenta-
tion. We computed how similar the distributed power at each
time point during recognition testing was to the power present at
every time point when encoding the same image (see “Methods”).
We found that viewing the same image, regardless of whether the
image was manipulated, reinstated the distributed pattern of
80-120 Hz power that was present during encoding across
participants (Fig. 2e).

We compared the true reinstatement of these distributed
patterns of 80-120 Hz power to the reinstatement observed after
shuffling the trial labels in order to assess whether this
reinstatement was specific to each individual image (see
“Methods”). Viewing the images during recognition testing
significantly reinstated the specific distributed patterns of activity
for each image as compared to the shuffled trials beginning
100 ms after the image presentation (p < 0.001, permutation test;
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Fig. 2 Feedforward transmission of 80-120 Hz power between cortex and medial temporal lobe reflect specific visual experiences. a Intracranial
electrode locations for all 14 participants. Each color corresponds to an individual participant. b In a representative electrode in the posterior temporal lobe
(red), a single trial exhibits an increase in power in the 80-120 Hz band during recognition testing (top). Across all trials in this electrode, images during the
recognition period elicited increases in 80-120 Hz power. € Across participants, image presentation during the recognition period evoked increases in
80-120 Hz power in the lateral occipital cortex (LOC), posterior temporal lobe (PT), parietal cortex (PAR), and medial temporal lobe (MTL). d Average
time course of 80-120 Hz power during the recognition period in each brain region across participants (200 ms sliding windows, 50% overlap; image
appears at t = 0). Dots indicate significant increases in 80-120 Hz power compared to baseline, corrected for multiple comparisons across 6 LOC, 8 PAR,
10 PTL, and 10 MTL participants (p < 0.05, permutation procedure). e Reinstatement of 80-120 Hz power distributed across all electrodes, averaged across
all participants. The difference in average reinstatement between the true and shuffled distributions reflects image-specific reinstatement across all
participants (black outline, p < 0.05, permutation procedure). f Time series of average image-specific reinstatement across 6 LOC, 8 PAR, 8 PT, and 10
MTL participants during the recognition period. Dots indicate significant increases in image-specific reinstatement corrected for multiple comparisons (p <

0.05, permutation procedure; image appears at t =0). All error bars indicate standard error of mean.

Fig. 2e). We found image-specific reinstatement even when
considering each individual region of interest separately (p <0.05,
permutation test; Supplementary Fig. 2a). We then computed a
time series of the mean level of reinstatement during recognition
testing within each region by using all encoding epochs that
demonstrated image-specific reinstatement when considering all
electrodes. Across participants, we found that viewing the image
during recognition testing resulted in significant image-specific
reinstatement in the LOC, PT, PAR, and MTL (p<0.05,
permutation test; Fig. 2f), suggesting that the progression of high
frequency power down the visual hierarchy contains information
regarding the specific image being viewed. We did not find any
differences in reinstatement between the conditions during the first
500 ms when reinstatement was maximal (Supplementary Fig. 2).

80-120 Hz power increases when the present visual experience
differs from the remembered experience. Participants in our
task were able to correctly identify when a visual image was
manipulated compared to the image they had remembered. We
were interested in examining the neural mechanisms underlying
this ability to recognize the difference between past and present
visual experience. We therefore compared the image-specific
increases in 80-120 Hz power that progress down the visual

hierarchy between conditions. In an example participant, we
examined a set of electrodes arranged in linear strip from pos-
terior to anterior regions of the PT. Viewing the manipulated
images resulted in a significantly greater and more prolonged
increase in 80-120 Hz power in individual electrode contacts
when compared to viewing a repeated image or viewing an image
that had been manipulated but was incorrectly identified as being
repeated (p <0.001, permutation test; see “Methods”; Fig. 3a).
This difference was specific to two electrode contacts and not
present on the most posterior contact and was more attenuated in
the anterior contact, demonstrating that correctly identifying a
difference between a presented and remembered image results in
difference in 80-120 Hz power only within specific regions of the
visual association cortex.

We examined the changes in 80-120 Hz power between
conditions in all electrode contacts in all participants. We first
identified any electrode contact that demonstrated a significant
difference in 80-120 Hz power at any point during recognition
testing compared to baseline when averaged across all trials
(Fig. 3b). We found that 43% of electrode contacts across
participants exhibited a significant increase in 80-120 Hz power
from baseline (p<0.05, permutation test; see “Methods”;
17% of electrode contacts showed a significant decrease).
We designated these electrode contacts as visually responsive.
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Fig. 3 Increases in 80-120 Hz power in visual association cortex and MTL reflect differences between present and remembered visual experience.
a Time series of 80-120 Hz power for a set of posterior temporal electrodes in an example participant during 142 manipulated correct (black), 122
manipulated incorrect (blue), and 82 repeated correct (red) recognition trials (200 ms sliding windows, 50% overlap; image appears at t =0). Blue and
red dots indicate significant differences in 80-120 Hz power between manipulated correct and manipulated incorrect and repeated correct condition,
respectively (p <0.05, permutation procedure). b All electrodes across all participants demonstrating significant increases in 80-120 Hz power from
baseline (white; p < 0.05, permutation procedure corrected for multiple comparison within each electrode). ¢ All visually responsive electrodes in each
participant (white) demonstrating significant increases in 80-120 Hz power for the manipulated correct compared to the manipulated incorrect (blue),
manipulated correct compared to the repeated correct (red), or both (purple; p < 0.05, permutation procedure corrected for multiple comparison within
each electrode). d Time courses of 80-120 Hz power for the manipulated correct, manipulated incorrect, and repeated correct conditions across 6 LOC, 8
PAR, 10 PT, and 10 MTL participants during the recognition period (200 ms sliding windows, 50% overlap; image appears at t = 0). Blue and red dots
indicate significant differences in 80-120 Hz power between manipulated correct and manipulated incorrect and repeated correct condition, respectively
(p < 0.05, permutation procedure). All error bars indicate standard error of mean.

Visually responsive electrode contacts were primarily located in
LOC, PAR, PT, and MTL and were relatively absent from the
anterijor lateral temporal cortex. We then investigated how activity
within these visually responsive electrodes changed between
conditions. We found that 35 and 31% of visually responsive
electrode contacts demonstrated significantly greater 80-120 Hz
power at some point when viewing manipulated images that were
correctly identified compared to repeated images and compared to
images that were not correctly identified as manipulated,
respectively (p <0.05, permutation test; Fig. 3c, red and blue
electrodes, respectively). In all, 21% of the electrodes exhibited a
significant increase in both comparisons (p <0.05, permutation
test; Fig. 3c, purple electrodes). In contrast, <5% of electrode
contacts demonstrated a significant decrease in 80-120 Hz power
in any of these comparisons (p <0.05, permutation test; Supple-
mentary Fig. 3).

Although these data suggest that a large subset of electrode
exhibit significantly greater 80-120 Hz power at some time point
when viewing manipulated images, we were specifically interested
in understanding the time course of these changes. We therefore
examined the average time series of 80-120 Hz power in each
condition across all visually responsive electrode contacts in each
region. Across participants, as in the example set of electrodes, we
found that electrodes within PT, PAR, and MTL exhibited
significantly higher and more prolonged 80-120 Hz power when
viewing and correctly identifying manipulated images than when
viewing repeated or incorrectly identified manipulated images

(p <0.01, permutation test; Fig. 3d). The differences observed in
the MTL were specifically localized to the parahippocampal gyrus
and entorhinal cortex, but not the hippocampus (p<0.01,
permutation test; Supplementary Fig. 4). We did not observe a
significant difference between conditions in the LOC (p > 0.05,
permutation test). The differences observed between the condi-
tions were specific to the 80-120 Hz frequency band (Supple-
mentary Fig. 5), were not related to differences in trial counts
(Supplementary Fig. 6), and reflected temporally discrete
increases in 80-120 Hz power within each trial (Supplementary
Fig. 7). Moreover, these differences were not present during the
encoding period (Supplementary Fig. 8), and overall 80-120 Hz
power was enhanced when viewing the images during recognition
testing compared to encoding in PT, PAR, and MTL in all three
conditions (Supplementary Fig. 9).

In a subset of participants, we recorded eye movements during
recognition testing in order to determine whether the observed
changes in 80-120 Hz power were temporally related to viewing
the manipulated item. We focused on the added condition
because participants were significantly more likely to make a
fixation to the added item than to the location of the removed
item in manipulated images (Fig. 1e). In a representative example,
we found that the increase in 80-120 Hz power locked to the time
of the fixation on the manipulated item across all trials (Fig. 4a).
Across participants, we found that fixating on the added item
resulted in a significantly higher level of 80-120Hz power
immediately following the fixation during trials that were
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Fig. 4 Increases in 80-120 Hz power are locked to eye fixations and emerge whether an item is added or removed. a Average spectrogram relative to
the first fixation on successfully recognized added items for a representative electrode in PT. b Time courses of 80-120 Hz for visually responsive
electrodes across participants for the added correct, added incorrect, and repeated correct conditions locked to the first fixation on the added item (200 ms
sliding windows, 50% overlap; eye fixation at t =0). Blue and red dots indicate significant differences in 80-120 Hz power between added correct and
added incorrect and repeated correct condition across 8 participants, respectively (p < 0.05, permutation procedure). € Time courses of 80-120 Hz power
for the removed correct, removed incorrect, and repeated conditions across 6 LOC, 8 PAR, 10 PT, and 10 MTL participants during the recognition period
(200 ms sliding windows, 50% overlap; image appears at t = 0). Blue and red dots indicate significant differences in 80-120 Hz power between removed
correct and removed incorrect and repeated correct condition, respectively (p < 0.05, permutation procedure). d Time courses of 80-120 Hz power for the
added correct, added incorrect, and repeated conditions across 6 LOC, 8 PAR, 10 PT, and 10 MTL participants during the recognition period (200 ms sliding
windows, 50% overlap; image appears at t = 0). Blue and red dots indicate significant differences in 80-120 Hz power between added correct and added
incorrect and repeated correct condition, respectively (p < 0.05, permutation procedure). All error bars indicate standard error of mean.

correctly identified as manipulated compared to incorrect trials
and to trials with no manipulation (p <0.001, permutation test;
Fig. 4b and Supplementary Fig. 10). Hence, the observed
differences in 80-120 Hz power appear to be triggered by viewing
an item that was not present in a remembered visual image.

One concern regarding the differences we observed in
80-120 Hz power between manipulated and repeated images is
that these differences could have been driven by the stimulus
properties of the image presented during recognition testing. For
example, some of the manipulated images contained items that
were added to the original image, and the increases in 80-120 Hz
power may simply be due to the additional visual input from the
added item. To examine this possibility, we separately analyzed the
trials in which manipulated images contained an added or removed
item and compared them to the repeated images and to the
corresponding incorrectly identified manipulated images. Both the
added and removed conditions demonstrated similar significant
increases in 80-120 Hz power compared to the repeated correct
and manipulated incorrect conditions (p < 0.05, permutation test;
Fig. 4¢, d). These data therefore confirm that the observed increases
in 80-120 Hz power arise due to manipulation of the image and
are not related to specifically how the image had changed.

Differences in 80-120 Hz power during manipulated images
progress down the visual hierarchy. We next examined the time
course of this 80-120 Hz difference signal that arises when
viewing a manipulated image across brain regions. Our goal was
to distinguish whether this signal progresses from posterior to
anterior brain regions similar to routine visual processing!” or
whether this difference signal is first detected in higher-order
brain regions such as the MTL that are explicitly involved in

encoding and retrieving the associations present in each image!3.

We first examined the direction of propagation of overall
80-120 Hz power between neocortical association areas and the
MTL. In an example pair of electrodes located in the PT and
MTL, we computed a cross-correlation of 80-120 Hz power using
the first second of data from all trials (irrespective of condition)
following image presentation during recognition testing (Fig. 5a).
Across all trials in this example pair, the cross-correlation
demonstrated a clear peak that was significantly greater than
chance (p < 0.01, permutation procedure; see “Methods”) and that
80-120 Hz power in PT preceded MTL with a consistent delay.
We repeated these cross-correlations across all participants using
all visually responsive electrode pairs between brain regions.
Across participants, we found a significant peak in the cross-
correlation of 80-120 Hz power between PT and MTL (#7) =
6.13, p=0.0005, paired ¢ test; see “Methods”; Fig. 5b) and
between PAR and MTL (#(4) = 4.86, p = 0.008). We used the time
of the peak of each cross-correlation to quantify the delay in
80-120 Hz activity between brain regions and averaged the peak
delay across participants (Fig. 5¢; see “Methods”). The increases
in 80-120 Hz power in PT significantly preceded the increases in
MTL by an average delay of 40 + 8 ms across participants (£(7) =
4.78, p=0.002, paired t test). We observed this delay between
these two brain regions even when separating the retrieval trials
by condition (51 +12, 32 +16, and 37 + 18 ms for manipulated
correct, repeated correct, and manipulated incorrect trials,
respectively; p <0.01, paired t test for each condition). No
differences in delay were observed between the PAR and MTL
(t(4) = 0.99, p > 0.05, paired ¢ test).

We next examined whether the difference signals that arose in
80-120 Hz power when viewing an image that had been
manipulated also progressed in a feedforward direction along
the visual hierarchy. We visualized the time course of these
differences in each brain region across participants and identified
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Fig. 5 Differences in 80-120 Hz power between present and remembered visual experience emerge in visual association cortex earlier than in the
MTL. a Representative cross-correlation of 80-120 Hz power between a PT and MTL electrode in an example participant. The chance cross-correlation for
this electrode pair is indicated by the white line. b Average cross-correlation of 80-120 Hz power between the PT and MTL electrodes across participants.
The chance cross-correlation for the average across all electrode pairs is indicated by the white line. ¢ Average peak times (latency) of 80-120 Hz cross-
correlograms for PT-MTL and PAR-MTL electrode pairs across participants. Average latency between PT and MTL electrodes across 8 participants was
significantly greater than zero (t(7) =4.78, p = 0.002, two-tailed paired t test). d Average time series of differences between the manipulated and

repeated correct conditions (left) and manipulated correct and incorrect conditions (right) across 9 PT, 7 PAR, and 9 MTL participants (200 ms sliding
windows, 50% overlap; image appears at t = 0). e Average estimated onset of differences in 80-120 Hz power between manipulated correct and repeated
conditions in 9 PT, 7 PAR, and 9 MTL participants (left). The differences in 80-120 Hz power between manipulated correct and repeated conditions arose
significantly earlier in PT and PAR compared to MTL (PT vs MTL, t(16) = —3.21, p = 0.005; PAR vs MTL, t(14) = —3.32, p = 0.005). Asterisks (**) indicate
significance at p < 0.01; two-sided unpaired t test. f Average estimated onset of 80-120 Hz MTL power (activation) across 9 participants. All error bars

indicate standard error of mean.

the first time point when the difference in 80-120 Hz power
between manipulated correct and repeated conditions and
between manipulated correct and incorrect trials deviated from
zero (Fig. 5d; see “Methods”). Across participants, the differences
in 80-120 Hz power between manipulated correct and repeated
conditions arose significantly earlier in PT and PAR compared to
MTL (PT vs MTL, #(16) = —3.21, p = 0.005, unpaired ¢ test; PAR
vs MTL, t(14) =—3.32, p=0.005; Fig. 5e). These differences
began at 271 + 46 and 295 + 21 ms after the image presentation in
PT and PAR, respectively, but only started at 477 + 45 ms in the
MTL. We found the differences in 80-120 Hz power between
manipulated and repeated conditions also reached 50% of the
peak significantly earlier in PT and PAR compared to MTL (PT
vs MTL, #(16) = —2.63, p = 0.018, unpaired ¢ test; PAR vs MTL,
t(14) = —2.81, p=0.013). We also identified the time point that
differences became significant for each electrode and compared
these time points between regions across participants. We found
the differences in PT became significant earlier than the MTL
(#(16) = —2.45, p=0.026). We found similar temporal patterns
of activation when comparing manipulated correct and incorrect
conditions (Supplementary Fig. 11), together demonstrating that
the differences that are detected between past and present visual
experience are captured by increases in 80-120 Hz power that
also propagate from posterior to anterior brain regions along the
visual hierarchy.

Although specific differences in activity between manipulated
and repeated conditions arose in the MTL only after those
differences were detected in the visual association cortex, we
hypothesized that the ability to detect any difference between past
and present experience required initially retrieving the past
experience and therefore activation of the MTL. We therefore
examined when the differences in 80-120 Hz power that we

observed in PT and PAR occurred with respect to overall
activation of the MTL. Based on the increase in 80-120 Hz power
observed across all trials following the presentation of the image
during recognition testing (Fig. 2d), we estimated the first time
point at which MTL activity exceeded baseline as above (97.2 +
16 ms; see “Methods”; (Fig. 5e). We then compared this time
point to the first time points exhibiting a difference in activity
between conditions in PT and PAR. In both cases, we found that
overall activation of the MTL preceded the detection of a
difference between past and present visual experience in the
visual association cortex (PT vs MTL, #(16) = —3.58, p = 0.003;
PAR vs MTL, #(14) = —7.43, p = 3.18 x 106, unpaired ¢ test).
Successfully identifying whether an image has been manipu-
lated during recognition testing requires comparing that image to
a retrieved memory. Because our data suggest that retrieval may
involve activation of the MTL, we were interested in whether
neural communication between the MTL and the visual
association cortex where differences were first detected might
underlie this process. Low frequency oscillatory coherence has
previously been linked with neural communication between brain
regions!8-20, and so we examined oscillatory coherence between
electrode pairs in our data in participants with electrodes in
multiple brain regions (see “Methods”). In a representative single
trial, we observed clear evidence of phase-lagged alpha (8-12 Hz)
oscillations, and consequently alpha coherence, between a pair of
electrodes in the MTL and PT, suggesting that these two regions
may become synchronized during the recognition period (Fig. 6a).
We computed the coherence at all frequencies between all visually
responsive PT and MTL electrodes during the recognition period
across participants and found alpha coherence between the two
regions significantly increased 300-1800 ms after the presentation
of the image when examining all trials (p <0.05, permutation
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Fig. 6 Alpha coherence increases between MTL and PT when recognizing manipulated images. a Representative iEEG traces from a PT and MTL
electrode in an example participant indicating low frequency coherence at the single trial level. Across all trials in this electrode pair, coherence spectrum
showed a peak in the low frequency band. b Average coherence spectrum for all PT-MTL electrode pairs across participants (black outline, p < 0.05,
permutation procedure). ¢ Average low frequency coherence between PT and MTL electrodes across eight participants for manipulated correct, repeated
correct, and manipulated incorrect conditions. Greater alpha coherence for the manipulated correct condition compared to the manipulated incorrect
condition was observed (t(7) = 2.54, p = 0.038, unpaired, two-tailed t test). All error bars indicate standard error of mean.

procedure; Fig. 6b). We confirmed this by examining whether
alpha synchrony alone, as opposed to coherence, increased after
the presentation of the image (see “Methods”). We found
significant increases in alpha synchrony during the same
300-1800 ms period after the presentation of the image compared
to the 1s period before image presentation (#(16) =229, p=
0.028, one-tailed paired t test; Supplementary Fig. 12). Together,
these data suggest that comparing past to present visual
experience involves communication between the MTL and visual
association cortex. We did not find evidence of significant
coherence between the MTL and PAR (p>0.05, permutation
procedure).

We then examined coherence between PT and MTL electrodes
separately for the manipulated correct, repeated, and manipulated
incorrect conditions (Supplementary Fig. 13). Alpha coherence
between these brain regions appeared more robust and more
prolonged during the manipulated correct trials compared to the
other conditions. We computed the mean level of alpha
coherence over the recognition period and found significantly
greater alpha coherence for the manipulated correct condition
compared to the manipulated incorrect condition (#(7)=2.54,
p =0.038, unpaired ¢ test; Fig. 6¢) and greater coherence when
compared to the repeated condition (#(7) =2.33, p=0.05). The
involvement of low frequency coherence raises the possibility that
low and high frequency activity may be coupled, as suggested by
recent evidence demonstrating such interactions in the MTL
during successful memory updating?l. We did not observe
significant changes in theta- or alpha-high frequency coupling in
the MTL across conditions (Supplementary Fig. 14).

Discussion

Our data demonstrate the neural dynamics that underlie how
episodic memories may be used to compare present to past
experience. Visually processing an image generates an 80-120 Hz
signal that progresses from visual association cortex to the MTL
and contains information regarding the specific image being
viewed. Subsequently viewing the same image generates a similar
rise in 80-120 Hz power, but this increase in 80-120 Hz power is
larger and more prolonged when participants successfully
recognize that the image has been manipulated. This excess sig-
nal, representing the difference between the present visual
experience and the memory of the past experience, arises first in
the visual association cortex before propagating to the MTL and
is accompanied by low frequency oscillatory coherence between
the two brain regions (Fig. 7).

Our findings therefore build upon previous evidence that
neural activity is optimized to maximize information!-3 and
extend this framework to episodic memories. Episodic memory
formation relies upon feedforward and feedback interactions
between the neocortex and the MTL!2-1422, Retrieving an
experience stored in memory involves reactivating neural patterns
of activity that were present during the original experience
through similar interactions!>!%23, Memory retrieval therefore
may enable the brain to generate an internal comparative model
for each experience that can be used in order to optimize the
information captured from each new experience.

We interpret our results to suggest that the ability to detect
whether a new visual experience differs from these internal
models relies upon episodic memory. Whether episodic memory
is truly engaged in this process, however, requires careful con-
sideration. We base this interpretation on several aspects of our
task. Participants are not immediately tested on each individual
image but must retrieve its memory following the presentation of
several other intervening images and attention diverting tasks,
such as locating changes in other images. In addition, each image
to be remembered is a natural scene containing several items and
complex associations. The number of total items to be remem-
bered within each list therefore likely exceeds the capacity of
working memory and is not amenable to simple rehearsal. These
factors together suggest that performance on this task likely draws
upon episodic memory. In our task, however, participants are
tested on the memory of the images immediately after the study
period. Hence, whether these results would generalize to longer-
term memory retrieval over the span of several days or weeks is
unclear, and it is possible that, after a prolonged period of
memory consolidation, prediction error signals related to mem-
ory may arise first in a different brain region.

Regardless of the specific type of memory deployed here, our
results demonstrate that, after encoding a series of visual images
in memory, participants use the memory of these images to
identify whether subsequent images have been manipulated. We
find that 80-120 Hz power increases when participants are able to
successfully identify these manipulations, suggesting that this
activity reflects the difference between the present visual experi-
ence and a past experience stored in memory. Consistent with
this interpretation, we find that this increase in activity is tem-
porally locked to when the participants gaze at the region of the
image where the manipulation occurs. Importantly, we find that
this signal emerges when a manipulation involves both adding
and removing an item from the image. This activity therefore
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visual experience. Any differences between present and past visual experience evoke an increase in 80-120 Hz power (bold arrow), which reflects an error
signal, that arises in visual association cortex and propagates to the MTL (red units). This error signal is accompanied by low frequency coherence between

these brain regions (green).

reflects the detection of a change in the image as compared to
memory rather than additional visual inputs from the new image.

An alternative explanation for our data is that the observed
increases in 80-120 Hz power may simply reflect greater neural
activity associated with the non-overlapping representations of
the past and present experience rather than an explicit compar-
ison between them. In this scenario, both the past and present
visual experiences could activate different neural representations
that collectively would appear as an overall increase in activity.
Conversely, if the present experience were identical to the past
experience, only one neural representation would be active,
resulting in overall lower activity than the manipulated condition.
While we cannot rule out this possibility, devoting entirely dif-
ferent neural representations to past and present visual experi-
ence would appear to be computationally inefficient and would
violate the hypothesis that neural activity is optimized to max-
imize information. In addition, in our task, successfully identi-
fying that a manipulation has occurred requires identifying
whether items have been added or removed from the previous
image stored in memory. Without an explicit comparison
between the present and past experience, it is unclear how non-
overlapping representations of past and present experience may
lead to the same profile of activation during these two different
conditions.

If episodic memories are used to establish predictions for
future experiences, then one possibility could be that such com-
parisons are first generated in the MTL. Activity within the MTL

has been intimately linked with both episodic memory formation
and retrieval and implicated in rapid one shot learning!2-14,
Indeed, during memory retrieval, we find a rapid feedforward
propagation of 80-120 Hz power from visual association areas to
the MTL. However, while overall MTL activation occurs early
during recognition, we find that the specific differences in 80-120
Hz power that emerge when participants successfully identify a
manipulation in the visual images as compared to incorrect or
repeated trials arise first in the visual association cortex before
subsequently arising in the MTL. Our data therefore suggest that
the internal models established by episodic memory are repre-
sented as early as visual association cortex, typically associated
with higher-order processing of complex visual scenes. We find
that the visual association cortex is capable of making such
comparisons between the current visual experience and previous
visual memories, consistent with recent proposals suggesting that
each brain region is capable of performing computations on the
representations contained therein?4,

Our data are therefore consistent with and extend the princi-
ples of predictive coding to episodic memory. This hypothesis
posits that one of the main functions of the brain is to generate an
internal model of the world in order to predict future external
input®>725, Under this framework, higher-order neocortical
circuits send feedback to lower-order neocortical circuits in order
to predict external sensory input and to reduce any redundancies
of information when processing new stimuli. Differences between
the predicted and actual inputs are transmitted from lower-order
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areas to higher-order areas through feedforward interactions in
order to improve this internal model>°. Empiric support for the
principles of predictive coding derives from observations that
have been made within lower-level sensory circuits. For example,
surround suppression within the retina and the receptive field
properties of end-stopping cells in primary visual cortex are
canonical examples of how neural activity reflects a comparison
between an external input and expectations of that input based on
an internal model?>-20.

One key distinction, however, between any internal model that
is established for lower-level sensory inputs and those that may be
used for episodic memory lies in how such models are generated.
The internal models used to set our expectations for sensory
stimuli are largely established based on a lifetime of observing and
learning the statistics of the natural world>$2>27, If generating
internal models and comparing these models to new experiences
is a computationally efficient and generalizable approach for
cortical processing, such principles should then extend beyond
simple sensory features to more complex stimuli such as events or
episodes. In contrast to simple sensory stimuli, however, episodes
are often only experienced just once. Our data demonstrate that
even just a single exposure to a complex visual scene is sufficient
to establish an internal model that can be used for comparisons
with future experiences and that this comparison involves
increases in 80-120 Hz activity within the visual association
cortex that propagate to the MTL.

The neural activity that we observe that captures the difference
between past and present visual experience is centered in the
80-120 Hz band. This proposed role for 80-120 Hz activity is
consistent with previous proposals for feedforward and feedback
interactions in the primate visual system. The primate visual
hierarchy consists of a set of cortical areas that exhibit neuro-
physiological asymmetries!7-18-28, Feedforward interactions are
characterized by higher frequency activity, while feedback inter-
actions between these brain regions are mediated by lower fre-
quency synchronization. Based on these physiological
asymmetries, prediction errors are hypothesized to be transmitted
in a feedforward direction by high frequencies while predictions
are thought to be conveyed in a feedback direction through lower
frequency activity®!8. The observed differences in 80-120 Hz
power between past and present visual experience that propagate
from the visual association cortex to the MTL are consistent with
this hypothesis, as is the observed low frequency coherence
between these brain regions that accompanies these difference
signals and that may be involved in conveying predictive feed-
back. The increase in 80-120 Hz power observed when indivi-
duals are seeing an image for the first time during the encoding
phase of the task is also consistent with this interpretation, as in
that case the novel image is different from any previous experi-
ence the participant has had. However, although we find that both
low and high frequency activity are involved in this process, we
did not observe significant coupling between them that varied as
participants successfully recognize a manipulated image. Further
examining these interactions as prediction errors are generated
based on memory would therefore remain an important topic of
future investigation.

Together, our data therefore provide a direct account for how
episodic memories can establish expectations that are used for
comparisons in future experiences. Our results extend and sup-
port the hypothesis that one of the primary functions of the brain
is to establish predictions based on its previous experiences. In
this case here, our work shows that the internal models and
predictions used to evaluate future experiences can be generated
using episodic memories formed after just a single exposure.
These single experiences are sufficient to establish a representa-
tion of a visual memory in the visual association cortex that is

used for comparison with future visual experiences, thus sug-
gesting that every experience that we encode into memory can be
used to set our expectations and predictions for our future
actions.

Methods

Participants. Fourteen participants (7 males; 40.9 + 12 years) participants with
drug-resistant epilepsy underwent a surgical procedure in which platinum
recording contacts were implanted subdurally on the cortical surface as well as
within the brain parenchyma. In each case, the clinical team determined the pla-
cement of the contacts to localize epileptogenic regions. The Institutional Review
Board of the National Institutes of Health and the National Institute of Neurolo-
gical Disorders and Stroke approved the research protocol used to acquire these
data (protocol 11-N-0051), and informed consent was obtained from the partici-
pants and their guardians. All analyses were performed using custom built Matlab
code (Natick, MA).

Visuospatial recognition memory task. Participants performed a version of a
visuospatial recognition task that has previously been used to identify individuals
with early signs of memory impairment (Fig. 1a)2%-30, During the encoding portion
of the task, we sequentially presented participants a set of four color images. Each
image was a natural scene containing between one and five items, such as an
animal, person, or object, and we instructed the participants to remember each
scene. We presented each image for 5s, and a white fixation cross appeared for 1's
before each image. Immediately following the list of four images, we then presented
the same images during the recognition testing portion of the task and tested the
participants on their memory for the images. The images during recognition testing
were presented in the same order as they were presented during encoding, thus
ensuring that a lag of four images separated study and test of each image. The
average time delay between when an image was presented during the encoding
portion of the task and when that image was tested during the recognition portion
of the task was 28 + 6 s (mean + SD) across participants.

Critically, we manipulated some of the images presented during recognition
testing by either adding or removing an item from the scene. We therefore
presented three different types of images during recognition testing—added,
removed, or repeated—depending on whether a manipulation had been performed
and the type of manipulation. Images that were repeated, that had items added, and
that had items removed comprised 28, 36, and 36% of the testing trials,
respectively. For most analyses, we considered added and removed trials together
as the manipulated condition. We selected images from an open access database of
images from Pixabay (Munchen, Germany) and Pexel (Fuldabruck, Germany). We
used Adobe Photoshop (San Jose, CA) to remove an item from each of the original
images. We used the image with the removed item as the image to be tested during
recognition testing for the removed condition and as the image to be remembered
during the encoding period for the added condition.

During recognition testing, participants viewed the images until they made their
response. They indicated whether the image was the same or changed using left and
right arrow keys. We divided the recognition trials into manipulated correct,
manipulated incorrect, and repeated correct trials depending on whether there was
a manipulation of the image and on the participant’s response. If the participant
indicated the image was manipulated, we then presented a mouse cursor at the
center of the screen and instructed the participant to identify the location of the
manipulated item using a mouse click. We removed all trials in which the response
time for identifying whether an image was manipulated >10 s. For each image, we
defined a critical region as a rectangular region around each item. Based on where
the mouse click fell within this rectangular region, we determined whether the
participant was able to correctly identify the location of the manipulated item
(Fig. 1d).

In this task design, each image studied by the participants contains 2-5 items,
and therefore a list of 4 images contains approximately 8-20 items. We computed
the number of items held in memory during each list using Cowan’s K formula,
(HitRate + CorrectRejectionRate — 1) x N, where N is the memory set size3!. Based
on the observed hit rate and correct rejection rate, we approximated the number of
items held in memory by the participants during each list (Cowan’s K) to range
between 4.4 and 10.9. This range likely exceeds the capacity of working memory3!,
particularly given the complex images that are remembered in this task32.

Participants completed one to two sessions during the monitoring period. Each
session was approximately an hour of testing and contained 60 lists of images,
where each list contained the sequential presentation of four images during
encoding and the same (or manipulated) four images during recognition testing.
Participants completed a total of 784 + 195 trials during the monitoring period.

iEEG recordings. Depending on the amplifier and the discretion of the clinical
team, iEEG signals were sampled at 1000 or 2000 Hz. For clinical visual inspection
of the recording, signals were referenced to a common contact placed sub-
cutaneously, on the scalp, or on the mastoid process. The recorded raw iEEG
signals used for analyses were referenced to the system hardware reference, which
was set by the recording amplifier (Nihon Kohden, Irvine, CA) as the average of
two intracranial electrode channels. We re-referenced these raw signals using
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bipolar referencing (see below) in order to mitigate any effects of volume con-
duction or any biases introduced by the system hardware reference. All recorded
traces were resampled at 1000 Hz, and a fourth-order 2 Hz stopband butterworth
notch filter was applied at 60 Hz to eliminate electrical line noise.

We collected electrophysiological data from a total of 1716 subdural and depth
recording contacts (122 + 5.9 per participant; PMT Corporation, Chanhassen,
MN). Subdural contacts were arranged in both grid and strip configurations with
an inter-contact spacing of 10 mm. Contact localization was accomplished by co-
registering the post-op CTs with the postoperative magnetic resonance imagings
(MRIs) using both the FSL Brain Extraction Tool (BET) and FLIRT software
packages and mapped to both Montreal Neurological Institute (MNI) and
Talairach space using an indirect stereotactic technique and OsiriX 11.0 Imaging
Software DICOM viewer package. The resulting contact locations were
subsequently projected to the cortical surface of a MNI N27 standard brain33.
Preoperative MRIs were used when postoperative MRIs were not available.

We divided projected electrode contacts into four regions of interests based on
their location relative to the Desikan—Killiany atlas®*: LOC, PAR, PT, and MTL.
We assigned all electrodes with locations in the lateral occipital lobe as LOC
electrodes, and all electrode contacts in the superior and inferior PAR lobe as PAR
electrodes. We identified all electrodes with locations in posterior part of the
superior, middle, or inferior lateral temporal cortex or that lay over the posterior
aspect of the fusiform gyrus as PT electrodes®>. We designated all depth electrode
contacts within the hippocampus and all subdural contacts that lay along the MTL
structures, including the parahippocampal gyrus and the entorhinal cortex, and
that were medial to the collateral sulcus as MTL electrodes. Across participants, the
average number of electrodes assigned to the LOC, PIT, PAR, and MTL were 3 +2,
21+35,8+5, and 13 £9 electrodes, respectively.

To identify changes within different substructures of the MTL, we further
divided MTL electrodes into parahippocampal gyrus, entorhinal cortex, and
hippocampus. We used the Desikan-Killany atlas to identify electrodes that overlay
the parahippocampal gyrus and entorhinal cortex, and we identified hippocampal
depth electrodes using FSL’s automated subcortical segmentation package. We
excluded hippocampal depth electrodes that were also localized to the
parahippocampal gyrus according to the Desikan-Killiany atlas. In our data, the
parahippocampal gyrus, entorhinal cortex, and hippocampus contain electrodes
from the 9, 8, and 5 participants, respectively. For these participants, the number of
electrodes within each of these regions is 7.4 +7.5, 59+ 3.6, and 54 + 2.1,
respectively (mean + SD).

We analyzed iEEG data using bipolar referencing to reduce volume conduction
and spurious signals introduced by the system reference. The choice of referencing
largely depends on the assumptions regarding the spatial distribution of the signal
of interest3®. Bipolar referencing offers a practical approach for examining local
events with spatial distributions that are smaller than the inter-electrode distance of
our recordings since it will filter out activity at the larger spatial scale that is
common to both electrodes that may be introduced by the system reference or that
may result from volume conduction. In addition, because each neighboring bipolar
channel records activity from similar brain regions through similar electrode
contacts, bipolar referencing ensures that any referencing that is applied to each
recorded iEEG trace is performed using a reference electrode that shares similar
impedance and noise profiles. Finally, bipolar referencing has also been noted to be
superior to the average reference montage in reducing muscular artifacts in iEEG>.
We defined the bipolar montage in our data set based on the geometry of iEEG
electrode arrangements. For every grid and strip, we isolated all pairs of contacts
that were positioned immediately adjacent to one another. Bipolar signals were
then calculated by finding the difference in the signal between each pair of
immediately adjacent contacts. The resulting bipolar signals were treated as new
virtual electrodes (henceforth referred to as electrodes throughout the text),
originating from the midpoint between each contact pair. All subsequent analyses
were performed using these derived bipolar signals.

High frequency activity can be associated with epileptiform activity in addition
to cognitive processes. Therefore we implemented several measures to provide the
most conservative sampling of non-pathological signals possible. We implemented
an automated trial and electrode rejection procedure based on excessive kurtosis or
variance of iEEG signals®®. We calculated and sorted the mean iEEG voltage across
all trials, and divided the distribution into quartiles. We identified trial outliers by
setting a threshold, Q3 + w*(Q3 — Q1), where Q1 and Q3 are the mean voltage
boundaries of the first and third quartiles, respectively. We empirically determined
the weight w to be 2.3. We excluded all trials with mean voltage that exceeded this
threshold. The average percent removed across all sessions in each participant due
to either system-level noise or transient epileptiform activity was 1.7 £ 0.2% of all
electrodes and 2.8 +0.1% of all trials.

In addition to system level line noise, eye-blink artifacts, sharp transients, and
inter-ictal epileptiform discharges (IEDs) can confound the interpretation of our
results. We therefore implemented an automated event-level artifact rejections.
We calculated a z-score for every iEEG time point based on the gradient (first
derivative) and amplitude after applying a 250 Hz high pass filter (for identification
of epileptogenic spikes). Any time point that exceeded a z-score of 5 with either
gradient or high frequency amplitude was marked as artifactual, and 100 ms before
and after each identified time point was also classified as an artifact. We visually
inspected the resulting iEEG traces and found that the automated procedure
reliably removed IEDs and other artifacts. In total, following bipolar referencing

and exclusion of electrodes because of artifact, our pre-processed data set consisted
of 1716 bipolar electrodes (123 +5.9 per participant).

Eye movement and fixation detection. In a subset of participants (n =8), we
tracked the locations of their gaze on the screen using a Tobii X3-120 EyeTracker
(Stockholm, Sweden) that sampled eye movements at 120 Hz. At the start of each
session, participants performed a calibration procedure in order to convert eye
rotations into a set of gaze positions relative to the screen. For each participant, we
extracted raw eye movement data during the experimental session and converted
the movements into a set of fixations using a dispersion-based algorithm3°. We
defined each fixation point as a point on the screen upon which gaze continually
remained within 2 degrees of visual angle for a period of 2100 ms. We excluded the
remaining six participants from the analysis due to the inability to calibrate the
participants or collect eye movement data due to clinical constraints.

Spectral power. We quantified spectral power and phase by convolving iEEG
signals with complex valued Morlet wavelets (wavelet number 6). We extracted
data from all encoding and recognition trials, beginning with the presentation of
the image on the screen until the image was removed during encoding or until the
response during recognition testing and localization, for our analyses. In all trials,
we included a 1000 ms buffer on both sides of the clipped data. To generate
corresponding power spectrograms, we calculated spectral power using 32 loga-
rithmically spaced wavelets between 2 and 431 Hz. We then squared and log-
transformed the continuous time wavelet transform to generate a continuous
measure of instantaneous power. To account for changes in power across experi-
mental sessions, we z-scored power values separately for each frequency and for
each session using the mean and SD of all respective values for that session. We
binned the continuous time z-scored power for each frequency into 200 ms epochs
spaced every 100 ms (50% overlap) and averaged the instantaneous power over
each epoch and performed subsequent analyses on these binned values.

To control for the number of trials across conditions for spectral power analysis,
we used a bootstrap procedure. We randomly subsampled trials from the condition
with the larger number of trials to match the number of trials in the smaller
condition. We repeated this procedure 100 times and calculated the average
spectral power during each iteration. We assigned the average value of these
iterations as the final value for the higher-trial-count condition and used this
average bootstrapped value for comparison with the lower-trial-count condition.

Metrics of reinstatement. To quantify reinstatement of representations during
the recognition period, we conducted a representational similarity analysis!>40.
Briefly, we binned the continuous time z-scored power for each frequency into 200
ms epochs spaced every 100 ms (50% overlap) and averaged the instantaneous
power over each epoch. For each temporal epoch, we subsequently averaged the z-
scored power within each frequency band. For every temporal epoch in each trial,
we constructed a feature vector composed of the average z-scored power for every
electrode within a given region of interest and for each frequency band. For each
encoding temporal epoch, i, and for each retrieval temporal epoch, j, we define
feature vectors as follows:

715 (1)),

2 ()],

21(i) ..

21 () -

Fi =[z1,() ...

R; = [z1,1G) -

where z;(i) is the z-transformed power of electrode [ = 1...L at frequency band f=
1...F in temporal epoch i. For L electrodes and F frequency bands, we thus create a
feature vector at each temporal epoch that contains K= L*F features, which
represents the distributed spectral power across all electrodes and across all fre-
quency bands. In our main analysis, we focus on the patterns of neural rein-
statement within a single frequency band centered at 80-120 Hz. This frequency
band corresponds to the main changes in spectral power observed in response to
the presentation of an image (Fig. 2¢). In subsequent analyses, we also found that
the greatest changes between conditions were centered in this 80-120 Hz frequency
band (Supplementary Fig. 5). This frequency band is also consistent with previous
work suggesting the presence of high frequency 80-120 Hz ripples in the human
cortex that are relevant for memory retrieval!®. Thus, in our main analysis, we
construct a feature vector containing just this single frequency band and therefore
containing only K= L features.

To quantify reinstatement during trial », we calculated the cosine similarity
between encoding and recognition feature vectors Fi and fj for all pairs of
encoding and recognition temporal epochs during that trial. Cosine similarity gives
a measure of how close the angles of two vectors are in a multidimensional space.
We chose cosine similarity over Pearson’s correlation to measure reinstatement
because, if all of the elements of two feature vectors show increases in power from
baseline, with small additional random noise, then these two vectors should have
high measured reinstatement. Pearson’s correlation, a centered version of cosine
similarity, would give a low correlation in this case because of the noise
fluctuations, whereas the cosine similarity would be high, consistent with our
interpretation of reinstatement. Thus, for each trial, #, we generate a temporal map
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of reinstatement values:

- =

L Ei-R;
Cn(lv]) == —

I E IR, I
where C,(i, j) corresponds to the reinstatement of neural activity across all
electrodes and all frequencies between encoding epoch i and retrieval epoch j
during trial n. We z-scored the reinstatement maps by the average cosine similarity
across all trials to produce a normalized reinstatement map. We averaged the
normalized reinstatement maps separately across trials for each participant and
averaged the reinstatement maps across participants.

To confirm that the reinstatement of neural activity was specific to each image,
we compared the true reinstatement to reinstatement computed after shuffling the
trial labels. We shuffled the encoding-retrieval trial pairs for all trials within each
list of images. In this manner, we compared the pattern of neural activity present in
an individual retrieval trial to the neural activity present in a non-matching
encoding trial. We computed the average shuffled reinstatement across all trials
and then compared this average to the average of the true encoding-retrieval
reinstatement in each participant (Fig. 2e). If neural activity is specific to an image,
the difference between the true reinstatement and reinstatement using the shuffled
encoding-retrieval trial pairs should be greater than zero (see “Statistical analysis”).

To examine reinstatement within individual brain regions, we followed the
same procedure above, but in this case constructed feature vectors using only the
subset of electrodes within each of the regions of interest. For each participant, we
calculated the normalized image-specific reinstatement strictly using electrodes
within a particular region and then assessed for significance across participants
using the same shuffling procedure (Supplementary Fig. 2a). We also computed a
mean time series of reinstatement during retrieval for each region of interest. To do
so, we identified all the encoding time epochs in the reinstatement map that
exhibited significant image-specific reinstatement across participants. For each
participant, we generate a time series of reinstatement during retrieval by
computing the mean reinstatement across these significant encoding epochs for
every time point during retrieval. We then calculated the average time series of
reinstatement for each region across participants (Fig. 2f)

Generation and characterization of cross-correlograms. We computed a cross-
correlation of the spectral power time series between pairs of electrodes spanning
PT and MTL and spanning PAR and MTL in order to examine the temporal
relation of high frequency activity between visual association cortex and MTL. We
used the first second of data following image presentation during recognition
testing for this analysis. In each electrode, we extracted the continuous time series
of spectral power and divided this trace into non-overlapping 10 ms bins by
averaging the time series over each bin. We used these 10 ms bins to compute the
cross-correlations for computational efficiency and to generate more temporally
smoothed representations of the cross-correlations between electrode pairs. For
every electrode pair, in each trial, we computed the time-lagged cross-correlation
between the time series of binned values. We then averaged these cross-correlations
across trials, thus generating a true cross-correlogram for each pair of electrodes in
each participant that we can compare to a chance distribution and that we can use
to identify the time lag of high frequency activity between the electrode pair.

We generated a chance cross-correlogram for each electrode pair characterizing
the baseline cross-correlation that would be expected by chance given the
presentation of a stimulus'® and to which the true correlogram could be compared.
For every pair of electrodes, we generated this chance distribution by computing
the cross-correlation of the power time series of one electrode during a randomly
chosen individual trial with the time series of the other electrode from another
randomly chosen trial. We repeated this procedure 100 times and averaged across
all permutations to generate an average chance cross-correlogram for that electrode
pair. The difference between the true cross-correlogram and the chance cross-
correlogram reflects the extent to which two signals are cross-correlated greater
than chance given the presentation of a stimulus.

To assess significant coupling for a single electrode pair, we compared the true
distribution of cross-correlation values between —50 and 50 ms to the chance
distribution in this same window using a paired ¢ test. To assess significant
coupling between two regions across participants, we first averaged the true and
chance cross-correlation values over this window for each electrode pair and then
computed the average difference between the true and chance cross-correlograms
across all electrode pairs between two regions for a single participant. We then
compared the distribution of these average differences across participants to 0 to
assess significance (p < 0.05, paired ¢ test). To determine the relative timing of high
frequency power between two regions, we identified the peak time of each
correlogram for every pair of electrodes between two regions. We computed the
average peak time across electrode pairs between the two regions for each
participant and assessed whether the distribution of average peak times across
participants was significantly different than zero (p <0.05, paired ¢ test).

Temporal dynamics of spectral power. We compared the peak times of the
spectral power time series for LOC, PT, PAR, and MTL in order to examine the
temporal relation of high frequency activity through the visual hierarchy. We
identified the peak time for a particular region by calculating the time during which

the average spectral power time series across participants reached its maximum
value. We then computed the difference in the peak times between two regions to
identify the temporal relation of spectral power between them. To assess whether
this difference was significant, we generated a chance distribution to which the true
difference in peak times could be compared. We computed this chance distribution
by randomly switching the spectral power time series for one region with the
spectral power time series of the other region in each participant. Hence, in each
permutation, some participants would retain their original power time series traces
in their original regions, and some participants would have the labels for the
regions randomly switched. We then averaged these shuffled spectral power time
across participants for each region and then computed the difference in peak times
between the two regions in each permutation. We repeated this procedure 1000
times to generate a shuffled distribution of differences in peak times. We assigned p
values that characterize the difference in peak times between any two brain regions
by comparing the true difference in peak times to the shuffled distribution of
differences.

To estimate how quickly high frequency activity increased in each brain region
and how this compared across LOC, PT, PAR, and MTL, we computed the
instantaneous slope of the increases we observed in the time series of high
frequency spectral power. We computed the difference in spectral power between
adjacent time bins (200 ms overlapping bins incremented by 100 ms) and then
averaged these estimates of instantaneous slopes across all time points within the
first 500 ms after image presentation. Within each brain region in each participant,
we computed the average instantaneous slope across all visually responsive
electrodes. We compared the distribution of average values across participants
between two brain regions using an unpaired f test (p < 0.05) in order to assess
whether the rise in high frequency activity was different between the regions across
participants.

To determine whether the differences in high frequency 80-120 Hz spectral
power that we observed between conditions arose at different times in different
brain regions, we performed two analyses. In both cases, we explicitly generated a
time course of the average difference between conditions for each electrode that
showed any significant difference between conditions in each brain region in each
participant. In the first analysis, we used the rise in the average time series across all
significant electrodes of the differences in spectral power to estimate the first time
point when this difference deviates from zero and to estimate the time point when
the increase in high frequency power reached 50% of its peak. We used this
approach to generate a more temporally precise estimate of when this signal first
increased above baseline since in our main analysis we generated the time series
using overlapping 200 ms bins incremented every 100 ms. To estimate this initial
time of deviation, we identified the time point of the peak difference between
conditions and the time point of the local minimum that immediately preceded the
peak difference. We then fit a line using all points in between these two time points
and identified the time point when that line intersected with zero. We designated
this as the time point at which the difference between conditions first deviates from
baseline. We compared the distribution of these first time points across participants
between brain regions using an unpaired ¢ test. We similarly identified when the
rise of spectral power reached 50% of the peak and compared the distribution of
50% time points across participants between each brain region. We also compared
the estimated time points at which we first observed a rise in the difference in high
frequency power between conditions to the time points at which we observed
overall increases in high frequency power in the MTL across conditions. In a
similar manner, we used the average time series of spectral power across significant
MTL electrodes to estimate the first time point when overall 80-120 Hz power
deviated from baseline in the MTL. In the second analysis, we identified the time
points that exhibited the first significant difference in spectral power between
conditions in each electrode within a region. We then averaged these first time
points across all electrodes within each region in each participant. We compared
the distribution of these time points of first differences across participants between
brain regions (unpaired ¢ test, p < 0.05).

Spectral coherence. We computed the magnitude squared spectral coherence
between every electrode pair using one second temporal epochs during the
recognition period (MATLAB function “mscohere”)*!. We computed the coher-
ence between individual electrode contacts, rather than between bipolar virtual
contacts, since bipolar referencing has been shown to remove low frequency
coherence between iEEG electrodes*2. In this case, before computing coherence
between any electrode pair, we re-referenced the signal from each electrode to a
global common average in order to eliminate common mode signals that would
arise from the system-level reference or from artifacts. We calculated the coherence
between two time series, x(f) and y(t), in two electrode contacts as a function of
frequency:

Pey ()
€)= o PP ()’

where Pyy and Pyy are the power spectral densities and Pxy is the cross-spectral
density. We generated a coherence spectrum for each temporal epoch, frequency,
electrode pair, and trial. We then z-scored coherence values separately for each

electrode pair using the mean and SD of all coherence values for the session. For
any pair of brain regions, we restricted our analysis to only those participants with
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electrodes in both brain regions (n =8 for PT-MTL coherence and n =5 for
PAR-MTL coherence).

Phase synchrony. To confirm that any increases in coherence are not confounded
by changes in oscillatory power, we obtained an estimate of inter-electrode phase
synchrony. To do so, we first extracted the instantaneous phase of the complex
valued Hilbert transform of the filtered signal in each frequency band. For every
frequency band, f, and time point, ¢, we calculated a phase locking value (ﬁpq)
between the continue phase series of two electrodes, ¢,(, f) and ¢ (t, )*:

Rolf) =y : 1)

N
3 el t=4y(eh)
t=1

where N is total number of samples collected from all trials at each time point. For
each electrode, we obtained a normalized time series of phase locking values by z-
scoring each value by the mean and standard deviation across all time points.

Statistics and reproducibility. We employed a non-parametric clustering-based
procedure to identify significant time, frequency, or time-frequency epochs for
differences in power, coherence, and reinstatement between conditions*4. The
procedures for all analyses were identical with the exception that clusters identified
for coherence and reinstatement analysis were generated across the two dimen-
sions. The clustering procedure identifies contiguous temporal or time-frequency
clusters exhibiting significant differences between two conditions (e.g., manipulated
correct and repeated correct), with the null hypothesis that, across participants,
each epoch showed no difference between the conditions. For each time or
time-frequency window, we computed the true ¢ statistic and p value across par-
ticipants between the two conditions by comparing the distribution of average
values across all visually responsive electrodes within each brain region across
participants. The p value for each individual time point, time-frequency window,
or time-time window in the true case, however, does not take into account the
multiple comparisons that are made across time points.

To correct for multiple comparisons across time points, we randomly permuted
the participant-specific averages between the two conditions. In practice, this
translates to randomly reversing the sign of the difference within each participant
and recomputing the mean difference across participants. For n participants, this
results in an empiric distribution of 2" possible mean differences that are all equally
probable under the null hypothesis. We generated the empiric distribution from
1000 permutations for every time point and calculated ¢ statistics for each time
point in each permutation. We identified clusters containing time points or
time-frequency windows that were adjacent in time (or in time-frequency space)
that exhibited a significant difference between trial types (where in each time point,
P <0.05 unless specified otherwise) in both the true case and in each permutation.
For each cluster of significant time points identified in the true and permuted cases,
we defined a cluster statistic as the sum of the ¢ statistics within that temporal
cluster. We retained the maximum cluster statistic during each of the 1000
permutations to create a distribution of maximum cluster statistics. We assigned p
values to each identified cluster of the true data by comparing its cluster statistic to
the distribution of maximum cluster statistics from the permuted cases. Clusters
were determined to be significant if their p value calculated in this manner was
<0.05.

We used a similar procedure to identify electrodes showing a significant
difference between conditions. The clustering procedure identifies contiguous
temporal clusters exhibiting significant differences between two conditions with the
null hypothesis that, across trials, each epoch showed no differences between the
participants. In this case, we created a permuted distribution by randomly
switching the condition of one trial with the condition of another and then
computing the mean difference between the conditions. We repeated this
procedure 1000 times to create an empiric distribution and compared the true
difference to the empiric distribution of mean difference. We then identified the
maximum cluster statistic of the true data and compared to the cluster statistic of
the permuted distribution to correct for multiple comparisons. Clusters were
determined to be significant if their p value calculated in this manner was <0.05.

Although we performed all analyses on discrete time windows, we used
MATLAB’s contourf function to visualize isolines of the matrix of reinstatement or
coherence values. This function fills the corresponding isolines based on a
colormap. The time regions of significance, however, are based on the discrete time
windows. We used the contour function to overlay the single isoline indicating the
regions of significance.

All experiments and data analyses in this study were performed once and were
not reproduced in a separate cohort of participants.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data sets generated during and/or analyzed during the current study can be
found at https://neuroscience.nih.gov/ninds/zaghloul/downloads.html.

Code availability

Custom MATLAB analysis code is available upon request.
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